• Passer à la navigation principale
  • Passer au contenu principal
  • Passer à la barre latérale principale
  • Annuaire
  • Formations
  • Contact
  • Fr
  • En
Institut Fresnel

Institut Fresnel

Recherche et innovation en photonique

  • L’institut
    • Édito
    • Présentation
    • Organigramme
    • Équipes
    • Nos tutelles
    • Étudiants
  • Recherche
    • Nos thématiques
    • Projets Européens
  • Partenariats
    • Labos communs
    • Chaires
    • Partenaires
    • Réseaux
    • Instituts ets AMU
  • Recrutements
    • Offres de thèses
    • Offres de CDD – Post-Doc
    • Offres de stages – Alternances
    • Campagne d’emploi
    • Formulaire stage
  • Plateformes
  • Publications
    • Brevets
    • Thèses
    • Articles scientifiques
    • Revue de presse
    • Ouvrages & E-book
    • Faits marquants
  • Animations
  • Annuaire
  • Formations
Accueil
L'institut
Équipes
SEMO
Thématiques Thermoplasmonique

Thermoplasmonique

Chercheur principal : Guillaume Baffou

 

La thermoplasmonique est le domaine de recherche basé sur le chauffage laser de nanoparticules métalliques illuminées à leur longueur d’onde de résonance plasmonique [31]. Puisque presque tous les domaines de la science présentent des effets induits par la température, la thermoplasmonique permet d’étudier une grande variété de phénomènes, de la physique à la chimie et à la biologie, aux échelles micro et nanométriques.

Le défi de la thermoplasmonique n’est pas de chauffer, mais de mesurer l’augmentation de température à l’échelle microscopique. Nous avons mis au point la première technique d’imagerie de la température non invasive et sans marquage, adaptée aux applications liées à la plasmonique [10]. Nous avons cartographié les distributions de température à l’échelle micrométrique, en 3D, en cartographiant la distorsion du front d’onde induite par le gradient de température sur le faisceau lumineux traversant l’échantillon d’intérêt. Pour ce faire, nous avons utilisé l’interférométrie à décalage quadrilatéral (QLSI) [41,47], une technique d’imagerie du front d’onde brevetée par Jérôme Primot en 2000 [Appl. Opt. 39, 5715 (2000)], et implémentée sur un microscope par Pierre Bon et Serge Monneret en 2009 à l’Institut Fresnel [Opt. Express 15, 13080 (2009)]. Nous appelons la mise en œuvre de la QLSI en microscopie : cross-grating wavefront microscopy (CGM).

En utilisant la CGM comme technique d’imagerie de la température, nous avons étudié une grande variété de phénomènes induits par chauffage laser, tels que la surchauffe de l’eau liquide jusqu’à 200°C [18], la chimie solvothermale à pression ambiante [28], l’activation de micro-organismes hyperthermophiles [46], la biologie thermique à l’échelle de la cellule unique [33], le modelage de la température à l’échelle micrométrique [20,34], la convection de fluides et la thermophorèse [40,43], among other developments. The figure below depicts the more important developments made at the Fresnel Institute in thermoplasmonics.

Chronologie des principaux développements expérimentaux à l’institut Fresnel en thermoplasmonique.

 


References:

 

  • [49] Quantitative Microscale Thermometry in Droplets Loaded with Gold Nanoparticles
    L. Sixdenier,* G. Baffou, C. Tribet, E. Marie
    Journal of Physical Chemistry Letters 14, 11200-11207 (2023)
  • [48] Anti Stokes Thermometry of Plasmonic Nanoparticle Arrays
    S. Ezendam, L. Nan, I. L. Violi, S. A. Maier, E. Cortés,* G. Baffou,* J. Gargiulo*
    Advanced Optical Materials
    2301496 (2023)
  • [47] Wavefront microscopy using quadriwave lateral shearing interferometry: from bioimaging to nanophotonics
    G. Baffou
    ACS Photonics
    10, 322-339 (2023)
  • [46] Life at high temperature observed in vitro upon laser heating of gold nanoparticles
    C. Molinaro, M. Bénéfice, A. Gorlas, V. Da Cunha, H. M. L. Robert, R. Catchpole, L. Gallais, P. Forterre, G. Baffou*
    Nature Communications
    13, 5342 (2022)
  • [45] Optically-assisted thermophoretic reversible assembly of colloidal particles and E. coli using graphene oxide microstructures
    J. Puthenveetil Joby, S. Das, P. Pinapati, B. Rogez, G. Baffou, D. K. Tiwari, S. Cherukulappurath
    Scientific Reports
    12, 3657 (2022)
  • [44] Thermoplasmonics of metal layers and nanoholes
    B. Rogez,* Z. Marmri, F. Thibaudau, G. Baffou*
    APL Photonics
    6, 101101 (2021)
  • [43] Microscale Thermophoresis in Liquids Induced by Plasmonic Heating and Characterized by Phase and Fluorescence Microscopies
    S. Shakib, B. Rogez, S. Khadir, J. Polleux, A. Würger, G. Baffou*
    J Phys Chem C
    125, 21533-21542 (2021)
  • [42] Anti-Stokes Thermometry in Nanoplasmonics
    G. Baffou
    ACS Nano
    15, 5785-5792 (2021)
  • [41] Quantitative phase microscopy using quadriwave lateral shearing interferometry (QLSI): principle, terminology, algorithm and grating shadow description
    G. Baffou
    J. Phys. D: Appl. Phys.
    54, 294002 (2021)
  • [40] Quantifying the Role of the Surfactant and the Thermophoretic Force in Plasmonic Nano-Optical Trapping
    Q. Jiang, B. Rogez, J. B. Claude, G. Baffou, J. Wenger*
    Nano Letters
    12, 8811-8817 (2020)
  • [39] Applications and challenges of thermoplasmonics
    G. Baffou,* F. Cichos,* R. Quidant*
    Nature Materials
    19, 946-958 (2020)
  • [38] Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics
    G. Baffou,* I. Bordacchini, A. Baldi, R. Quidant
    Light: Science and Applications
    9, 2047-7538 (2020)
  • [37] Optimal architecture for diamond-based wide-field thermal imaging
    R. Tanos, W. Akhtar, S. Monneret, F. Favaro de Oliveira, G. Seniutinas, M. Munsch, P. Maletinsky, L. le Gratiet, I. Sagnes, A. Dréau, C. Gergely, V. Jacques, G. Baffou, I. Robert-Philip
    AIP Advances
    10, 025027 (2020)
  • [36] Adhesion Layer Influence on Controlling the Local Temperature in Plasmonic Gold Nanoholes
    Q. Jiang, B. Rogez, J.-B. Claude, A. Moreau, J. Lumeau, G. Baffou, J. Wenger*
    Nanoscale
    12, 2524-2531 (2020)
  • [35] Temperature Measurement in Plasmonic Nanoapertures used for Optical Trapping
    Q. Jiang, B. Rogez, J.-B. Claude, G. Baffou, J. Wenger*
    ACS Photonics
    6, 1763-1773 (2019)
  • [34] Microscale Temperature Shaping Using Spatial Light Modulation on Gold Nanoparticles
    L. Durdevic, H. M. L. Robert, B. Wattellier, S. Monneret, G. Baffou*
    Scientific Report
    9, 4644 (2019)
  • [33] Photothermal control of heat-shock protein expression at the single cell level
    H. M. L. Robert,* J. Savatier, S. Vial, J. Verghese, B. Wattelier, H. Rigneault, S. Monneret, J. Polleux,* and G. Baffou*
    Small
    14, 1801910 (2018)
  • [32] GOLD NANOPARTICLES as nanosources of heat
    G. Baffou
    Photoniques
    2, 42-47 (2018)
  • [31] Thermoplasmonics
    G. Baffou
    Cambridge University Press
    (2017)
  • [30] Isosbestic Thermoplasmonic Nanostructures
    K. Metwally, S. Mensah, G. Baffou*
    ACS Photonics
    4, 1544-1551 (2017)
  • [29] Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold
    A. Lalisse, G. Tessier, J. Plain, G. Baffou*
    Scientific Reports
    6, 38647 (2016)
  • [28] Light-Assisted Solvothermal Chemistry Using Plasmonic Nanoparticles
    H. M. L. Robert,* F. Kundrat, E. Bermudez-Urena, H. Rigneault, S. Monneret, R. Quidant, J. Polleux, G. Baffou*
    ACS Omega
    1, 2-8 (2016)
  • [27] Fluence Threshold for Photothermal Bubble Generation Using Plasmonic Nanoparticles
    K. Metwally, S. Mensah, G. Baffou*
    Journal of Physical Chemistry C
    119, 28586-28596 (2015)
  • [26] Quantifying the Efficiency of Plasmonic Materials for Near-Field Enhancement and Photothermal Conversion
    A. Lalisse, G. Tessier, J. Plain, G. Baffou*
    Journal of Physical Chemistry C
    119, 25518-25528 (2015)
  • [25] Shaping and Patterning Gold Nanoparticles via Micelle Templated Photochemistry
    F. Kundrat, G. Baffou, J. Polleux*
    Nanoscale
    7, 15814-15821 (2015)
  • [24] Reply to: « Validating subcellular thermal changes revealed by fluorescent thermosensors » and « The 10^5 gap issue between calculation and measurement in single-cell thermometry »
    G. Baffou,* H. Rigneault, D. Marguet, L. Jullien
    Nature Methods
    12, 803 (2015)
  • [23] Quantitative study of the photothermal properties of metallic nanowire networks
    A. P. Bell, J. A. Fairfield, E. K. McCarthy, S. Mills, J. J. Boland, G. Baffou, D. McCloskey*
    ACS Nano
    9, 5551-5558 (2015)
  • [22] A critique of methods for temperature imaging in single cells
    G. Baffou,* H. Rigneault, D. Marguet, L. Jullien
    Nature Methods
    11, 899-901 (2014)
  • [21] Time-harmonic optical heating of plasmonic nanoparticles
    P. Berto, M. S. A. Mohamed, H. Rigneault, G. Baffou*
    Physical Review B
    90, 035439 (2014)
  • [20] Deterministic Temperature Shaping using Plasmonic Nanoparticle Assemblies
    G. Baffou*, E. Bermúdez Ureña, P. Berto, S. Monneret, R. Quidant and H. Rigneault
    Nanoscale
    6, 8984-8989 (2014)
  • [19] Nanoplasmonics for Chemistry
    G. Baffou and R. Quidant*
    Chemical Society Reviews
    43, 3898-3907 (2014)
  • [18] Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles
    under cw Illumination
    G. Baffou,* J. Polleux, H. Rigneault, S. Monneret
    Journal Physical Chemisty C
    118, 4890 (2014)
  • [17] Photo-induced heating of nanoparticle arrays
    G. Baffou,* P. Berto, E. Bermúdez Ureña, R. Quidant, S. Monneret, J. Polleux, H. Rigneault
    ACS Nano
    7, 6478-6488 (2013)
  • [16] Three-dimensional temperature imaging around a gold microwire
    P. Bon, N. Belaid, D. Lagrange, C. Bergaud, H. Rigneault, S. Monneret, G. Baffou*
    Applied Physics Letters
    102, 244103 (2013)
  • [15] Thermo-plasmonics: using metallic nanostructures as nano-sources of heat
    G. Baffou,* R. Quidant*
    Laser and Photonics Reviews
    7, 171-187 (2013)
  • [14] Quantitative absorption spectroscopy of nano-objects
    P. Berto,* E. Bermúdes Ureña, P. Bon, R. Quidant, H. Rigneault, G. Baffou*
    Physical Review B
    86, 165417 (2012)
  • [13] Micropatterning Thermoplasmonic Gold Nanoarrays to Manipulate Cell Adhesion
    M. Zhu, G. Baffou, N. Meyerbröker, and J. Polleux*
    ACS Nano
    6, 7227-7233 (2012)
  • [12] Mapping intracellular temperature using Green Fluorescent Protein
    J. Donner, S. Thompson, M. Kreuzer, G. Baffou, R. Quidant*
    Nanoletters
    12, 2107-2111 (2012)
  • [11] Plasmonic Nanoparticle Networks for Light and Heat Concentration
    A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant*, C. Girard, E. Dujardin*
    ACS Nano
    6, 3434-3440 (2012)
  • [10] Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis
    G. Baffou,* P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault and S. Monneret
    ACS Nano
    6, 2452-2458 (2012)
  • [9] Plasmon-assisted optofluidics
    J. S. Donner, G. Baffou,* D. McCloskey, R. Quidant*
    ACS Nano
    5, 5457 (2011)
  • [8] Femtosecond-pulsed optical heating of gold nanoparticles
    G. Baffou,* H. Rigneault
    Physical Review B
    84, 035415 (2011)
  • [7] Thermoplasmonics modeling: A Green function approach
    G. Baffou,* R. Quidant, C. Girard
    Physical Review B
    82, 165424 (2010)
  • [6] Mapping heat origin in plasmonic structures
    G. Baffou,* C. Girard, R. Quidant*
    Physical Review Letters
    104, 136805 (2010)
  • [5] Charge distribution induced inside complex plasmonic nanoparticles
    R. Marty, G. Baffou, A. Arbouet, C. Girard*, R. Quidant
    Optics Express
    18, 3035 (2010)
  • [4] Nanoscale control of optical heating in complex plasmonic systems
    G. Baffou, R. Quidant, F. J. García de Abajo*
    ACS Nano
    4, 709 (2010)
  • [3] Heat generation in plasmonic nanostructures: Influence of morphology
    G. Baffou,* R. Quidant, C. Girard
    Applied Physics Letters
    94, 153109 (2009)
  • [2] Temperature mapping around plasmonic nanostructures using fluorescence polarization anisotropy
    G. Baffou,* M. P. Kreuzer, F. Kulzer, R. Quidant*
    Optics Express
    17, 3291 (2009)
  • [1] Shaping and manipulation of light fields with bottom-up plasmonic structures
    C. Girard,* E. Dujardin, G. Baffou, R. Quidant
    New Journal of Physics
    10, 105016 (2008)

sidebar

semo
  • Équipe
  • Thématiques
  • Membres
  • Publications
  • Partenaires
  • Thèse & HDR
  • Contact
  • LinkedIn
  • Google Scholar
  • Instagram
  • Youtube
  • Bluesky
  • ResearchGate
  • Intranet
INSTITUT FRESNEL
Faculté des Sciences - Avenue Escadrille Normandie-Niémen - 13397 MARSEILLE CEDEX

Copyright © 2025 · Politique de confidentialité · Mentions Légales · Politique des cookies · Crédits · Site map

Gérer le consentement
Pour offrir les meilleures expériences, nous utilisons des technologies telles que les cookies pour stocker et/ou accéder aux informations des appareils. Le fait de consentir à ces technologies nous permettra de traiter des données telles que le comportement de navigation ou les ID uniques sur ce site. Le fait de ne pas consentir ou de retirer son consentement peut avoir un effet négatif sur certaines caractéristiques et fonctions.
Fonctionnel Toujours activé
L’accès ou le stockage technique est strictement nécessaire dans la finalité d’intérêt légitime de permettre l’utilisation d’un service spécifique explicitement demandé par l’abonné ou l’utilisateur, ou dans le seul but d’effectuer la transmission d’une communication sur un réseau de communications électroniques.
Préférences
L’accès ou le stockage technique est nécessaire dans la finalité d’intérêt légitime de stocker des préférences qui ne sont pas demandées par l’abonné ou l’internaute.
Statistiques
Le stockage ou l’accès technique qui est utilisé exclusivement à des fins statistiques. Le stockage ou l’accès technique qui est utilisé exclusivement dans des finalités statistiques anonymes. En l’absence d’une assignation à comparaître, d’une conformité volontaire de la part de votre fournisseur d’accès à internet ou d’enregistrements supplémentaires provenant d’une tierce partie, les informations stockées ou extraites à cette seule fin ne peuvent généralement pas être utilisées pour vous identifier.
Marketing
L’accès ou le stockage technique est nécessaire pour créer des profils d’internautes afin d’envoyer des publicités, ou pour suivre l’utilisateur sur un site web ou sur plusieurs sites web ayant des finalités marketing similaires.
Gérer les options Gérer les services Gérer {vendor_count} fournisseurs En savoir plus sur ces finalités
Voir les préférences
{title} {title} {title}