Team : Thématiques
Accueil › L’Institut › Équipes › MOSAIC › Thématiques › Quantitative phase microscopy for Nanophotonics
Quantitative phase microscopy for Nanophotonics
using quadriwave lateral shearing interferometry (QLSI)
Principal investigator : Guillaume Baffou
keywords : quantitative phase imaging, nanoplasmonics, gold nanoparticles, 2D materials, metasurfaces
QLSI is a quantitative phase imaging technique, capable of measuring both the intensity and the phase of a light beam, with high spatial resolution, and high sensitivity, in a particularly simple manner. When implemented on an optical microscope, QLSI can optically characterize nano- and micro-objects.
QLSI is based on the simple use of a so-called wavefront sensor that consists of the association of a 2-dimensional diffraction grating with a regular camera, as schematized in the figure (a) below. The grating is positioned at a millimetric distance from the camera sensor. Any distortion of the incoming optical wavefront impinging on the grating yields a distortion of the fringes on the camera. Then, using a demodulation algorithm in the Fourier space of the acquired image, one can retrieve both the intensity and the phase distribution of the light beam.
In 2017-2020, the Fresnel Institute has shown that QLSI represents a powerful tool to optically characterize nanophotonic objects, such as nanoparticles [3,4], 2D-materials such as graphene and metasurfaces [2] and metasurfaces [5]. Relevant properties such as the complex polarizability, susceptibility, the extinction, scattering, absorption cross sections, and more, can all be measured quantitatively. QLSI also enables the photothermal characterization of plasmonic nanoparticles. QLSI represents thus a powerful tool for metrology in nanophotonics [1].
Publications
2023
L. Sixdenier, G. Baffou, C. Tribet, E. Marie
Journal of Physical Chemistry Letters 14, 11200-11207 (2023)
Simone Ezendam, Lin Nan, Ianina L. Violi, Stefan A. Maier, Emiliano Cortés, Guillaume Baffou, Julian Gargiulo
Advanced Optical Materials 2301496 (2023)
E. Mikheeva, R. Colom, P. Genevet, F. Bedu, I. Ozerov, S. Khadir, G. Baffou, R. Abdeddaim, S. Enoch, and J. Lumeau
ACS Photonics 10, 1538-1546 (2023)
G. Baffou
ACS Photonics 10, 322 (2023)
E. Mikheeva, R. Colom, P. Genevet*, F. Bedu, I. Ozerov, S. Khadir, G. Baffou, R. Abdeddaim, S. Enoch, and J. Lumeau*
ACS Photonics accepted (2023)
2022
J. Puthenveetil Joby, S. Das, P. Pinapati, B. Rogez, G. Baffou, D. K. Tiwari, S. Cherukulappurath
Scientific Reports 12, 3657 (2022)
C. Molinaro, M. Bénéfice, A. Gorlas, V. Da Cunha, H. M. L. Robert, R. Catchpole, L. Gallais, P. Forterre, G. Baffou
Nature Communications 13, 5342 (2022)
B. Marthy, G. Baffou
Optics Communications 521, 128577 (2022)
T. Wu, M. Guillon, C. Gentner, H. Rigneault, G. Tessier, P. Bon, and P. Berto
Optics Letters 47, 3079-3082 (2022)
2021
Guillaume Baffou
J. Phys. D : Appl. Phys. 54, 294002 (2021)
Samira Khadir, Daniel Andrén, Ruggero Verre, Qinghua Song, Serge Monneret, Patrice Genevet, Mikael Käll, Guillaume Baffou
ACS Photonics 8, 603-613 (2021)
2020
S. Khadir, Daniel Andrén, P. C. Chaumet, S. Monneret, N. Bonod, M. Käll, A. Sentenac, G. Baffou
Optica 7, 243-248 (2020)
S. Khadir, P. Chaumet, G. Baffou, A. Sentenac
Journal of the Optical Society of America A 36, 478-484 (2019)
S. Khadir, P. Bon, D. Vignaud, E. Galopin, N. McEvoy, D. McCloskey, S. Monneret, G. Baffou
ACS Photonics 4, 3130-3139 (2017)
G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault and S. Monneret
ACS Nano 6, 2452-2458 (2012)