Accueil › Annuaire › Publications


Scientific publications :
  61 publications in international peer-reviewed journals
  10 publications in peer-reviewed international conferences (proceedings)
  3 book chapters
  24 invited presentations to peer-reviewed international conferences
  8 plenary conferences in French workshops
  2 patents
  5 articles in wide audience journals + 1 wide audience conference (ENS Lyon)
  60 presentations to peer-reviewed international and national conferences
  6 expert reports

Publications in international peer-reviewed journals


[61.a] Boris Gralak and Sebastien Guenneau, "Foreword", Comptes Rendus Physique, Centre Mersenne, 21 (4-5), pp.311-341 (2020).

[61.b] Boris Gralak and Sebastien Guenneau, "Foreword", Comptes Rendus Physique, Centre Mersenne, 21 (7-8), pp.619-623 (2020).

[60] Boris Gralak, "Negative index materials : at the frontier of macroscopic electromagnetism", Comptes Rendus Physique, Centre Mersenne, 21 (4-5), pp.343-366 (2020).

[59] G. Demésy, A. Nicolet, B. Gralak, C. Geuzaine, C. Campos, J. Roman, "Non-linear eigenvalue problems with GetDP and SLEPc : Eigenmode computations of frequency-dispersive photonic open structures", Computer Physics Communications 257, 107509 (2020).


[58] P. Lalanne, W. Yan, A. Gras, C. Sauvan, J.-P. Hugonin, M. Besbes, G. Demésy, M. D. Truong, B. Gralak, F. Zolla, A. Nicolet, F. Binkowski, L. Zschiedrich, S. Burger, J. Zimmerling, R. Remis, P. Urbach, H. T. Liu, and T. Weiss, "Quasinormal mode solvers for resonators with dispersive materials," J. Opt. Soc. Am. A 36, 000686 (2019)

[57] M. I. Abdelrahman, H. Saleh, I. Fernandez-Corbaton, B. Gralak, J.-M. Geffrin, C. Rockstuhl, "Experimental demonstration of spectrally broadband Huygens sources using low-index spheres", APL Photonics 4 (2), 020802 (2019).


[56] M. I. Abdelrahman and B. Gralak, “Completeness and divergence-free behavior of the quasi-normal modes using causality principle”, OSA Continuum 1, 000340 (2018).

[55] H. Bertin, Y. Brûlé, G. Magno, T. Lopez, P. Gogol, L. Pradere, B. Gralak, D. Barat,
G. Demésy, and B. Dagens, “Correlated Disordered Plasmonic Nanostructures Arrays for Augmented Reality”, ACS Photonics 5, 002661 (2018).

[54] A.-L. Fehrembach, B. Gralak, and A. Sentenac, “Vectorial model for guided-mode resonance gratings”, Phys. Rev. A 97, 043852 (2018).

[53] M. I. Abdelrahman and B. Gralak, “Modal analysis of wave propagation in dispersive
media”, Phys. Rev. A 97, 013824 (2018).


[52] B. Gralak, “Analytic properties of the electromagnetic Green’s function”, J. Math. Phys. 58, 071501 (2017).


[51] B. Gralak, G. Arismendi, B. Avril, A. Diatta, and S. Guenneau, “Analysis in temporal
regime of dispersive invisible structures designed from transformation optics”, Phys. Rev. B 93, 121114(R) (2016).

[50] Y. Liu, B. Gralak, and S. Guenneau, “Finite Element Analysis of Electromagnetic Waves in Two-Dimensional Transformed Bianisotropic Media”, Optics Express 24, 26479 (2016).

[49] Y. Brûlé, B. Gralak, and G. Demésy, “Calculation and analysis of the complex band structure of dispersive and dissipative two-dimensional photonic crystals”, J. Opt. Soc. Am. B 33, 691 (2016).


[48] Y. Brûlé, G. Demésy, A.-L. Fehrembach, B. Gralak, E. Popov, G. Tayeb, M. Grangier, D. Barat, H. Bertin, P. Gogol, and B. Dagens, “Design of metallic nanoparticle gratings for filtering properties in the visible spectrum”, Appl. Opt. 54, 010359 (2015).

[47] Y. Brûlé, G. Demésy, B. Gralak, and E. Popov, “Surface plasmon hurdles leading to a
strongly localized giant field enhancement on two-dimensional (2D) metallic diffraction gratings”, Opt. Express 23, 009167 (2015).

[46] C. Amra, D. Petiteau, M. Zerrad, S. Guenneau, G. Soriano, B. Gralak, M. Bellieud, D.
Veynante, and N. Rolland, “Analogies between optical propagation and heat diffusion : applications to microcavities, gratings and cloaks”, Proc. R. Soc. A. 471, 20150143 (2015).

[45] B. Gralak, M. Lequime, M. Zerrad, and C. Amra, “Phase retrieval of reflection and transmission coefficients from Kramers-Kronig relations”, J. Opt. Soc. Am. A 32, 000456 (2015).


[44] Y. Liu, B. Gralak, R. C. McPhedran, and S. Guenneau, “Finite frequency external cloaking with complementary bianisotropic media”, Opt. Express 22, 017387 (2014).

[43] M. Lequime, B. Gralak, S. Guenneau, M. Zerrad, and C. Amra, “Negative Index Materials : a key toward “white” multilayer Fabry-Perot”, Opt. Lett. 39, 017294 (2014).


[42] M. Hofman, G. Scherrer, M. Kadic, X. Mélique, W. Smigaj, B. Cluzel, S. Guenneau, D.
Lippens, F. de Fornel, B. Gralak, and O. Vanbésien, “Dispersion engineering for multifunctional photonic crystal based nanophotonic devices at infrared wavelengths”, J. Nanomed. Nanotechnol. 4, 000185 (2013).

[41] P. Chaumet, T. Zhang, A. Rahmani, B. Gralak, and K. Belkebir, “Discrete dipole approximation in time domain through the Laplace transform”, Phys. Rev. E 88, 063303 (2013).

[40] Y. Liu, S. Guenneau and B. Gralak, “Causality and passivity properties of effective parameters of electromagnetic multilayered structures”, Phys. Rev. B 88, 165104 (2013).

[39] G. Scherrer, M. Hofman, W. Smigaj, M. Kadic, T.-M. Chang, X. Mélique, D. Lippens,
O. Vanbésien, B. Cluzel, F. de Fornel, S. Guenneau, and B. Gralak, “Photonic crystal carpet :
Manipulating wave fronts in the near field at 1.55μm”, Phys. Rev. B 88, 115110 (2013).

[38] Y. Liu, S. Guenneau, B. Gralak, and S. A. Ramakrishna “Focusing light in a bianisotropic slab with negatively refracting materials”, J. Phys. : Condens. Matter 25, 135901 (2013).

[37] Y. Liu, S. Guenneau and B. Gralak, “Artificial dispersion via high-order homogenization : magnetoelectric coupling and magnetism from dielectric layers”, Proc. Roy. Soc. A 469,
20130240 (2013).


[36] W. Smigaj, and B. Gralak, “Semianalytical design of antireflection gratings for photonic
crystals”, Phys. Rev. B 85, 035114 (2012).

[35] B. Gralak and D. Maystre, “Negative index materials and time-harmonic electromagnetic
field”, C. R. Physique 13, 786 (2012).

[34] W. Smigaj, L. Magdenko, J. Romero-Vivas, S. Guenneau, B. Dagens, B. Gralak, M. Vanwolleghem, “Compact optical circulator based on a uniformly magnetized ring cavity”, Photonics and Nanostructures - Fundamentals and Applications, 10, 83 (2012).


33] G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses”, Appl. Phys. Lett. 97, 071119 (2010).

[32] B. Gralak and A. Tip, “Macroscopic Maxwell’s equations and negative index materials”,
J. Math. Phys. 51, 052902 (2010).

[31] W. Smigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field”, Optics Letters 35, 568 (2010).


[30] W. Smigaj, B. Gralak, R. Pierre, G. Tayeb, “Antireflection gratings for a photonic-crystal
flat lens”, Optics Letters 34, 3532 (2009).

[29] M. Vanwolleghem, X. Checoury, W. Smigaj, B. Gralak, L. Magdenko, K. Postava, B.
Dagens, P. Beauvillain, and J.-M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals”, Phys. Rev. B 80, 121102 (2009).

[28] D. Maystre, W. Smigaj, and B. Gralak, “Fictitious Rayleigh expansions”, Journal of Modern Optics 56, 1403-1410 (2009).

[27] R. Pierre, G. Tayeb, B. Gralak, and S. Enoch, “Quasi-TEM modes in rectangular waveguides : a study based on the properties of PMC and hard surfaces”, Journal of Modern Optics 56, 530-538 (2009).


[26] B. Gralak, R. Pierre, G. Tayeb, and S. Enoch, “Solutions of Maxwell’s equations in presence of lamellar gratings including infinitely conducting metal”, J. Opt. Soc. Am. A 25, 3099 (2008).

[25] J. Zhang, H. Jiang, B. Gralak, S. Enoch, G. Tayeb, M. Lequime, “Compensation of loss
to approach -1 effective index by gain in metal-dielectric stacks”, Eur. Phys. J. Appl. Phys.,
2008148 (2008).

[24] W. Smigaj, and B. Gralak, “Validity of the effective-medium approximation of photonic
crystals”, Phys. Rev. B. 77, 235445 (2008).

[23] R. Pierre, and B. Gralak, “Appropriate truncation for photonic crystals”, Journal of Modern Optics 55, 1759-1770 (2008).

[22] T. G. Euser, A. J. Molenaar, J. Fleming, B. Gralak, A. Polman, and W. L. Vos, “Alloptical
octave-broad ultrafast switching of Si woodpile photonic band gap crystals”, Phys. Rev.
B 77, 115214 (2008).

[21] J. Zhang, H. Jiang, S. Enoch, G. Tayeb, B. Gralak, M. Lequime, “Two-dimensional complete band gaps in one-dimensional metal-dielectric periodic structures”, Appl. Phys. Lett. 92 053104 (2008).


[20] J. Zhang, H. Jiang, B. Gralak, S. Enoch, G. Tayeb, M. Lequime, “Towards -1 effective
index with one-dimensional metal-dielectric metamaterial : a quantitative analysis of the role of absorption losses”, Optics express 15, 7720-7729 (2007).

[19] B. Gralak, and S. Guenneau, “Transfer matrix method for point sources radiating in
classes of negative refractive index materials with 2n-fold antisymmetry”, Waves in Random
and Complex Media 17, 581-614 (2007).

[18] S. Guenneau, A. Ramakrishna, S. Enoch, S. Chakrabarti, G. Tayeb, B. and Gralak,
“Cloaking and imaging effects in plasmonic checkerboards of negative " and μ and dielectric
photonic crystal checkerboards”, Photonics and Nanostructures - Fundamentals and Applications 5, 63-72 (2007).

[17] C.-A. Guerin, B. Gralak, and A. Tip, “Singularity of the dyadic Green’s function for heterogeneous dielectrics”, Phys. Rev. E 75, 056601 (2007).

[16] S. A. Ramakrishna, S. Guenneau, S. Enoch, G. Tayeb, and B. Gralak, “Confining light
with negative refraction in checkerboard metamaterials and photonic crystals”, Phys. Rev. A
75, 063830 (2007).


[15] Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P.
Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy”, Nature 444, 740-743 (2006).

[14] T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens :
from negative refraction and negative index to negative permittivity and permeability”, Phys.
Rev. Lett. 97, 073905 (2006).


[13] D. Maystre, S. Enoch, B. Gralak and G. Tayeb, “Metamaterials : from microwaves to the
visible region”, C. R. Physique 6, 693 (2005).

[12] S. Guenneau, B. Gralak and J. B. Pendry, “Perfect corner reflector”, Optics Letters 30,
1204 (2005).


[11] E. Popov, S. Enoch, G. Tayeb, M. Nevière, B. Gralak and N. Bonod, “Enhanced transmission due to non-plasmon resonances in one and two dimensional gratings”, Applied Optics 43, 999 (2004).


[10] S. Enoch, G. Tayeb and B. Gralak, “The richness of the dispersion relation of electromagnetic band gap materials”, IEEE Trans. Ant. Prop. 51, 2659 (2003).

[9] B. Gralak, M. J. A. de Dood, G. Tayeb, S. Enoch and D. Maystre, “Theoretical study of
photonic bandgaps in woodpile crystals”, Phys. Rev. E 67, 066601 (2003).

[8] J. Kalkman, C. Strohhöfer, B. Gralak and A. Polman, “Surface plasmon polariton modified
emission of erbium in a metallodielectric grating”, Appl. Phys. Lett. 67, 30 (2003).

[7] M. J. A. de Dood, B. Gralak, A. Polman and J. G. Fleming, “Superstructure and finitesize effects in a Si photonic woodpile crystal”, Phys. Rev. B 67, 35322 (2003).


[6] B. Gralak, S. Enoch and G. Tayeb, “From scattering or impedance matrices of gratings to
Bloch modes of photonic crystals”, J. Opt. Soc. Am. A 19, 1547 (2002).

[5] E. Popov, M. Nevière, B. Gralak, and G. Tayeb, “Staircase approximation validity for
arbitrary shaped gratings”, J. Opt. Soc. Am. A 19, 33-42 (2002).

[4] S. Enoch, B. Gralak and G. Tayeb, “Enhanced emission with angular confinement from
photonic crystals”, Appl. Phys. Lett. 81, 1588-1590 (2002).


[3] B. Gralak, G. Tayeb and S. Enoch, “Morpho butterflies wings color modeled with lamellar
grating theory”, Optics Express 9, 567-578 (2001).


[2] B. Gralak, S. Enoch, and G. Tayeb, “Anomalous refractive properties of photonic crystals”, J. Opt. Soc. Am. A 17, 1012-1020 (2000).

[1] B. Gralak and D. Maystre, “Electromagnetic phenomenological study of photonic band
structures”, J. Modern Optics 47, 1253-1272 (2000).