• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Directory
  • Training
  • Contact
  • Fr
  • En
Institut Fresnel

Institut Fresnel

Recherche et innovation en photonique

  • The Institute
    • Editorial
    • Presentation
    • Organization
    • Teams
    • Our sponsors
    • Students
  • Research
    • Our themes
    • European projects
  • Partnerships
    • Common laboratories
    • Chairs
    • Partners
    • Networks
    • Instituts ets AMU
  • Recruitment
    • Thesis offers
    • CDD – Post-Doc offers
    • Internships and work-study programs
    • Employment campaign
    • Internship form
  • Facilities
  • Publications
    • Patents
    • Thesis
    • Publications
    • Press review
    • Books & E-books
    • Highlights
  • Events
Home
The Institute
Teams
Clarte
Themes Resonant Light Scattering

Resonant Light Scattering

Lorenz-Mie theory : Even though the so-called “Mie” theory began more than 100 years ago with the seminal works of (Lorenz-1890, Mie-1908, and Debye-1909), it continues to be an important source of physical insights and calculational methods).
The “Mie” theory provides an expression for the scattering of light by a homogeneous sphere or radius R, and its importance stems from the fact that it is one of the few exact solutions of a three-dimensional scattering problem. This “exact” solution takes the form of an infinite series of “coefficients”, an and bn, with the integer index n varying from 1 to infinity. These coefficients have analytical expressions that are readily calculated on a computer, and the Mie series converges rapidly for values of n>2πR. A variety of analytical formulas can relate these an and bn coefficients to measurable quantities like the differential and total scattering cross sections, optical forces, modifications to electromagnetic density of states and much more.

Generalized Mie theory and T, S and K-matrices : Historically, our group has contributed to the generalizations of Mie theory to particles other than homogenous spheres, as well as the generalization of the scattering by a single particle to multiple-scattering in multiple-particle systems. This work has typically been carried out principally using the T-matrix formalism (originally developed for quantum mechanics), but some of our recent works have emphasized the utility of the S-matrix and reaction (K) matrix formalisms, also originally developed in the context of quantum and field theoretic scattering. These formulations have also allowed us to describe the interaction of particles with different types of `exotic’ beams like photonic jets and Bessel-type beams. We have carried out several works studying the spectral properties and power transmission of such beams as well as their applications like optical forces.

Applications of Mie theory to Decay rate enhancement : One of the specificities of our group has been to generalize Mie theory to the calculation of the modification of the properties of quantum emitters near optical nano-antenna structures within the weak coupling formalism. The essential idea is that an optical nano-antenna near one its “quasi’’-mode resonances will strongly modify the local density of states (LDOS) which in turn can strongly modify the emission rate of quantum emitters (like fluorophores, quantum dots, etc.) via the LDOS contribution to the Fermi Golden Rule formula. Generalizations of this technique to strongly coupled systems where the properties of the quantum emitter can no longer be considered as being relatively ‘’separate’’ from those of the nano-antennas are currently underway.

Attaining the fundamental limits of light-particle interactions : Certain of our recent works have involved using the S-matrix formalism to establish the fundamental theoretical limits of light-matter interactions, like the unitary limit and ideal absorption (IA) limits. In particular, we have used Weierstrass factorization techniques of S-matrices to make theoretical analytic predictions of the particle properties necessary to reach the unitary or IA limits in a given mode at a given particle size.

(The unitary limit occurs when a given multipole order of a particle reaches its maximal allowed contribution to the extinction(scattering) cross section. For sub-wavelength particles, this corresponds to a large concentration of electromagnetic field energy in the neighborhood of the particle. For dipole interactions this corresponds to a cross section of /2. Ideal absorption corresponds to a particle that attains its maximal allowed absorption cross section (/8 for dipole modes). The concept of IA should prove useful for applications such as solar harvesting and detection.

As an example, we illustrate log scale plots of the electric and magnetic near-field intensities near particles that were designed to achieve Ideal Absorption (IA) in electric and magnetic dipole modes respectively when kR=0.4. The fields exterior to the particles have identical profiles, but the magnetic IA particles have much stronger fields inside the particle.

Studies currently underway in our group include evaluate the means of concentrating electromagnetic energy inside particles for applications in non-linear and quantum optics. This work is being carried out by reinforcing our design methods using Weierstrass factorization and coupled quasi-mode analysis.

sidebar

clarte
  • Team
  • Themes
  • Members
  • Publications
  • Partners
  • Awards
  • LinkedIn
  • Google Scholar
  • Instagram
  • Youtube
  • Bluesky
  • ResearchGate
  • Intranet
INSTITUT FRESNEL
Faculté des Sciences - Avenue Escadrille Normandie-Niémen - 13397 MARSEILLE CEDEX

Copyright © 2025 · Politique de confidentialité · Mentions Légales · Politique des cookies · Crédits · Site map

Gérer le consentement
Pour offrir les meilleures expériences, nous utilisons des technologies telles que les cookies pour stocker et/ou accéder aux informations des appareils. Le fait de consentir à ces technologies nous permettra de traiter des données telles que le comportement de navigation ou les ID uniques sur ce site. Le fait de ne pas consentir ou de retirer son consentement peut avoir un effet négatif sur certaines caractéristiques et fonctions.
Fonctionnel Always active
L’accès ou le stockage technique est strictement nécessaire dans la finalité d’intérêt légitime de permettre l’utilisation d’un service spécifique explicitement demandé par l’abonné ou l’utilisateur, ou dans le seul but d’effectuer la transmission d’une communication sur un réseau de communications électroniques.
Préférences
L’accès ou le stockage technique est nécessaire dans la finalité d’intérêt légitime de stocker des préférences qui ne sont pas demandées par l’abonné ou l’internaute.
Statistiques
Le stockage ou l’accès technique qui est utilisé exclusivement à des fins statistiques. Le stockage ou l’accès technique qui est utilisé exclusivement dans des finalités statistiques anonymes. En l’absence d’une assignation à comparaître, d’une conformité volontaire de la part de votre fournisseur d’accès à internet ou d’enregistrements supplémentaires provenant d’une tierce partie, les informations stockées ou extraites à cette seule fin ne peuvent généralement pas être utilisées pour vous identifier.
Marketing
L’accès ou le stockage technique est nécessaire pour créer des profils d’internautes afin d’envoyer des publicités, ou pour suivre l’utilisateur sur un site web ou sur plusieurs sites web ayant des finalités marketing similaires.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Voir les préférences
{title} {title} {title}