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 3 2 . 1  GLOSSARY

 A ,  B  scaling constants

 d  distance between components

 f  focal length

 h  image height

 I  invariant

 j ,  k  indices

 l  axis intercept distance

 M  angular magnification

 m  linear ,  lateral magnification

 n  refractive index

 P  partial dispersion ,  projection lens diameter

 r  radius

 S  source or detector linear dimension

 SS  secondary spectrum

 s  object distance

 s 9  image distance

 t  temperature

 u  ray slope

 V  Abbe number

 y  height above optical axis

 a  radiometer field of view ;  projector field of view

 f  component power ( 5 1 / f  )
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 3 2 . 2  FIRST - ORDER LAYOUT

 First-order layout is the determination of the arrangement of the components of an optical
 system in order to satisfy the first-order requirements imposed on the system .  The term
 ‘‘first-order’’ means the paraxial image properties :  the size of the image ,  its orientations ,  its
 location ,  and the illumination or brightness of the image .  This also implies apertures ,
 f  -numbers ,  fields of view ,  physical size limitations ,  and the like .  It does not ordinarily
 include considerations of aberration correction ;  these are usually third- and higher-order
 matters ,  not first-order .  However ,  ordinary chromatic aberration and secondary spectrum
 are first-order aberrations .  Additionally ,  the first-order layout can have an ef fect on the
 Petzval curvature of field ,  the cost of the optics ,  the sensitivity to misalignment ,  and
 the defocusing ef fects of temperature changes .

 The primary task of first-order layout is to determine the powers and spacings of the
 system components so that the image is located in the right place and has the right size and
 orientation .  It is not necessary to deal with surface-by-surface ray-tracing here ;  the concern
 is with components .  ‘‘Components’’ may mean single elements ,  cemented doublets ,  or
 even complex assemblies of many elements .  The first-order properties of a component can
 be described by its gauss points :  the focal points and principal points .  For layout purposes ,
 however ,  the initial work can be done assuming that each component is of zero thickness ;
 then only the component location and its power (or focal length) need be defined .

 3 2 . 3  RAY - TRACING

 The most general way to determine the characteristics of an image is by ray-tracing .  As
 shown in Fig .  1 ,  if an ‘‘axial (marginal)’’ ray is started at the foot (axial intercept) of the
 object ,  then an image is located at each place that this ray crosses the axis .  The size of the
 image can be determined by tracing a second ,  ‘‘principal (chief) , ’’ ray from the top of
 the object and passing through the center of the limiting aperture of the system ,  the
 ‘‘aperture stop’’ ;  the intersection height of this ray at the image plane indicates the image
 size .  This size can also be determined from the ratio of the ray slopes of the axial ray at the
 object and at the image ;  this yields the magnification  m  5  u 0 / u 9 k ;  object height times
 magnification yields the image height .
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 The ray-tracing equations are :

 y 1  5  2 l 1 u 1  (1)

 u 9 j  5  u j  2  y j f j  (2)

 y j 1 1  5  y j  1  d j u 9 j  (3)

 l 9 k  5  2 y k  / u 9 k  (4)

 where  l  and  l 9  are the axial intersection distances of the ray before and after refraction by
 the component ,   u  and  u 9  are the ray slopes before and after refraction ,   f   is the component
 power ( f  5  1 / f  ) , y j   is the height at which the ray strikes the  j th component ,  and  d j   is the
 distance from the  j th to the (  j  1  1)th component .  Equations (2) and (3) are applied
 sequentially to the components ,  from object to image .

 These equations can be used in two dif ferent ways .  When the components and spacings
 are known ,  the image characteristics can readily be calculated .  In the inverse application ,
 the (unknown) powers and spaces can be represented by symbols ,  and the ray can be
 traced symbolically through the postulated number of components .  The results of this
 symbolic ray-tracing can be equated to the required characteristics of the system ;  these
 equations can then be solved for the unknowns ,  which are the component powers and
 spacings .

 As an example ,  given the starting ray data ,   y 1  and  u 1  ,  we get :

 u 9 1  5  u 1  2  y 1 f  1

 y 2  5  y 1  1  d 1 u 9 1  5  y 1  1  d 1 ( u 1  2  y 1 f  1 )

 u 9 2  5  u 9 1  2  y 2 f  2

 5  u 1  2  y 1 f  1  2  [  y 1  1  d 1 ( u 1  2  y 1 f  1 )] f  2

 y 3  5  y 2  1  d 2 u 9 2  5  etc .

 Obviously the equations can become rather complex in very short order .  However ,
 because of the linear characteristics of the paraxial ray equations ,  they can be simplified by
 setting either  y 1  or  u 1  equal to one (1 . 0) without any loss of generality .  But the algebra can
 still be daunting .

 3 2 . 4  TWO - COMPONENT SYSTEMS

 Many systems are either limited to two components or can be separated into two-
 component segments .  There are relatively simple expressions for solving two-component
 systems .

 Although the figures show thick lenses with appropriate principal planes ‘‘thin’’ lenses
 (whose thickness is zero and whose principal planes are coincident with the two coincident
 lens surfaces) may be used .
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 FIGURE 2

 For systems with infinitely distant objects ,  as shown in Fig .  2 ,  the following equations
 for the focal length and focus distance are useful :

 f A B  5  f A  f B  / (  f A  1  f B  2  d )  (5)

 f A B  5  f  A  1  f B  2  d f A f B  (6)

 B  5  f A B (  f A  2  d ) / f A  (7)

 F  5  f A B (  f B  2  d ) / f B  (8)

 h 9  5  f A B  tan  u p  (9)

 where  f A B   is the focal length of the combination ,   f A B   is its power ,   f A   and  f B   are the focal
 lengths of the components ,   f A   and  f B   are their powers ,   d  is the space between the
 components ,   B  is the ‘‘back focus’’ distance from the  B  component ,   F  is the ‘‘front focus’’
 distance ,   u p   is the angle subtended by the object ,  and  h 9  is the image height .

 If  f A B  , d ,  and  B  (or  F  ) are known ,  the component focal lengths can be found from :

 f A  5  df A B  / (  f A B  2  B )  (10)

 f B  5  2 dB  / (  f A B  2  B  2  d )  (11)

 These simple expressions are probably the most widely used equations in optical layout
 work .

 If a two-component system operates at  finite  conjugates ,  as shown in Fig .  3 ,  the
 following equations can be used to determine the layout .  When the required system

 FIGURE 3
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 magnification and the component locations are known ,  the powers of the components are
 given by :

 f A  5  ( ms  2  md  2  s 9 ) / msd  (12)

 f B  5  ( d  2  ms  1  s 9 ) / ds 9  (13)

 where  m  5  h 9 / h  is the magnification ,   s  and  s 9  are the object and image distances ,  and  d  is
 the spacing between components .

 In dif ferent circumstances ,  the component powers ,  the object-to-image distance ,  and the
 magnification may be known and the component locations are to be determined .  The
 following quadratic equation [Eq .  (14)] in  d  (the spacing) is solved for  d :

 0  5  d  2  2  dT  1  T  (  f A  1  f B )  1  ( m  2  1) 2 f A  f B  / m  (14)
 and then

 s  5  [( m  2  1) d  1  T  ] / [( m  2  1)  2  md f A ]  (15)

 s 9  5  T  1  s  2  d  (16)

 3 2 . 5  AFOCAL SYSTEMS

 If the system is afocal ,  then the following relations will apply :

 MP  5  2 (  f O / f E )  5  ( u E  / u O )  5  ( d O / d E )  (17)

 and ,  if the components are ‘‘thin , ’’

 L  5  f O  1  f E  (18)

 f O  5  2 L  ?  MP  / (1  2  MP )  (19)

 f E  5  L / (1  2  M P )  (20)

 where  MP  is the angular magnification ,   f O   and  f E   are the objective and eyepiece focal
 lengths ,   u E   and  u O   are the apparent (image) and real (object) angular fields ,   d O   and  d E   are
 the entrance and exit pupil diameters ,  and  L  is the length of the telescope as indicated in
 Fig .  4 .

 FIGURE 4
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 FIGURE 5

 3 2 . 6  MAGNIFIERS AND MICROSCOPES

 The conventional definition of magnifying power for either a magnifier or microscope
 compares the angular size of the image with the angular size of the object  when the object
 is  y  iewed from a  ( con y  entional )  distance of  10  inches .  Thus the magnification can be found
 from

 MP  5  10 0 / f  (21)

 for either a simple microscope (i . e .,  magnifier) or a compound microscope ,  where  f  is the
 focal length of the system .  Using the symbols of Fig .  5 ,  we can also write the following for
 the compound microscope

 MP  5  (  f E  1  f O  2  d )10 0 / f E  f O  (22)

 MP  5  m O  3  m E

 5  ( S 2 / S 1 )(10 0 / f E )  (23)

 3 2 . 7  AFOCAL ATTACHMENTS

 In addition to functioning as a telescope ,  beam expander ,  etc .,  an afocal system can be
 used to modify the characteristics of another system .  It can change the focal length ,  power ,
 or field of the ‘‘prime’’ system .  Figure 6 shows several examples of an afocal device placed
 (in these examples) before an imaging system .  The combination has a focal length equal to
 the focal length of the prime system multiplied by the angular magnification of the afocal
 device .  Note that in Fig .  6 a  and  b  the same afocal attachment has been reversed to provide
 two dif ferent focal lengths .  If the size of the film or detector is kept constant ,  the angular
 field is changed by a factor equal to the inverse of the afocal magnification .

 3 2 . 8  FIELD LENSES

 Figure 7 illustrates the function of the field lens in a telescope .  It is placed near (but rarely
 exactly at) an internal image ;  its power is chosen so that it converges the oblique ray
 bundle toward the axis suf ficiently so that the rays pass through the subsequent
 component .  A field lens is useful to keep the component diameters at reasonable sizes .  It
 acts to relay the pupil image to a more acceptable location .

 The required field lens power is easily determined .  In Fig .  7 the most troublesome ray is
 that from the bottom of the objective aperture ;  its slope ( u ) is simply the height that it
 climbs divided by the distance that it travels .  The required slope ( u 9 ) for the ray after
 refraction by the field lens is defined by the image height (  y ) ,  the ‘‘eyelens’’ semidiameter ,
 and the spacing between them .  Then Eq .  (2) can be solved for the field lens power ,

 f  5  ( u  2  u 9 ) / y  (24)



��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

MP x f

f

MP x f

f

MP x ff

MP x f

f

(d)

(c)

(b)

(a)

 FIGURE 6



 32 .10  OPTICAL DESIGN TECHNIQUES
 FIGURE 7

 FIGURE 8

 A periscope is used to carry an image through a long ,  small-diameter space .  As shown
 in Fig .  8 ,  the elements of a periscope are alternating field lenses and relay lenses .  An
 optimum arrangement occurs when the images at the field lenses and the apertures of the
 relay lenses are as large as the available space allows .  This arrangement has the fewest
 number of relay stages and the lowest power components .  For a space of uniform
 diameter ,  both the field lenses and the relay lenses operate at unit magnification .

 3 2 . 9  CONDENSERS

 The projection / illumination condenser and the field lens of a radiation measuring system
 operate in exactly the same way .  The condenser (Fig .  9) forms an image of the light source

 FIGURE 9
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 FIGURE 10  FIGURE 11

 in the aperture of the projection lens ,  thereby producing even illumination from a
 nonuniform source .  If the source image fills the projection lens aperture ,  this will produce
 the maximum illumination that the source brightness and the projection lens aperture
 diameter will allow .  This is often called Ko ̈  hler illumination .  In a radiometer type of
 application (Fig .  10) ,  the field lens images the objective lens aperture on the detector ,
 uniformly illuminating its surface and permitting the use of a smaller detector .  Often ,  the
 smallest possible source or detector is desired in order to minimize power or maximize
 signal-to-noise .  The smallest possible size is given by

 S  5  P a  / 2 n  (25)

 where  S  is the source or detector size ,   P  is the projection lens or objective aperture
 diameter ,   a   is the field angle of projection or the radiometer field of view ,  and  n  is the
 index in which the source or detector is immersed .  This value for  S  corresponds to an
 (impractical) system speed of F / 0 . 5 .  A source or detector size twice as large is a far more
 realistic limit ,  corresponding to a speed of F / 1 . 0 .

 The  in y  ariant , I  5  n (  y 2 u 1  2  y 1 u 2 ) ,  where  y 1  , u 1  , y 2  ,  and  u 2  are the ray heights and slopes
 of two dif ferent rays ,  is an expression which has the same value everywhere in an optical
 system .  If the two rays used are an axial ray and a principal (or chief) ray as shown in Fig .
 11 ,  and if the invariant is evaluated at the object and image surfaces ,  the result is

 hnu  5  h 9 n 9 u 9  (26)

 3 2 . 1 0  ZOOM OR VARIFOCAL SYSTEMS

 If the spacing between two components is changed ,  the ef fective focal length and the back
 focus are changed in accord with Eqs .  (5) through (9) .  If the motions of the two
 components are arranged so that the image location is constant ,  this is a mechanically
 compensated zoom lens ,  so called because the component motions are usually ef fected
 with a mechanical cam .  A zoom system may consist of just the two basic components or it
 may include one or more additional members .  Usually the two basic components have
 opposite-signed powers .

 If a component is working at unit magnification ,  it can be moved in one direction or the
 other to increase or decrease the magnification .  There are pairs of positions where the
 magnifications are  m  and 1 / m  and for which the object-to-image distance is the same .  This
 is the basis of what is called a ‘‘bang-bang’’ zoom ;  this is a simple way to provide two
 dif ferent focal lengths (or powers ,  or fields of view ,  or magnifications) for a system .
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 FIGURE 12

 3 2 . 1 1  ADDITIONAL RAYS

 When the system layout has been determined ,  an ‘‘axial’’ ray at full aperture and a
 ‘‘principal’’ ray at full field can be traced through the system .  Because of the linearity of
 the paraxial equations ,  we can determine the ray-trace data (i . e .,   y  and  u ) of  any  third ray
 from the data of these two traced rays by

 y 3  5  Ay 1  1  By 2  (27)

 u 3  5  Au 1  1  Bu 2  (28)

 where  A  and  B  are scaling constants which can be determined from

 A  5  (  y 3 u 1  2  u 3  y 1 ) / ( u 1  y 2  2  y 1 u 2 )  (29)

 B  5  ( u 3  y 2  2  y 3 u 2 ) / ( u 1  y 2  2  y 1 u 2 )  (30)

 where  y 1  , u 1  , y 2  ,  and  u 2  are the ray heights and slopes of the axial and principal rays and  y 3
 and  u 3  are the data of the third ray ;  these data are determined at any component of the
 system where the specifications for all three rays are known .  These equations can ,  for
 example ,  be used to determine the necessary component diameters to pass a bundle of rays
 which are  A  times the diameter of the axial bundle at a field angle  B  times the full-field
 angle .  In Fig .  12 ,  for the dashed rays  A  5  1 0 . 5 and  2 0 . 5 and  B  5  1 . 0 .  Another application
 of Eqs .  (27) through (30) is to locate either a pupil or an aperture stop when the other is
 known .

 3 2 . 1 2  MINIMIZING COMPONENT POWER

 The first-order layout may in fact determine the ultimate quality ,  cost ,  and manufac-
 turability of the system .  The residual aberrations in a system are a function of the
 component powers ,  relative apertures ,  and angular fields .  The relationships are complex ,
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 FIGURE 13

 but a good choice for a system layout is one which minimizes the sum of the (absolute)
 component powers ,  or possibly the sum of the (absolute)  y f   product for all the
 components .

 For example ,  in Fig .  13 the length ,  magnification ,  and the eye relief of the rifle scope
 are specified .  There are five variables :  three component powers and two spaces .  This is one
 more variable than is necessary to achieve the specified characteristics .  If we take the focal
 length of the objective component as the free variable ,  the component powers which
 satisfy the specifications can be plotted against the objective focal length ,  as in Fig .  13 ,  and
 the minimum power arrangement is easily determined .

 Minimizing the component powers will strongly tend to minimize the aberrations and
 also the sensitivity of the system to fabrication errors and misalignments .  The  cost  of an
 optical element will vary with its diameter (or perhaps the square of the diameter) and also
 with the product of the diameter and the power .  Thus ,  while first-order layout deals only
 with components ,  these relationships still apply reasonably well even when applied to
 components rather than elements .  Minimizing the component powers does tend to reduce
 the cost on these grounds (and also because it tends to reduce the complexity of the
 components) .

 3 2 . 1 3  IS IT A REASONABLE LAYOUT  ?

 A simple way to get a feel for the reasonableness of a layout is to make a rough scale
 drawing showing each component as single element .  An element can be drawn as an
 equiconvex lens with radii which are approximately  r  5  2( n  2  1) f  ;  for an element with an
 index of 1 . 5 the radii equal the focal length .  The elements should be drawn to the diameter
 necessary to pass the (suitably vignetted) of f-axis bundle of rays as well as the axial bundle .
 The on-axis and of f-axis ray bundles should be sketched in .  This will very quickly indicate
 which elements or components are the dif ficult ones .  If the design is being started from
 scratch (as opposed to simply combining existing components) ,  each component can be
 drawn as an achromat .  The following section describes achromat layout ,  but for
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 visual-spectrum systems it is often suf ficient to assume that the positive (crown) element
 has twice the power of the achromat and the (negative) flint element has a power equal to
 that of the achromat .  Thus an achromat may be sketched to the simplified ,  approximate
 prescription :   r 1  5  2 r 2  5  f  / 2 and  r 3  5  plano .

 Any elements which are too fat must then be divided or ‘‘split’’ until they look
 ‘‘reasonable . ’’ This yields a reasonable estimate of the required complexity of the system ,
 even before the lens design process is begun .

 If more or less standard design types are to be utilized for the components ,  it is useful
 to tabulate the focal lengths and diameters to get the (infinity)  f  -number of each
 component ,  and also its angular field coverage .  The field coverage should be expressed
 both in terms of the angle that the object and image subtend from the component ,  and also
 the angle that the smaller of these two heights subtends as a function of the focal length
 (rather than as a function of that conjugate distance) .  This latter angle is useful because
 the coverage capability of a given design form is usually known in these terms ,  that is ,   h  / f ,
 rather than in finite conjugate terms .  With this information at hand ,  a reasonable decision
 can be made as to the design type necessary to perform the function required of the
 component .

 3 2 . 1 4  ACHROMATISM

 The powers of the elements of an achromat can be determined from

 f A  5  f  A B V A / ( V A  2  V B )  (31)

 f B  5  f A B V B  / ( V B  2  V A )  (32)

 5  f A B  2  f A

 where  f A B   is the power of the achromatic doublet and  V A   is the Abbe  V  -value for the
 element whose power is  f A  ,  etc .  For the visible spectral region  V  5  ( n d  2  1) / ( n F  2  n C ) ;  this
 can be extended to any spectral region by substituting the indices at middle ,  short ,  and
 long wavelengths for  n d  , n F  ,  and  n C .

 If the elements are to be spaced apart ,  and the back focus is  B ,  then the powers and the
 spacing are given by

 f  A  5  f A B BV A / ( V A B  2  V B  / f A B )  (33)

 f B  5  2 f A B V B  / B ( V A B  2  V B  / f A B )  (34)

 D  5  (1  2  B f  A B ) / f A  (35)

 For a complete system ,  the transverse  axial chromatic  aberration is the sum of  y  2 f  / Vu 9 k
 for all the elements ,  where  y  is the height of the axial ray at the element and  u 9 k   is the ray
 slope at the image .  The  lateral color  is the sum of  yy p f  / Vu 9 k ,  where  y p   is the principal ray
 height .

 The  secondary spectrum  is the sum of  y  2 f P  / Vu 9 k ,  where  P  is the partial dispersion ,
 P  5  ( n d  2  n c ) / ( n F  2  n c ) .  Summed over two elements ,  this leads to an expression for the
 longitudinal secondary spectrum of an achromatic doublet

 SS  5  f  ( P B  2  P A ) / ( V A  2  V B )

 5  2 f  ( D P  / D V  )  (36)



 TECHNIQUES OF FIRST-ORDER LAYOUT  32 .15
B

P

V

C

A

V

P

 (a)  (b)

 FIGURE 14

 This indicates that in order to eliminate secondary spectrum for a doublet ,  two glasses with
 identical partial dispersions [so that ( P A  2  P B ) is zero] are required .  A large dif ference in
 V  -value is desired so that ( V A  2  V B ) in the denominator of Eqs .  (31) and (32) will produce
 reasonably low element powers .  As indicated in the schematic and simplified plot of  P
 versus  V  in Fig .  14 a ,  most glasses fall into a nearly linear array ,  and ( D P  / D V  ) is nearly a
 constant for the vast majority of glasses .  The few glasses which are away from the
 ‘‘normal’’ line can be used for apochromats ,  but the  D V  for glass pairs with a small  D P
 tends to be quite small .  In order to get an exact match for the partial dispersions so that
 D P  is equal to zero ,  two glasses can be combined to simulate a third ,  as indicated in Fig .
 14 b .  For a unit power ( f  5  1) apochromatic triplet ,  the element powers can be found from

 X  5  [ V A ( P B  2  P C )  1  V B ( P C  2  P A )] / ( P B  2  P A )  (37)

 f C  5  V C  / ( V C  2  X  )  (38)

 f  B  5  (1  2  f C )( P C  2  P A ) V B  / [ V B ( P C  2  P A )  1  V A ( P B  2  P C )]  (39)

 f A  5  1  2  f  B  2  f C  (40)

 3 2 . 1 5  ATHERMALIZATION

 When the temperature of a lens element is changed ,  two factors af fect its focus or focal
 length .  As the temperature rises ,  all dimensions of the element are increased ;  this ,  by
 itself ,  would lengthen the focal length .  However ,  the index of refraction of the lens
 material also changes with temperature .  For many glasses the index rises with temperature ;
 this ef fect tends to shorten the focal length .

 The thermal change in the power of a thin element is given by

 d f  / dt  5  2 f  [ a  2  ( dn  / dt ) / ( n  2  1)]  (41)

 where  dn  / dt  is the dif ferential of index with temperature and  a  is the thermal expansion
 coef ficient of the lens material .  Then for a thin doublet

 d f  / dt  5  f A T A  1  f B T B  (42)
 where

 T  5  [ 2 a  1  ( dn  / dt ) / ( n  2  1)]  (43)

 and  f   is the doublet power .
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 For an athermalized doublet (or one with some desired  d f  / dt ) the element powers are
 given by

 f A  5  [( d f  / dt )  2  f T B ] / ( T A  2  T B )  (44)

 f  B  5  f  2  f A  (45)

 To get an athermalized  achromatic  doublet ,  a plot of  T  against (1 / V  ) for all the
 glasses / materials under consideration is made .  A line drawn between two glass points is
 extended to intersect the  T  axis as indicated in Fig .  15 .  Then the value of the  d f  / dt  for the
 achromatic doublet is equal to the doublet power times the value of  T  at which the line
 intersects the  T  axis .  A pair of glasses with a large  V  -value dif ference and a small or zero  T
 axis intersection is desirable .

 An athermal achromatic triplet can be made with three glasses as follows :

 f A  5  f V A ( T B V B  2  T C V C ) / D  (46)

 f B  5  f V B ( T C V C  2  T A V A ) / D  (47)

 f C  5  f V C ( T A V A  2  T B V B ) / D  (48)

 D  5  V A ( T B V B  2  T C V C )  1  V B ( T C V C  2  T A V A )  1  V C ( T A V A  2  T B V B )  (49)

 See also Chap .  39 .  ‘‘Thermal Compensation Techniques’’ by Rodgers .
 NOTE :  Figures 2 ,  3 ,  4 ,  5 ,  7 ,  8 ,  9 ,  10 ,  11 ,  and 13 are adapted from W .  Smith ,   Modern

 Optical Engineering ,  2d ed .,  McGraw-Hill ,  New York ,  1990 .  The remaining figures are
 adapted from  Critical Re y  iews of Lens Design ,  W .  Smith (Ed . ) ,   S .P .I .E . ,  vol .  CR41 ,  1992 .
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