• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Directory
  • Training
  • Contact
  • Fr
  • En
Institut Fresnel

Institut Fresnel

Recherche et innovation en photonique

  • The Institute
    • Editorial
    • Presentation
    • Organization
    • Teams
    • Our sponsors
    • Students
  • Research
    • Our themes
    • European projects
  • Partnerships
    • Common laboratories
    • Chairs
    • Partners
    • Networks
    • Instituts ets AMU
  • Recruitment
    • Thesis offers
    • CDD – Post-Doc offers
    • Internships and work-study programs
    • Employment campaign
    • Internship form
  • Facilities
  • Publications
    • Patents
    • Thesis
    • Publications
    • Press review
    • Books & E-books
    • Highlights
  • Events
Home
The Institute
Teams
SEMO
Themes Thermoplasmonics

Thermoplasmonics

Principal investigator: Guillaume Baffou

Thermoplasmonics is the field that explores the heat generation capabilities of metal nanostructures when illuminated at their plasmonics resonance wavelengths [31]. Since almost any field of science features temperature induced effects, thermoplasmonics enables the investigations of a large variety of phenomena, from physics to chemistry and biology, at the micro and nano scales.

The challenge in thermoplasmonics is not to heat, but to measure the resulting microscale temperature increase. We developed the first label-free and non-invasive temperature imaging technique, suited for plasmonics-related applications [10]. We mapped microscale temperature distributions, in 3D, by mapping temperature-induced wavefront distortion of light beam crossing the sample of interest. For this purpose, we quadriwave lateral shearing interferometry (QLSI) [41,47], a wavefront imaging technique patented by Jerome Primot in 2000 [Appl. Opt. 39, 5715 (2000)], and pioneered in microscopy by Pierre Bon and Serge Monneret in 2009 at the Fresnel Institute[Opt. Express 15, 13080 (2009)]. We now name the implementation of QLSI in microscopy: cross-grating wavefront microscopy (CGM).

Using CGM as a temperature imaging technique, we investigated a large variety of laser-induced phenomena, such as liquid water superheating up to 200°C [18], solvothermal chemistry at ambient pressure [28], hyperthermophilic micro-organisms activation [Opt. Express 15, 13080 (2009)], single-cell thermal biology [33], microscale temperature shaping [20,34], fluid convection and thermophoresis [40,43].

In addition to experimental investigations, we also devote a large part of our activities to numerical and theoretical development.

The figure below depicts the chronology of the most important developments we made at the Fresnel Institute in thermoplasmonics.

 

Chronology of the main experimental developments of the Institut Fresnel in Thermoplasmonics.


References:

 

 

  • [49] Quantitative Microscale Thermometry in Droplets Loaded with Gold Nanoparticles
    L. Sixdenier,* G. Baffou, C. Tribet, E. Marie
    Journal of Physical Chemistry Letters 14, 11200-11207 (2023)
  • [48] Anti Stokes Thermometry of Plasmonic Nanoparticle Arrays
    S. Ezendam, L. Nan, I. L. Violi, S. A. Maier, E. Cortés,* G. Baffou,* J. Gargiulo*
    Advanced Optical Materials
    2301496 (2023)
  • [47] Wavefront microscopy using quadriwave lateral shearing interferometry: from bioimaging to nanophotonics
    G. Baffou
    ACS Photonics
    10, 322-339 (2023)
  • [46] Life at high temperature observed in vitro upon laser heating of gold nanoparticles
    C. Molinaro, M. Bénéfice, A. Gorlas, V. Da Cunha, H. M. L. Robert, R. Catchpole, L. Gallais, P. Forterre, G. Baffou*
    Nature Communications
    13, 5342 (2022)
  • [45] Optically-assisted thermophoretic reversible assembly of colloidal particles and E. coli using graphene oxide microstructures
    J. Puthenveetil Joby, S. Das, P. Pinapati, B. Rogez, G. Baffou, D. K. Tiwari, S. Cherukulappurath
    Scientific Reports
    12, 3657 (2022)
  • [44] Thermoplasmonics of metal layers and nanoholes
    B. Rogez,* Z. Marmri, F. Thibaudau, G. Baffou*
    APL Photonics
    6, 101101 (2021)
  • [43] Microscale Thermophoresis in Liquids Induced by Plasmonic Heating and Characterized by Phase and Fluorescence Microscopies
    S. Shakib, B. Rogez, S. Khadir, J. Polleux, A. Würger, G. Baffou*
    J Phys Chem C
    125, 21533-21542 (2021)
  • [42] Anti-Stokes Thermometry in Nanoplasmonics
    G. Baffou
    ACS Nano
    15, 5785-5792 (2021)
  • [41] Quantitative phase microscopy using quadriwave lateral shearing interferometry (QLSI): principle, terminology, algorithm and grating shadow description
    G. Baffou
    J. Phys. D: Appl. Phys.
    54, 294002 (2021)
  • [40] Quantifying the Role of the Surfactant and the Thermophoretic Force in Plasmonic Nano-Optical Trapping
    Q. Jiang, B. Rogez, J. B. Claude, G. Baffou, J. Wenger*
    Nano Letters
    12, 8811-8817 (2020)
  • [39] Applications and challenges of thermoplasmonics
    G. Baffou,* F. Cichos,* R. Quidant*
    Nature Materials
    19, 946-958 (2020)
  • [38] Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics
    G. Baffou,* I. Bordacchini, A. Baldi, R. Quidant
    Light: Science and Applications
    9, 2047-7538 (2020)
  • [37] Optimal architecture for diamond-based wide-field thermal imaging
    R. Tanos, W. Akhtar, S. Monneret, F. Favaro de Oliveira, G. Seniutinas, M. Munsch, P. Maletinsky, L. le Gratiet, I. Sagnes, A. Dréau, C. Gergely, V. Jacques, G. Baffou, I. Robert-Philip
    AIP Advances
    10, 025027 (2020)
  • [36] Adhesion Layer Influence on Controlling the Local Temperature in Plasmonic Gold Nanoholes
    Q. Jiang, B. Rogez, J.-B. Claude, A. Moreau, J. Lumeau, G. Baffou, J. Wenger*
    Nanoscale
    12, 2524-2531 (2020)
  • [35] Temperature Measurement in Plasmonic Nanoapertures used for Optical Trapping
    Q. Jiang, B. Rogez, J.-B. Claude, G. Baffou, J. Wenger*
    ACS Photonics
    6, 1763-1773 (2019)
  • [34] Microscale Temperature Shaping Using Spatial Light Modulation on Gold Nanoparticles
    L. Durdevic, H. M. L. Robert, B. Wattellier, S. Monneret, G. Baffou*
    Scientific Report
    9, 4644 (2019)
  • [33] Photothermal control of heat-shock protein expression at the single cell level
    H. M. L. Robert,* J. Savatier, S. Vial, J. Verghese, B. Wattelier, H. Rigneault, S. Monneret, J. Polleux,* and G. Baffou*
    Small
    14, 1801910 (2018)
  • [32] GOLD NANOPARTICLES as nanosources of heat
    G. Baffou
    Photoniques
    2, 42-47 (2018)
  • [31] Thermoplasmonics
    G. Baffou
    Cambridge University Press
    (2017)
  • [30] Isosbestic Thermoplasmonic Nanostructures
    K. Metwally, S. Mensah, G. Baffou*
    ACS Photonics
    4, 1544-1551 (2017)
  • [29] Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold
    A. Lalisse, G. Tessier, J. Plain, G. Baffou*
    Scientific Reports
    6, 38647 (2016)
  • [28] Light-Assisted Solvothermal Chemistry Using Plasmonic Nanoparticles
    H. M. L. Robert,* F. Kundrat, E. Bermudez-Urena, H. Rigneault, S. Monneret, R. Quidant, J. Polleux, G. Baffou*
    ACS Omega
    1, 2-8 (2016)
  • [27] Fluence Threshold for Photothermal Bubble Generation Using Plasmonic Nanoparticles
    K. Metwally, S. Mensah, G. Baffou*
    Journal of Physical Chemistry C
    119, 28586-28596 (2015)
  • [26] Quantifying the Efficiency of Plasmonic Materials for Near-Field Enhancement and Photothermal Conversion
    A. Lalisse, G. Tessier, J. Plain, G. Baffou*
    Journal of Physical Chemistry C
    119, 25518-25528 (2015)
  • [25] Shaping and Patterning Gold Nanoparticles via Micelle Templated Photochemistry
    F. Kundrat, G. Baffou, J. Polleux*
    Nanoscale
    7, 15814-15821 (2015)
  • [24] Reply to: “Validating subcellular thermal changes revealed by fluorescent thermosensors” and “The 10^5 gap issue between calculation and measurement in single-cell thermometry”
    G. Baffou,* H. Rigneault, D. Marguet, L. Jullien
    Nature Methods
    12, 803 (2015)
  • [23] Quantitative study of the photothermal properties of metallic nanowire networks
    A. P. Bell, J. A. Fairfield, E. K. McCarthy, S. Mills, J. J. Boland, G. Baffou, D. McCloskey*
    ACS Nano
    9, 5551-5558 (2015)
  • [22] A critique of methods for temperature imaging in single cells
    G. Baffou,* H. Rigneault, D. Marguet, L. Jullien
    Nature Methods
    11, 899-901 (2014)
  • [21] Time-harmonic optical heating of plasmonic nanoparticles
    P. Berto, M. S. A. Mohamed, H. Rigneault, G. Baffou*
    Physical Review B
    90, 035439 (2014)
  • [20] Deterministic Temperature Shaping using Plasmonic Nanoparticle Assemblies
    G. Baffou*, E. Bermúdez Ureña, P. Berto, S. Monneret, R. Quidant and H. Rigneault
    Nanoscale
    6, 8984-8989 (2014)
  • [19] Nanoplasmonics for Chemistry
    G. Baffou and R. Quidant*
    Chemical Society Reviews
    43, 3898-3907 (2014)
  • [18] Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles
    under cw Illumination
    G. Baffou,* J. Polleux, H. Rigneault, S. Monneret
    Journal Physical Chemisty C
    118, 4890 (2014)
  • [17] Photo-induced heating of nanoparticle arrays
    G. Baffou,* P. Berto, E. Bermúdez Ureña, R. Quidant, S. Monneret, J. Polleux, H. Rigneault
    ACS Nano
    7, 6478-6488 (2013)
  • [16] Three-dimensional temperature imaging around a gold microwire
    P. Bon, N. Belaid, D. Lagrange, C. Bergaud, H. Rigneault, S. Monneret, G. Baffou*
    Applied Physics Letters
    102, 244103 (2013)
  • [15] Thermo-plasmonics: using metallic nanostructures as nano-sources of heat
    G. Baffou,* R. Quidant*
    Laser and Photonics Reviews
    7, 171-187 (2013)
  • [14] Quantitative absorption spectroscopy of nano-objects
    P. Berto,* E. Bermúdes Ureña, P. Bon, R. Quidant, H. Rigneault, G. Baffou*
    Physical Review B
    86, 165417 (2012)
  • [13] Micropatterning Thermoplasmonic Gold Nanoarrays to Manipulate Cell Adhesion
    M. Zhu, G. Baffou, N. Meyerbröker, and J. Polleux*
    ACS Nano
    6, 7227-7233 (2012)
  • [12] Mapping intracellular temperature using Green Fluorescent Protein
    J. Donner, S. Thompson, M. Kreuzer, G. Baffou, R. Quidant*
    Nanoletters
    12, 2107-2111 (2012)
  • [11] Plasmonic Nanoparticle Networks for Light and Heat Concentration
    A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant*, C. Girard, E. Dujardin*
    ACS Nano
    6, 3434-3440 (2012)
  • [10] Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis
    G. Baffou,* P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault and S. Monneret
    ACS Nano
    6, 2452-2458 (2012)
  • [9] Plasmon-assisted optofluidics
    J. S. Donner, G. Baffou,* D. McCloskey, R. Quidant*
    ACS Nano
    5, 5457 (2011)
  • [8] Femtosecond-pulsed optical heating of gold nanoparticles
    G. Baffou,* H. Rigneault
    Physical Review B
    84, 035415 (2011)
  • [7] Thermoplasmonics modeling: A Green function approach
    G. Baffou,* R. Quidant, C. Girard
    Physical Review B
    82, 165424 (2010)
  • [6] Mapping heat origin in plasmonic structures
    G. Baffou,* C. Girard, R. Quidant*
    Physical Review Letters
    104, 136805 (2010)
  • [5] Charge distribution induced inside complex plasmonic nanoparticles
    R. Marty, G. Baffou, A. Arbouet, C. Girard*, R. Quidant
    Optics Express
    18, 3035 (2010)
  • [4] Nanoscale control of optical heating in complex plasmonic systems
    G. Baffou, R. Quidant, F. J. García de Abajo*
    ACS Nano
    4, 709 (2010)
  • [3] Heat generation in plasmonic nanostructures: Influence of morphology
    G. Baffou,* R. Quidant, C. Girard
    Applied Physics Letters
    94, 153109 (2009)
  • [2] Temperature mapping around plasmonic nanostructures using fluorescence polarization anisotropy
    G. Baffou,* M. P. Kreuzer, F. Kulzer, R. Quidant*
    Optics Express
    17, 3291 (2009)
  • [1] Shaping and manipulation of light fields with bottom-up plasmonic structures
    C. Girard,* E. Dujardin, G. Baffou, R. Quidant
    New Journal of Physics
    10, 105016 (2008)

sidebar

semo
  • Team
  • Themes
  • Members
  • Publications
  • Partners
  • Thesis & HDR
  • Contact
  • LinkedIn
  • Google Scholar
  • Instagram
  • Youtube
  • Bluesky
  • ResearchGate
  • Intranet
INSTITUT FRESNEL
Faculté des Sciences - Avenue Escadrille Normandie-Niémen - 13397 MARSEILLE CEDEX

Copyright © 2025 · Politique de confidentialité · Mentions Légales · Politique des cookies · Crédits · Site map

Gérer le consentement
Pour offrir les meilleures expériences, nous utilisons des technologies telles que les cookies pour stocker et/ou accéder aux informations des appareils. Le fait de consentir à ces technologies nous permettra de traiter des données telles que le comportement de navigation ou les ID uniques sur ce site. Le fait de ne pas consentir ou de retirer son consentement peut avoir un effet négatif sur certaines caractéristiques et fonctions.
Fonctionnel Always active
L’accès ou le stockage technique est strictement nécessaire dans la finalité d’intérêt légitime de permettre l’utilisation d’un service spécifique explicitement demandé par l’abonné ou l’utilisateur, ou dans le seul but d’effectuer la transmission d’une communication sur un réseau de communications électroniques.
Préférences
L’accès ou le stockage technique est nécessaire dans la finalité d’intérêt légitime de stocker des préférences qui ne sont pas demandées par l’abonné ou l’internaute.
Statistiques
Le stockage ou l’accès technique qui est utilisé exclusivement à des fins statistiques. Le stockage ou l’accès technique qui est utilisé exclusivement dans des finalités statistiques anonymes. En l’absence d’une assignation à comparaître, d’une conformité volontaire de la part de votre fournisseur d’accès à internet ou d’enregistrements supplémentaires provenant d’une tierce partie, les informations stockées ou extraites à cette seule fin ne peuvent généralement pas être utilisées pour vous identifier.
Marketing
L’accès ou le stockage technique est nécessaire pour créer des profils d’internautes afin d’envoyer des publicités, ou pour suivre l’utilisateur sur un site web ou sur plusieurs sites web ayant des finalités marketing similaires.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Voir les préférences
{title} {title} {title}