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l’étude expérimentale présentée ci-après. Je tiens finalement à remercier
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Abstract

Nanophotonics is the study of the interaction of light with nanometer

scale structures. At such a scale, structures may exhibit a resonant

behavior as their size is close to the wavelength of visible light. This res-

onant behavior enhances light-matter interactions and could therefore be

beneficial for countless applications ranging from biosensing, light har-

vesting to even cancer therapy. Plasmonic resonators have consequently

been of interest to the scientific community because of their resonant

interaction with light. High refractive index subwavelength resonators

made of dielectrics or semi-conductors (silicon for instance) have also

recently emerged as a promising way of enhancing light-matter inter-

actions through the excitation of Mie resonances while suffering from

less dissipative losses than plasmonic resonators. The work presented

in the scope of this thesis is mostly concerned with the theoretical and

experimental study of the resonant interaction between light and high

refractive-index scatterers. We first studied the optimal interactions of

light with subwavelength resonant scatterers. The objective was in fact

to determine the conditions that optimize the scattering or absorption

of light by subwavelength sized scatterers. Asymptotic resonance condi-

tions for Mie resonators were subsequently determined and were used to

derive approximate models capable of predicting the resonant behavior

of high-index dielectric resonators. High-refractive index resonators can

be seen as open photonic cavities. The modes of this type of cavities,

that only have a finite lifetime as they suffer from radiative losses, are

usually referred to as Quasi Normal Modes (QNM). Using pole expan-

sions of the S matrix associated with high refractive index scatterers, we

derived QNM expansions of the scattered field of Mie resonators that

also evidenced the presence of a non-resonant response. We then showed

how QNM expansions could be used to describe the scattering problem in

the time domain. Finally, we experimentally studied nonlinear effects in

silicon nanodisks. In particular, we measured the degenerate four-wave

mixing signal obtained while pumping at two different wavelengths. We

observed a large enhancement of the four-wave mixing signal from the

nanodisks as compared to an unpatterned silicon thin film when the two

pump wavelengths were close to the wavelengths of two resonances of

the nanodisk.
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Résumé en français

La nanophotonique a pour objet l’étude de l’intéraction résonante entre la lumière

et des structures à l’échelle nanométrique. A de telles échelles, les structures dont

la taille est de l’ordre de la longueur d’onde de la lumière visible peuvent en effet

présenter un comportement résonant lorsqu’elles intéragissent avec la lumière. Ce

comportement résonant, comme il permet d’exalter les intéractions lumière matière,

pourraient être bénéfique pour bon nombre d’applications touchant aussi bien à la

biologie ou la médecine qu’au photovoltaique.

C’est pour cette raison que les résonateurs plasmoniques qui sont des diffuseurs

sub-longeur d’onde constitués de métaux nobles et qui supportent des resonances

dues à l’oscillation collective de leurs électrons de conduction font depuis longtemps

l’objet d’un vif intérêt. Les résonateurs sub-longueur d’onde à haut indice de

réfraction, supportant des résonances de Mie, ont récemment émergé comme une

bonne plateforme pour exalter les interactions lumière-matière. Ce type de struc-

tures présente aussi l’avantage de supporter à la fois des résonances de type électriques

et magnétiques ce qui permet, entre autre, de contrôler la direction dans laquelle la

lumière est rayonnée de manière privilégiée. Les travaux présentés dans ce manuscrit

ont pour objet l’étude de l’interaction résonante entre la lumière et les résonateurs

diélectriques haut indice. Cette interaction sera étudié à la fois d’un point de vue

théorique et expérimental.

Dans le chapitre 3, nous commencerons par présenter les outils théoriques sur

lesquels reposeront les études théoriques réalisées par la suite. L’intéraction d’une

excitation électromagnétique avec une structure photonique donne naissance à un

champ diffusé. L’ étude de la diffusion élastique de la lumière a pour but de

déterminer le champ diffusé par une structure ayant une géométrie et des propriétés

optiques définies. La réponse électromagnétique des structures de forme et de com-

position arbitraires peut être prédite au moyen d’outils informatiques reposant sur

des méthodes numériques pour la résolution des équations de Maxwell. L’emploi

de ces méthodes numériques pour étudier la diffusion de la lumière ne permettent

cependant pas toujours d’accéder à une meilleure compréhension des phénomènes

physiques à l’origine des comportements résonants observés. La théorie de Mie,

basée sur la décomposotion des champs sur la base multipolaire, présente l’avantage
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0. RÉSUMÉ EN FRANÇAIS

d’être l’une des rares solutions exactes à un problème de diffusion électromagnétique

non trivial. Cette théorie qui permet de prédire la réponse électromagnétique de dif-

fuseur sphérique est par conséquent un outil puissant pour décrire et comprendre

l’intéraction de la lumière avec des strctures sub-longueur d’onde.

Le chapitre 3 aura pour but de présenter la formulation multipolaire du problème de

la diffusion électromagnétique. Après une introduction générale de la théorie mul-

tipolaire et une présentation de nos notations, nous introduirons trois formulations

différentes du problème de la diffusion électromagnétique dans la base multipolaire.

Nous verrons en particulier qu’une de ces fomulations, basée sur la matrice S per-

met une expression très simple de la loi de conservation de l’énergie. Une autre

de ces formulations apparaitra comme étant particulièrement utile pour traiter des

pertes par radiation que subissent aussi bien les résonateurs plasmoniques que les

résonateurs de Mie.

Le chapitre 4 est quant à lui dévolu à l’étude des conditions optimales d’interaction

entre la lumière et des résonateurs sub-longueur d’onde. En bref, l’objectif y est

de déteminer quelles sont les conditions pour lesquelles l’absorption ou la diffu-

sion de la lumière par un diffuseur sub-longueur d’onde peuvent être maximisées.

Nous débuterons ce chapitre en introduisant les sections efficaces d’absorption,

d’extinction et de diffusion qui servent à quantifier l’interaction de la lumière avec un

objet en champ lointain. En utilisant la base multipolaire, il est possible de montrer

que toutes ces quantités peuvent être decomposées en une somme de section efficaces

partielles, chacun des termes de cette somme étant associé à un multipole donné.

Dans ce chapitre, nous commencerons par déterminer les limites supérieures des sec-

tions efficaces partielles d’absorption et de diffusion associées à chaque multipole.

Alors que la limite supérieure des sections efficaces d’absorption sera désignée sous le

terme d’absorption idéale, la limite supérieure des sections efficaces de diffusion sera

appelée limite d’unitarité. Nous déterminerons ensuite quelles sont les conditions

qui permettent d’atteindre ces limites. Il s’agira en particulier de déterminer quelle

est la permittivité requise pour atteindre ces limites pour un diffuseurs sphériques de

taille donnée. L’interaction résonante de la lumière avec des structures photoniques

n’est pas seulement avantageuses dans le domaine du champ lointain. Elles présente

aussi un intérêt par les exaltations du champ proche qu’elle peut produire. Nous

conclurons donc ce chapitre par une étude du champ proche et nous montrerons

en particulier que les résonances du champ proche sont déplacées vers le rouge par

rapport aux résonances obervées en champ lointain.

Le chapitre 5 aura deux objectifs. Le premier objectif sera de déterminer des

conditions de résonances asymptotiques pour les résonateurs diélectriques à haut in-

dice. Il est connu de longue date que les résonances plasmoniques de particules très

petites devant la longueur d’onde peuvent être prédites par la condition de résonance

quasi-statique εs = −2. Il s’agira ici, de manière analogue, de déterminer des condi-
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tions de résonance asymptotiques pour les résonateurs de Mie. Il sera en particulier

démontré que la résonance de type dipôle magnétique de sphéres possédant un haut

indice de réfraction ns peut se produire au voisinage de la longueur d’onde suivante:

λ = 2nsR où R est le rayon de la sphère considérée. Il sera parallèlement démontré

que la résonance de type dipôle électrique se produisent au voisinage d’une longueur

d’onde plus courte λres = ns
2π
r1
R où r1 = 4.49 représente le premier zéro de la fonc-

tion fonction de Bessel d’ordre 1.

Le second obectif sera d’utiliser ces conditions de résonance pour calculer des modèles

approximés capable de prédire le comportement de diffuseurs haut indice sub-

longueur d’onde au voisinage de leurs résonances.

Dans le chapitre 6, nous procèderons à l’étude modale de l’interaction entre

la lumière et des résonateurs diélectriques haut indice. Ces résonateurs peuvent

être vu comme des cavités optiques ouvertes. Les modes de ces structures ont par

conséquent une durée de vie limitée en raison des pertes par radiation qu’ils subis-

sent et sont communément appelés modes quasi normaux (quasi normal modes).

Ils peuvent par conséquent être décrit en introduisant des fréquence complexes

ωn = ωn,r+iωn,i dont la partie imaginaire traduit la décroissance exponentielle subie

par ces modes. Comme ces modes doivent aussi obéir aux conditions d’onde sortante,

leur dépendance radiale doit asymptotiquement tendre vers ei
ωn
c r

r
en champ lointain

ce qui entraine un comportement divergent en champ lointain. Nous tenterons dans

ce chapitre d’étudier l’interaction résonante de la lumière avec des résonateurs à haut

indice de réfraction en utilisant leurs modes. Deux problèmes devront en particulier

être résolus: la base des modes quasi-normaux est-elle complète pour exprimer le

champ diffusé ou doit-on aussi prendre en compte des contributions non-résonantes?

Le deuxième problème concernera la divergence de ces modes quasi-normaux : com-

ment est-il possible d’exprimer le champ diffusé dans cette base alors que le champ

des modes quasi-normaux diverge en champ lointain?

Cette étude qui est basée sur des développement en terme de pôles des coefficients

de la matrice S nous permettra de mettre en évidence la présence d’un terme non-

résonant en plus des contributions résonantes dues à l’excitation de modes quasi-

normaux. Nous montrerons ensuite que l’interférence entre les termes résonants et

non-résonants est à l’origine de la forme asymmétrique des résonances de résonateurs

de Mie. Nous montrerons enfin que les expansions du champ diffusé en terme de

QNM permettent l’étude de la diffusion de la lumière par un résonateur dans le

domaine temporel.

Le dernier chapitre aura pour objet l’étude expérimentale d’effets d’optique non-

linéaire dans des résonateurs de Mie. Nous nous intéresserons plus particulièrement

au processus de mélange à quatre ondes dégénéré dans des nanodisques de sili-

cium sub-longueur d’onde. Les résonances du champ diffusé s’accompagnent sou-

vent d’une exaltation du champ électrique à l’intérieur de ces résonateurs. Ces
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exaltations du champ peuvent être bénéfique pour bon nombre d’applications et en

particulier l’optique non-linéaire. Ici nous mesurerons le signal de mélange à quatre

onde dégénéré produit lorsque l’on illumine un nanodisque de silicium avec deux

pompes aux fréquences distinctes ω1 et ω2. Nous nous intéresserons plus partic-

ulièrement au cas où les fréquences des pompes sont proches de deux résonances du

nanodisque de silicium donnant lieu à une exaltation du champ interne.
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Chapter 1

Introduction:

The study of the resonant interaction of light with nano- or micro-structures has

long been the subject of a keen interest in optics and photonics. Numerous potential

applications would indeed be enabled by the use of such resonators allowing to

increase light-matter interactions. In particular, their ability to confine and control

light at the nanoscale could be beneficial for a large set of applications ranging from

optical biosensing [1] or light harvesting [2], to cancer therapy in medicine [3].

Many photonic structures exhibiting a resonant interaction with light have been

proposed. These photonic structures can be seen as open optical cavities and their

resonant behavior relies on the excitation of modes having a finite lifetime, otherwise

called Quasi-Normal Modes. The nature and the physical origin of these modes

widely varies however depending on the kind of photonic structures that is being

considered. It is consequently convenient to start by carrying out a comparison

between various types of resonant structures and their associated modes. To do so,

following [4], it proves to be convenient to introduce two characteristic quantities

associated with each type of resonances: their mode volume V and their quality

factor Q. While Q is associated with the spectral density of the quasi normal mode

and characterizes how long light can be trapped by the structure when this resonance

is excited, 1/V can be related to the spatial density of the mode. For enhancing

light-matter interactions, light has to be trapped for a long time in a volume as tiny

as possible.

This is illustrated by the expression of the Purcell factor Fp that describes how

the decay rate Γ of a quantum emitter interacting with a mode of a cavity will be

enhanced compared to its decay rate in vacuum Γ0:

Fp =
Γ

Γ0

=
6πc3

ω3

Q

V
(1.1)

The Purcell factor is proportional to Q and inversely proportionnal to V . Even

though the Purcell factor was first employed in the case of closed cavities, it was

also recently generalized to open optical cavities by means of QNM expansions [5].

It is consequently desirable to find photonic structures possessing resonances with a
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1. INTRODUCTION:

quality factor Q as large as possible and a mode volume V as small as possible. This

criterion also applies for phenomena different from the Purcell effect and structures

supporting high Q and small V resonances would also be beneficial for other types

of applications like the enhancement of non-linear effects or biosensing.

Optical microcavities such as microposts, whispering gallery mode cavities or pho-

tonic crystal cavities are known to possess very large quality factor ranging from 103

to 106. Their mode volume however cannot usually be smaller than λ3 [6].

On the other hand, the resonant interaction of plasmonic resonators with light orig-

inates from the excitation of collective oscillations of the conduction electrons in

subwavelength metallic particles. The quality factors of these resonances are con-

sequently limited to relatively small values Q ∼ 10 because of both intrinsic losses,

i.e. absorption, and radiative losses. Nonetheless, these resonances also have very

small mode volumes V ∼ 10−4λ as the field is mainly confined near the surface of

plasmonic resonators [4].

Each type of resonances has advantages and drawbacks. For instance, even though

resonances with very large Q factors are advantageous as they allow to confine light

for a long time, their very sharp linedwidth can be detrimental. That is the reason

why even if they support resonances with much smaller quality factor, the use of

plasmonic resonators have been expected to be beneficial for a number of poten-

tial applications [7]. However, large optical losses in plasmonic nanoresonators have

greatly jeopardized the practical implementation of devices based on this type of

resonators.

In the meantime, high-refractive-index dielectric and semiconductor nanostructures

have recently emerged as an alternative to plasmonic nanostructures since they sup-

port resonances with both quality factors and mode volumes comparable to those

of plasmonic resonators while suffering from smaller optical losses. On top of that,

they support both electric and magnetic type resonances that allow for the unique

possibility of manipulating their far-field radiation pattern when being carefully de-

signed. These interesting properties of high refractive index resonators, otherwise

called Mie resonators, make them a good alternative to plasmonic nanoresonators.

As a consequence, theoretical and experimental studies leading to a better under-

standing of Mie resonators will help to determine applications for which the use of

Mie resonators may be beneficial.

That is why the work carried out in the framework of this joint-PhD between

the Institut Fresnel in Marseille and the university of Sydney was mostly concerned

with the study of Mie resonators from both a theoretical and an experimental point-

of-view. While the theoretical work was mainly realized in collaboration with my

supervisors in Marseille, most of the experimental work was performed in Sydney

with samples fabricated at the Institut Fresnel and at the CINAM laboratory also

in Marseille.
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Outline of the thesis:

The present thesis is organized as follows:

In Chapter 2, an overview of the field of Mie resonators will be presented. After

a quick introduction on the origin of the resonant behavior of Mie resonators, we will

proceed with a short review of the fabrication techniques used for structuring matter

at the nanoscale and fabricating Mie resonators. Some of the numerical methods

that can be applied to predict the electromagnetic response of arbitrarily shaped

high index scatterers will also be presented. Finally, applications of Mie resonators

that can be found in the literature will be reviewed.

Chapter 3 is a technical introduction presenting the theoretical tools that will be

used to study light-scattering by subwavelength-sized resonators. We will in partic-

ular introduce three different but equivalent formulations of the scattering problem.

One of these formulations will in particular be shown to simplify the expression of

energy conservation. Another of these formulations will appear to be particularly

suited for describing radiative losses.

In Chapter 4, a discussion about the definition of resonances will be carried out.

The notion of resonances clearly appears to be central in nanophotonics. However,

there is an ambiguity on the definition of resonances. What is called a resonance

from a theoretical point of view will indeed slightly differ from the experimental

definition of resonances. In this chapter, we will present a definition of resonances

in relation to optimal interaction conditions. Resonances of the scattering cross

section will be related to the so-called unitary limit. On the other hand, resonances

of the absorption cross section will be linked to the so-called ideal absorption limit.

The objective of Chapter 5 will be twofold. First, asymptotic resonance condi-

tions for both electric and magnetic resonances of high refractive index scatterers

will be derived by asssuming their size to be very small compared to the wavelength

while their permittivity will be assumed to be very large. Second, we will try to use

these resonance conditions to derive approximate models capable of predicting the

resonant behavior of Mie as well as plasmonic resonators.

In Chapter 6, the resonant behavior of high-refractive index scatterers will be

discussed in the light of their modes, i.e. their quasi-normal modes. We will in

particular try to explain the asymmetric shape of the resonances appearing in the

scattering cross-section spectrum by use of the quasi-normal modes. Finally, it will

be shown that Quasi-Normal Mode expansions enable the study of light-scattering

in the time domain.
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Finally, the last chapter will be devoted to an experimental study of Mie res-

onators. In particular, the possibility of enhancing nonlinear effects in a silicon

nanodisk will be investigated. More precisely, we will try to see if the degenerate

four-wave mixing process can be enhanced if the two pumping laser wavelengths are

set close to two resonances of a silicon nanodisk.
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Chapter 2

Mie resonators

Summary In this Chapter, an overview of the work carried out in connection

with Mie resonators in nanophotonics will be presented. As often in fields related

to nanophotonics, theoretical and experimental aspects will appear to be closely

intertwined in this field. Early theoretical studies have for example motivated the

development of new nanofabrication methods. On the other hand, the possibil-

ity offered by new nanofabrication methods to structure matter at the nanoscale

requires the development of novel theoretical tools facilitating the prediction and

the understanding of the electromagnetic response of increasingly complex photonic

structures. That is why here, after a short introduction to Mie theory, we will quickly

review nanofabrication methods as well as electromagnetic simulation methods used

in relation to Mie resonators. We shall then provide an overview of the new po-

tential applications that are now being considered for these high-refractive index

resonators.

2.1 Mie resonances in high refractive index scat-

terers:

In their early works, Lorenz and Mie [8, 9] have shown that the optical response of

spherically symmetric scatterers, regardless of their size and constituting medium,

could be analytically predicted by expanding the electromagnetic fields in the mul-

tipolar basis. This result is now commonly referred to as the Lorenz-Mie theory

that will be presented in detail in Chapter 3. Here, we can however point out that,

assuming no dispersion, the scattering properties at the vacuum wavelength λ of a

high refractive-index spherical scatterer of radius R can be fully determined when

two parameters are specified: its permittivity εs and its size parameter z = 2π
λ
R [10].

The total optical response can then be determined by summing up the contributions

from all the multipolar orders.

A study of the scattering properties of high refractive index spherical scatterers

clearly reveals the existence of a whole set of resonances as can be seen in Fig.
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2. Mie resonators

2.1. In fact, this resonant behavior is not limited to spherically-symmetric scatter-

ers as it can also be observed in 2D light-scattering in the scattering cross-section

of cylinders, and from nonspherical scatterers in 3D light-scattering [11]. In fact,

while in sub-wavelength spherical plasmonic scatterers only electric type resonances

can usually be excited, high refractive index scatterers exhibit both magnetic and

electric type resonances, otherwise called Mie resonances. This resonant behavior of

subwavelength high-refractive index scatterers in the visible and near-infrared region

was first evidenced while studying the optical response of silicon nanowires [12, 13]

as predicted when studying light-scattering from cylinders in 2D.

Figure 2.1: Scattering efficiency of a ε = 16 sphere in function of the size parameter
z = 2π

λ
R. The total scattering efficiency Qscat is plotted in full black line. The

magnetic dipole partial scattering efficiency Qh
s,1 is in dotted gray line. The electric

dipole partial scattering efficiency Qe
s,1 is in dotted blue line. Finally the magnetic

quadrupole partial scattering efficiency Qh
s,2 is plotted in dashed brown line.

In Fig. 2.1, the scattering cross-section of a εs = 16 sphere is shown. One

can first notice that magnetic type resonances of a given multipolar order occur at

a smaller size parameter or equivalently at a larger wavelength than their electric

counterparts. A better understanding on the physical origin of these resonances

could be gained by determining resonance conditions. Such numerically-derived

predictions were already provided in [14]. In Chapter 5, approximate approaches

will be used to derive Mie resonance conditions.

6
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2.2 Experimental observation of Mie resonances

In the field of nanophotonics, the observation of Mie resonances was recently allowed

by the advances of fabrication and experimental methods. The resonant optical re-

sponse of high refractive-index was in fact observed from silicon spherical particles

by dark-field spectroscopy [14, 15]. These silicon nanospheres whose size range from

100 nm to 200 nm were fabricated by laser ablation. We can however point out that

laser ablation methods employed in [14] and [15] were slightly different. In [14], the

nanospheres were made by direct laser ablation: an ultrashort-laser-pulse focused

on the silicon substrate induces the material fragmentation into spherical nanopar-

ticles that are then deposited back on the substrate near the focus area [16]. On the

other hand, in [15], the silicon nanospheres were produced by laser induced transfer

where the spherical silicon particles produced by the ablation of a silicon substrate

are transferred onto a transparent substrate placed on top of the silicon substrate.

In Fig. 2.2, dark field spectra from [10] are reproduced. These laser-induced ab-

Figure 2.2: Figure adapted from [10]: scanning electron microscope (SEM) images
and dark-field images of the silicon nanospheres on top of the silicon substrate. The
corresponding dark-field spectroscopy measurements are plotted under the SEM
images.

lation methods were first employed on account of being one of the rare techniques

allowing for the fabrication of isolated and almost perfectly spherically symmetric

silicon scatterers. They consequently opened the way for a verification of Mie the-

ory predictions on the resonant behavior of high refractive index scatterers detailed

in section 2.1. These techniques suffer nonetheless from important handicaps that

would limit their use for practical applications. In particular, it is not possible to

have a control over the spherical particle size or position while performing a simple

laser ablation [16]. It should however be pointed out that laser induced transfer

permits a better control of the position and size of the nanospheres [17, 18].

As already pointed out in section 2.1, this resonant behavior is not just specific

to spherically-symmetric scatterers as non-spherical scatterers such as nanocubes or

nanocylinders were also shown to support electric and magnetic Mie resonances [11].
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Unlike spheres, these latter shapes can be fabricated by means of electron beam and

photo-lithography methods that offer a good precision over both the shape and the

position along with a good repetability and versatility [19, 20]. It is also possible

with these types of shapes to have a better control over the spectral position of the

resonances by tuning their height and diameter[19]. More complicated structures

such as hollow nanocylinders have also been fabricated by electron-beam lithogra-

phy and were shown to allow for a further control of the position of the resonances

[21].

Besides laser-assisted and lithography methods, other fabrication techniques have

Figure 2.3: Several example of high refractive index scatterer made by means of
different fabrication techniques. a) Figure adapted from [17], silicon nanospheres
on top of a transparent substrate fabricated by laser ablation and laser induced
transfer. b) Figure adapted from [20], scanning electron microscope image of silicon
nanodisks fabricated by electron-beam lithography. c) Figure adapted from [22],
silicon resonator fabricated by a dewetting-based process from a silicon-on-isulator
substrate. d) Figure adapted from [23], silicon colloids fabricated by chemical vapor
deposition techniques.

successfully been applied to the fabrication of subwavelength silicon resonators.

Chemical methods are considered to be particularly promising on account of po-

tentially allowing for large scale fabrication at a relatively low cost.

We can in particular mention the fabrication of silicon nanoparticles by means of

chemical vapor deposition techniques [23, 24]. Crystalline silicon Mie resonators

were also made by electron beam lithography on a crystalline silicon substrate fol-

lowed by alkaline chemical etching [25]. Finally, fabrication techniques based on

dewetting of thin films may also permit large scale fabrications of ensembles of high

refractive-index resonators [22, 26]. A review about the fabrication and experimen-

tal methods in the context of silicon-based nanophotonics may be found in [27].

Another review regarding more generally the experimental aspects of all-dielectric

nanophotonics has also recently been published [16].

As was shown in this Section, the advances of fabrication techniques now permit

to make silicon resonators with increasingly complex geometries. With this ability

to structure matter at will at the nanoscale comes the need to predict the optical

response of arbitrarily-shaped nanostructures. As a consequence, before addressing
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the issue of potential applications of these high-refractive index resonators, we should

first start by reviewing some of the numerical methods permitting to calculate their

electromagnetic response.

2.3 Numerical methods for calculating the optical

responses of Mie resonators

Even if the Mie theory has played an instrumental role by facilitating the under-

standing of the resonant behavior of high refractive index scatterers, it is unable to

predict the optical response of nonspherical scatterers. As a consequence, alterna-

tive methods had to be employed in order to model the electromagnetic interaction

between light and arbitrarily-shaped nano-objects.

Aside from Mie theory in which only spherical scatterers are considered, the multipo-

lar theory can also be used to predict the optical response of nonspherical scatterers.

The T-matrix will be introduced in Chapter 3 and allows to calculate the scattered

field for a given incident field. Methods generalizing the T-matrix method to non-

spherical scatterers have been developed. The Waterman method has in particular

long been used to calculate the optical response of nonspherical scatterers. The use

of the discrete dipole approximations (D.D.A.) has for example been shown to ac-

curately predict the optical response of nonspherical scatterers. This method relies

on the assumption that the electromagnetic response of an arbitrary object can be

accurately computed by subdividing this object into a set of unit cells very small

compared to the wavelength. Each of these unit cell is then modeled as an electric

dipole induced by both the incident electromagnetic field and the field scattered by

all the other unit cells. This technique was successfully employed to predict the

electromagnetic response of nonspherical scatterers [11, 19]. It has the additional

benefit of allowing a multipolar expansion of the computed optical response [11].

In the majority of the studies however, the scattering properties of resonant high in-

dex dielectric nanostructures are computed by means of numerical solvers of Maxwell

equations relying on either the finite difference time domain method (FDTD) or on

the finite element method (FEM). Open source or commercial solvers of the Maxwell

equations based on these methods have indeed greatly democratized their use to

model the interaction of light with arbitrarily shaped scatterers. The fully numeri-

cal resolution of Maxwell equations comes however at the price of a loss of insight

into the physical origin of the resonant behavior exhibited by the nanostructures

considered.

In order to compensate for this lack of physical understanding, a subsequent multi-

polar expansion of the numerically calculated scattered or internal fields can be per-

formed to further identify the origin of the resonant response of a scatterer [28, 29].

In the scope of the present work, the multipolar formulations of the scattering prob-

lem will be discussed in Chapter 3. We will in particular present 3 different but
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equivalent formulations of the scattering problem and show how each of these for-

mulations provides a different picture of the scattering problem.

Finally, a great physical insight on the resonant properties of high refractive-index

scatterers may also be gained by considering the modes supported by these struc-

tures. In fact, as was already pointed out, these optical resonators can be seen as

open photonic cavities in which light is trapped for a certain time before leaking

and being radiated away from the resonator. In order to account for this decay

in time, their modes that are otherwise called Quasi-Normal Modes are associated

with complex frequencies ωn = ωn,r + iωn,i where ωn,i < 0 for a exp(−iωt) time de-

pendence. These modes should also satisfy outgoing boundary condition, i.e. their

radial dependence should tend towards ei
ωn
c r

r
as r →∞ which leads to a divergence

in the far-field region for complex frequencies ωn. A great effort has been carried

out to better understand the scattering properties of these open photonic resonators

in terms of their Quasi-Normal Modes [4, 5, 30–33]. Resonant scattering by Mie

resonators was also studied in the light of their resonant states [34, 35]. However,

several fundamental questions are still to be addressed in order to study the scat-

tering properties of optical resonators and this will be the subject of Chapter 6.

Now that the issue of fabrication of high refractive-index subwavelength res-

onators as well as the issue of the modeling of the electromagnetic properties of

such kind of resonators have been addressed, we can proceed to a quick review

of the interesting properties and potential applications for which the use of Mie

resonators might be beneficial.

2.4 Properties and applications of Mie resonators

2.4.1 Directional scattering of light

It is of common knowledge that any object much smaller than the wavelength should

behave as a dipole and consequently should scatter light in a quite symmetric way

with regards to its dipole axis. In the early 1980’s, Kerker et al. pointed out that a

completely different behavior would be observed if the assumption that the scatterer

medium is non magnetic was relaxed [36]. In fact, they showed that if the relative

permittivity is different from µ = 1, the total suppression of the back-scattered field

was possible under given conditions. On the other hand, the field scattered in the

forward direction could also almost be suppressed at another condition. These con-

ditions are otherwise called Kerker’s conditions.

Mie resonators featuring both electric and magnetic responses were however seen as

a promising platform capable of leading to a practical realization of these Kerker con-

ditions with non magnetic materials [37]. An experimental verification of the Kerker

effect in high-refractive index scatterers was carried out in the microwave range [38];

it was subsequently observed in the visible range with silicon nanoparticles [39] and
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in GaAs (Gallium Arsenide) nanoparticles [40]. In the examples listed above, the

Kerker effect was due to the interference between the fields radiated by the induced

electric and magnetic dipoles. It was however shown that a generalization of this

effect to higher order multipoles was also possible [41–43].

2.4.2 Applications of isolated high refractive index nanores-

onators:

The capacity of Mie resonators to confine light at the nanoscale as well as their

ability to scatter light in a directive way make them good candidates to act as

antennas for light.

2.4.2.1 Optical nanoantennas:

Not only do nanoresonators allow for a confinement of light in very small volumes but

they can also help to achieve an enhancement and an improvement of the directivity

of the emission when being coupled to quantum emitters [44]. The resonant behavior

of these resonators leads to a modification of the local density of states that in turn

allows to modify the decay rate and the quantum yield of a quantum emitter that

would be located in the vicinity of these resonators. The Purcell factor, describing

how the decay rate of a quantum emitter is modified when it is coupled to an

optical cavity, was recently generalized to open photonic resonators [5, 45]. On top

of the Purcell effect, the coupling of a quantum emitter to a high-index dielectric

resonators may lead to an enhancement of the directivity of the emitted radiation.

It was shown that these two effects could be obtained in a hybrid antenna constiting

of a dimer of plasmonic antenna that would modify the decay rate of an emitter and

a dielectric nanosphere that would improve the directivity [46, 47]. In addition to

enhancing the electric dipolar emission, the possibility of enhancing light emission

via the magnetic dipole transition [48, 49] was also investigated with Mie resonators

[45, 50, 51] on account of their strong magnetic response.

The ability of Mie resonators to act as antennas for light comes also from their

capacity to confine light at the nanoscale. Near-field enhancement can already be

observed at the vicinity of isolated Mie resonators, it is however worth pointing out

that the wavelength at which the near field response is maximized may be slightly

red-shifted compared to the wavelength at which the far-field response is maximized.

This should be further discussed in chapter 4. Structures based on several coupled

Mie resonators were also shown to further enhance both the electric and magnetic

near fields [52–55]. However, unlike plasmonic resonators, the field enhancement is

not only restricted to the surface of Mie resonators since the field can also be greatly

enhanced inside.
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2.4.2.2 Nonlinear optics in dielectric resonators:

Field enhancements were in particular shown to be especially large inside Mie res-

onators at the magnetic resonances [56]. This property can enhance effects largely

dependent on field intensities as, for instance, non linear phenomena. A thorough

review on the subject will be carried out in chapter 7. Here we merely present a

quick introduction.

Following a pioneering work [56] where an enhancement of the third harmonic gen-

eration was reported to occur at the dipole magnetic resonances, potential enhance-

ments of the third harmonic generation were investigated in different resonant di-

electric nanostructures [57–59]. It was also shown that the Kerker effect could help

shape the radiation pattern of the nonlinear field [60, 61]. Second-harmonic enhance-

ments were also considered in AlGaAs nanoresonators [62–64]. Raman scattering in

silicon nanoresonators was studied too and shown to be enhanced [65, 66]. A review

on the subject has recently been published [61].

2.4.2.3 Optoelectronic devices based on Mie resonators:

These Mie resonators are also promising building blocks in diverse optoelectronic

devices. Their resonant interaction with light can lead to an enhanced absorption

of light inside these resonators. This property could be beneficial to improve the

performances of photodetectors [12, 67]. Implemented at a larger scale, they could

also allow to enhance the efficiency of solar cells [2, 68]. They may be used to create

more efficient light sources. The control of the photoluminescence from InP (indium

phosphide) nanowires has in particular been demonstrated [69].

2.4.2.4 Biosensors based on Mie resonators:

Plasmonic resonators have long been considered to be good building blocks of

biosensing devices able to quantify the concentration of chemical and biological

substances. Such biosensors rely on the high sensitivity of plasmonics resonances to

the surrounding environment of the resonator. A modification of their surrounding

refractive index would indeed lead to a shift of the resonance supported by metallic

nanoparticle. Simple models predicting this shift were recently derived by use of

the quasi-normal modes of these structures [70]. Similarly, the use of Mie resonators

for biosensing applications has also recently been considered [71]. In particular, it

was pointed out that a change of the refractive-index outside a Mie resonator would

lead to a modification of their scattering response in two different ways: not only

would their extinction efficiency sprectrum be modified, but the scattering pattern

of these scatterers would also change [72]. An experimental demonstration of this

kind of biosensors was recently carried out [73].

The very sharp Fano resonance featured by the structure in [74] could help make
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devices highly sensitive to a very small change of the refractive index of its environ-

ment.

While we have mostly listed so far potential applications relying on isolated Mie

resonators, we conclude this part by reviewing some of the appealing functionalities

that could be performed by large arrays of Mie resonators that may also be called

dielectric metasurfaces.

2.4.3 Dielectric resonators as a building block for metasur-

faces:

The possibility of structuring large area surfaces at the nanometer scale has opened

the way to the field of metasurfaces. These patterned subwavelength-thick surfaces

were first used to shape and manipulate the wavefront of the electromagnetic field

impinging on them. Different approaches were explored to perform such a wavefront

contro: several papers recently released relied on a method developed nearly two

decades ago and based on blazed binary diffractive elements [75–77]. Another ap-

proach was based on a dielectric gradient metasurfaces [78]. Finally another method

relying on the electric and magnetic resonances of silicon nanodisks was also shown

to allow for a control of the phase of the incident field [79] and was applied to the

generation of vortex beams [80]. These methods for controlling the wavefront of an

incident field shows also a great potential to create metalenses [78, 81, 82].

On the other hand, the resonant behavior of dielectric nanostructures gives those

structures very vivid colors. The possibility of tuning their resonance wavelengths by

changing their geometry can consequently allow for a control over the apparent color

of these resonators. The first studies that took advantage of this property of Mie

resonators to implement structural color were based on silicon nanowires [13, 83].

It was then shown that dielectric colored metasurfaces could be made by tuning

the resonances of silicon nanodisks [20, 84]. Optimization algorithms can even be

employed to improve the design of these color metasurfaces [85]. Some examples of

these all-dielectric colored metasurfaces may be found in Fig. 2.4.

The possibility of implementing actively tunable metasurfaces was explored in

several recent papers. One of the possible ways to achieve this active tuning is to

embed an array of silicon nanoresonators into a liquid crystal. The refractive index

of the liquid could be tuned by changing its temperature, the optical response of the

embedded array of silicon nanodisks could consequently be controlled by adjusting

the liquid crystal temperature [86]. Further in the infrared region, an active tuning

of PbTe (lead telluride) Mie resonator was also shown to be possible by taking ad-

vantage of the large thermo-optic coefficients of PbTe [87]. The refractive index and

consequently the optical response of these PbTe resonators could be controlled by

a change of temperature. Electrical tuning of metasurfaces based on heterojunction

resonators was also shown to be possible [88].
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Figure 2.4: Several examples of all-dielectric colored metasurfaces. a) adapted from
[20], reproduction of a mondrian painting made by e-beam patterning silicon nanopil-
lars with various diameters on a glass substrate b) adapted from [84], reproduction
the painting The scream made with arrays of silicon nanodisks with varying pitches
and varying sizes.

2.5 Conclusion:

In this chapter, the field of high-refractive index Mie resonators have been intro-

duced. It is worth noticing that a number of review articles have already been

published on this relatively new but very active field. An overview on the whole

field can in particular be found in two recently published review articles [10, 89]. Re-

views focusing on the fabrication and experimental aspects have also been written.

One is mostly concerned with silicon Mie resonators [27]. Another one explores a set

of potential materials that may be employed for fabricating Mie resonators [16]. A

review with a focus on non-linear Mie resonators has also been written [61]. Finally,

a review especially focusing on the promising field of metalenses can be found in

[81].
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Chapter 3

Multipolar formulation of the

scattering problem

Summary In this Chapter, we aim to introduce the theoretical tools that are

used throughout this thesis to study the resonant interaction between light and a

scatterer. After introducing the Vector Partial Waves basis (hereafter referred as

VPWs), we will present several formalisms based on the T, S and K matrices. Each of

these formalisms will help us see the scattering problem from a different perspective:

while the T-matrix approach is probably the most intuitive, the S matrix allows us

to formulate the conservation of energy in a simple way. Finally, the K matrix is

very convenient to deal with radiative losses.

3.1 Introduction

Here, the theoretical tools for studying elastic light-scattering in 3D are introduced.

An obstacle located in a homogeneous and lossless medium is illuminated by an ex-

citation field which can generally be described as a plane wave or as a superposition

of plane wave. The interaction of the excitation field with the obstacle gives rise to

the generation of a scattered field that is radiated away from the obstacle. All these

electromagnetic fields fulfill the Maxwell equations, defined hereafter.

Computational tools capable of numerically solving the Maxwell equations and based

on numerical methods such as the Finite Element Methods or the Finite Difference

Time Domain [90, 91] have been developed. The development of these numerical

methods opened up in turn the possibility of studying light-scattering by arbitrary-

shaped scatterers. The use of numerical methods may however come at the prize of

a loss of physical insight into the scattering problem and can also be very demanding

in computational resources.

On the other hand, the Lorenz-Mie theory has the benefit of being one the few

exact solutions to a non-trivial scattering problem. It originates from the seminal

works of Lorenz and Mie [8, 92] in which the scattering of a plane wave by a trans-
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3. multipolar formulation of the scattering problem

parent sphere was considered. This theory which is based on the expansion of the

electromagnetic field on the multipolar basis was then generalized by the T matrix

method for the description of the scattering of an arbitrary excitation field by an

arbitrarily shaped scatterer [93–96]. It is now playing a central role for describing

the interaction of light with small sized particles in nanophotonics.

Here, we will start by quickly recalling the basics of electromagnetism [97, 98]

before introducing the multipolar (or Vector Partial Waves) basis. Several alterna-

tive formulations of the scattering problem will then be introduced, each of them

bringing a different point of view on this problem.

3.2 Multipolar formalism

3.2.1 Maxwell equations

Let E(r, t), B(r, t) be the time-dependent electric field and magnetic induction while

D(r, t) and H(r, t) are the time-dependent electric displacement and the magnetic

field. These fields verify the source-free Maxwell equations that may be written in

SI units as follows:

∇.D(r, t) = 0

∇× E(r, t) = −∂B

∂t
(r, t)

∇.B(r, t) = 0

∇×H(r, t) =
∂D

∂t
(r, t)

(3.1)

The relation between D(r, t) and E(r, t) as well as between H(r, t) and B(r, t) are

provided by the following constitutive relations:

D(r, t) = ε0E(r, t) + P(r, t)

H(r, t) =
B

µ0

(r, t)−M(r, t)
(3.2)

P(r, t) and M(r, t) being the electric polarization and the magnetization while ε0
and µ0 are respectively the permittivity and the magnetic permeability of vacuum.

We restrict ourselves to the study of non-magnetic media leading M(r, t) to vanish.

Moreover, we consider homogeneous media presenting no spatial dispersion and

non-linear responses from the medium will also be neglected in this first part. The
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3. multipolar formulation of the scattering problem

constitutive relations then become:

D(r, t) =

ˆ t

−∞
ε0(1 + χ(t− t′))E(r, t

′
)dt

′

H(r, t) =
B

µ0

(r, t)

(3.3)

where χ(t − t
′
) is the electric susceptibility. The previous equations are greatly

simplified in the harmonic domain where fields are assumed to have a e−iωt time

dependence:

D(r, ω) = ε0εr(ω)E(r, ω) and B(r, ω) = µ0H(r, ω) (3.4)

where the permittivity is defined by εr(ω)− ε0 =
´∞

0
χ(t)eiωtdt, causality imposing

that χ(t) should vanish for t < 0. In the harmonic domain, Eqs (3.1) can also be

rewritten as follows:

∇.E(r, ω) = 0

∇× E(r, ω) = iωµ0H(r, ω)

∇.B(r, ω) = 0

∇×H(r, ω) = −iωε0εr(ω)E(r, ω)

(3.5)

By combining the two previous equations, one can finally obtain the vector wave

equation fulfilled by the electric and magnetic fields:

∇× (∇× E)−
(ω
c

)2

εr(ω)E = 0

∇× (∇×H)−
(ω
c

)2

εr(ω)H = 0
(3.6)

where c = 1√
ε0µ0

is the speed of light in vacuum.

Finally, the conditions of continuity of the field at an interface will be required

to solve the problem of scattering and they can be expressed in the following way:

n̂12 × (E2 − E1) = 0

(D2 −D1) · n̂12 = ρs

(B2 −B1) · n̂12 = 0

n12 × (H2 −H1) = js

(3.7)

where the (E1,H1) and (E2,H2) account for the fields in the two different media.

ρs and js are respectively the surface charge density and the surface current at the

interface. Finally, n̂12 is the vector normal to the interface.
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3. multipolar formulation of the scattering problem

3.2.2 Vector partial waves basis:

The Vector Partial Wave basis, well suited for the study of 3D scattering, is a set

of solutions of Eqs. (3.6) in a spherical coordinate system. Such solutions can be

generated from the solutions of the scalar Helmholtz equation.

By first making use of the following vector identity to (3.6):

∇× (∇×A) = ∇ (∇.A)−∇.(∇A) (3.8)

one readily shows that the electric and magnetic fields E and H are both solutions

of the vector Helmholtz equations:

∇.(∇E) + k2E = 0

∇.(∇H) + k2H = 0
(3.9)

where k2 =
(
ω
c

)2
εr(ω).

Following the method employed in [93, 99], a basis of the solutions of the vector

Helmholtz equations can be constructed in the following way: First, if we look for

a solution under the following form:

M =
∇× (cψ)√
n(n+ 1)

, (3.10)

where c is a pilot vector and ψ is a generating function, it can be shown that:

∇.(∇M) + k2M = ∇×
[
c
(
∇2ψ + k2ψ

)]
. (3.11)

It turns out that if ψ is a solution of the scalar Helmholtz, M will be a solution

of its vectorial counterpart. Another solution of Eq. (3.9) may also be constructed

from M:

N =
∇×M

k
(3.12)

The vector functions M and N satisfy all the properties of the electric and

magnetic fields . They are by definition solutions of the vector wave equation, they

are divergence free and they are both proportional to the curl of one another:

N =
∇×M

k
(3.13)

M =
∇×N

k
(3.14)

A complete basis for the electromagnetic field can consequently be constructed

by finding solutions of the scalar Helmholtz equation.
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3. multipolar formulation of the scattering problem

For the sake of completeness, it is worth pointing out that according to the

Helmholtz theorem, an arbitrary vector field should be decomposed onto a divergence-

free part and a curl-free part. In order to form a complete basis, an additional vector

function accounting for the non-transverse part of the field should consequently be

introduced. Such a vector could also be defined from the generating function ψ(r)

([99], pp 387-397):

L(r) = ∇ψ(r) (3.15)

However, such longitudinal fields cannot be excited in the scattering problem con-

sidered here. That is why we will not need to introduce this additional vector.

3.2.2.1 Solutions of the scalar Helmholtz equation

∇2ψ + k2ψ = 0 (3.16)

A solution ψ(r, θ, φ) of the scalar Helmholtz equation (3.16) in the spherical

coordinate system is yet to be derived in order to construct the VPWs basis. The

spherical coordinate system is displayed in Fig. 3.1.

Figure 3.1: system of spherical coordinates

Using the separation of variables, solutions will be assumed to take the following

form: ψ(r, θ, φ) = ψr(r)ψθ(θ)ψφ(φ).

The θ and φ dependence of ψ(r, θ, φ) can be shown to be given by the normalized

scalar spherical harmonics [93, 99, 100]:

ψ(r, θ, φ) = ψr(r)Yn,m(θ, φ)

with Yn,m(θ, φ) =

[
2n+ 1

4π

(n−m)!

(n+m)!

]
eimφPm

n (cos(θ))
(3.17)

where the functions Pm
n are the Legendre polynomials for n = 0, 1, 2.....∞ and

m = −n, ..., n. n is the total angular momentum and is related to the θ dependence
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3. multipolar formulation of the scattering problem

of the wave. Waves with n = 0 are isotropic and are generally referred as s waves

but are not excited in the light-scattering problem considered here. For larger n,

the θ dependence can be described as a standing wave with nodes and anti-nodes

in fixed directions. As the wave should be well behaved in all directions of r, n

has to be restricted to integer values [100]. On the other hand, m is the angular

momentum number and m = −n, ..., n.

Regarding the radial dependence of the waves, one can show by means of Eqs. (3.17)

and (3.16) that the functions ψr(r) verify the following equation:

d2u(r)

dr2
+

(
εrk

2 − n(n+ 1)

r2

)
u(r) = 0 (3.18)

where u(r) ≡ rψr(r).

Spherical Bessel functions jn(z) and spherical Neumann functions yn(z) are so-

lutions of the preceding equation. Moreover the wronskian of these two functions is

equal to:

W (jn(z), yn(z)) = jn(z)
dyn(z)

dz
− djn(z)

dz
yn(z) = z−2 (3.19)

Since W (jn(z), yn(z)) 6= 0, jn(z) and yn(z) are two linearly independent solutions

of Eq. (3.18) and they thus form a complete set of solutions of equation 3.18.

It will also prove very useful to construct another complete set of linearly inde-

pendent solutions from (jn(z), yn(z)). This can be done by defining the Hankel func-

tions of first and second kind: h
(+)
n (z) = jn(z) + iyn(z) and h

(−)
n (z) = jn(z)− iyn(z)

which are obviously solutions of Eq. (3.18) and also linearly independent since their

wronskian is equal to:

W
(
h(+)
n (z), h(−)

n (z)
)

= −2iz−2 (3.20)

And they are also linearly independent with jn(z) and yn(z). It can then be

concluded that a complete basis for the solutions of the scalar equation (3.18) can

be constructed by forming any combination of 2 partial waves among the following

functions:

ψ(1)
n,m (kr) = jn(kr)Yn,m(θ, φ)

ψ(2)
n,m (kr) = yn(kr)Yn,m(θ, φ)

ψ(+)
n,m (kr) = h(+)

n (kr)Yn,m(θ, φ)

ψ(−)
n,m (kr) = h(−)

n (kr)Yn,m(θ, φ)

(3.21)

Now that a basis for the scalar Helmholtz equation has been constructed, we will

define a basis for the solutions of the vector wave equation (3.6).
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3. multipolar formulation of the scattering problem

3.2.2.2 Vector partial waves

The vector partial wave expressions can then be readily obtained by injecting the

solutions (3.21) into the vector partial wave definitions (3.10), (3.14) while choosing

c = r̂ as a pilot vector. It is however worth expressing them in terms of the Vector

Spherical Harmonics (VSH). Since the definition of these VSH varies in the litera-

ture, let us start by introducing our notations:

Yn,m(θ, φ) = Yn,m(θ, φ)r̂

Zn,m(θ, φ) =
r∇Yn,m(θ, φ)√

n(n+ 1)

Xn,m(θ, φ) = Zn,m(θ, φ)× r̂

(3.22)

The vector spherical harmonics form a complete basis permitting to describe the

angular variations of any vector fields. They are also orthogonal according to the

following scalar product:

〈W(l)
n,m|W(k)

n,m〉 =

ˆ 4π

0

W(l)∗
n,m.W

(k)
n,mdΩ = δijδnνδmµ (3.23)

where k = 1, 2 or 3 and W
(1)
n,m = Xn,m, W

(2)
n,m = Yn,m and W

(3)
n,m = Zn,m.

The Vector partial waves expression in terms of the vector spherical harmonics is

thus:

M(i)
n,m(kr) = R(i)

n (kr)Xn,m(θ, φ)

N(i)
n,m(kr) =

1

kr

[√
n(n+ 1)R(i)

n (kr)Yn,m(θ, φ) + [krR(i)
n (kr)]′Zn,m(θ, φ)

] (3.24)

where R
(1)
n (kr) = jn(kr), R

(2)
n (kr) = yn(kr), R

(+)
n (kr) = h

(+)
n (kr) and R

(−)
n (kr) =

h
(−)
n (kr). In what follows, we will make use of the Ricatti-Bessel, Ricatti-Neumann

and Ricatti Hankel functions in order to simplify the notations:

ψn(z) = zjn(z)

χn(z) = zyn(z)

ξ(±)
n (z) = zh(±)

n (z)

(3.25)

The vector partial waves have here been defined but their expressions appear to

be quite complicated. This might obscure their physical meaning. A better physical

insight may however be gained by studying the far-field behavior of each of the

VPWs as will be done in the following section.
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3. multipolar formulation of the scattering problem

3.2.2.3 Far field behavior of the vector partial waves:

Let us start by studying the VPWs (M
(±)
n,m(kr),N

(±)
n,m(kr)) that are defined as follows:

M(±)
n,m(kr) = h(±)

n (kr)Xn,m(θ, φ)

N(±)
n,m(kr) =

1

kr

[√
n(n+ 1)h(±)

n (kr)Yn,m(θ, φ) + ξ(±)′

n Zn,m(θ, φ)
] (3.26)

In order to study their far-field behavior, one has to use the asymptotic limit of

the Hankel functions:

lim
|z|→∞

h(+)
n (z) = (−i)n+1 e

iz

z
, lim
|z|→∞

h(−)
n (z) = in+1 e

−iz

z
. (3.27)

That leads to the following far-field behavior for the VPWs:

lim
r→∞

M(±)
n,m(kr) = (∓i)n+1 e

±ikr

kr
Xn,m(θ, φ)

lim
r→∞

N(±)
n,m(kr) = (∓i)n e

±ikr

kr
Zn,m(θ, φ) +O

(
e±ikr

(kr)2

)
.

(3.28)

Recalling that throughout this work a e−iωt time dependence is assumed, one

clearly sees that the VPWs M
(+)
n,m(kr) and N

(+)
n,m(kr) asymptotically behave as out-

going waves with a e−iω(t− r
c
) radial dependence. That is why (M

(+)
n,m(kr),N

(+)
n,m(kr))

will be referred as outgoing Vector Partial Waves. On the other hand, near the

scatterer when r is small, the outgoing character of these waves is somehow hidden

due to the excitation of evanescent waves. h
(+)
n (z) are in fact irregular in r = 0 as

limz→0 h
(+)
n (z) = i (2l+1)!!

zn
. This divergence can be interpreted as being related to the

presence of sources.

Similarly, M
(−)
n,m(kr) and N

(−)
n,m(kr) are readily shown to asymptotically behave as

ingoing waves with a e−iω(t+ r
c
) radial dependence and will be called incoming Vector

Partial Waves. h
(−)
n (z) are also irregular in r = 0 with limz→0 h

(+)
n (z) = −i (2l+1)!!

zn

and this is due to the collapse of the incoming waves at r = 0.

Concerning the far-field behavior of (M
(1,2)
n,m (kr),N

(1,2)
n,m (kr)) that are defined as

follows:

M(1)
n,m(kr) = jn(kr)Xn,m(θ, φ)

M(2)
n,m(kr) = yn(kr)Xn,m(θ, φ)

N(1)
n,m(kr) =

1

kr

[√
n(n+ 1)jn(kr)Yn,m(θ, φ) + ψ

′

nZn,m(θ, φ)
]

N(2)
n,m(kr) =

1

kr

[√
n(n+ 1)yn(kr)Yn,m(θ, φ) + χ

′

nZn,m(θ, φ)
] (3.29)
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3. multipolar formulation of the scattering problem

Since the Bessel and Neumann functions asymptotically tend towards:

lim
|z|→∞

jn(z) =
sin
(
z − nπ

2

)
z

, lim
|z|→∞

yn(z) =
cos
(
z − nπ

2

)
z

, (3.30)

The following asymptotic expressions for (M
(1)
n,m(kr),N

(1)
n,m(kr)) is obtained:

lim
r→∞

M(1)
n,m(kr) =

sin
(
kr − nπ

2

)
kr

Xn,m(θ, φ)

lim
r→∞

N(1)
n,m(kr) =

sin
(
kr − (n−1)π

2

)
kr

Zn,m(θ, φ) +O

(
sin
(
kr − nπ

2

)
(kr)2

) (3.31)

Asymptotic expressions of (M
(2)
n,m(kr),N

(2)
n,m(kr)) are readily obtained by replacing

sin by cos in the previous expressions. It then appears that unlike the incoming and

outgoing vector partial waves which represent propagating waves, (M
(1,2)
n,m (kr),N

(1,2)
n,m (kr))

represent static waves. One can also study their behavior when r → 0: since

jn(0) = 0 (M
(1)
n,m(kr),N

(1)
n,m(kr)) are regular and they represent sourceless fields such

as plane waves. On the other hand limz→∞ yn(z) = (2l+1)!!
zn

, (M
(2)
n,m(kr),N

(2)
n,m(kr))

are then irregular.

Now that the multipolar formalism has been introduced, the rest of the Chapter

is devoted to the study of the light-scattering problem by means of the Vector Partial

Wave basis.

3.3 Different formulations of the scattering prob-

lem:

The aim of this section is to present the formulation of the scattering problem making

use of the VPWs previously defined. We will show that one can benefit from the

variety of VPWs presented in the preceding section and introduce 3 alternative

formulations of the scattering problem. Each of these formulations will be shown to

illustrate different physical aspects of the interaction of light with a scatterer.

3.3.1 S-matrix formulation

3.3.1.1 Definition of the S matrix

We shall start by introducing the S-matrix representation of the scattering problem.

According to this representation, the scattering process may be divided into three

distinct stages [101, 102]:
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3. multipolar formulation of the scattering problem

1. First, an incoming field freely propagates towards the scatterer.

2. As the field gets closer, it can then interact with the scatterer.

3. Finally, an outgoing field resulting from the interaction that occurred during

the second stage freely propagates in the far-field zone away from the scatterer.

The S matrix is defined as the operator transforming the initial stage into the

final stage. Being able to fully characterize the interaction of a scatterer with light

by simply measuring the transformation of the field between the initial and final

stages was in fact the central motivation behind the Heisenberg’s program that led

to the development of the S matrix. The S matrix is in a sense analogous to the

transfer function that relates the output to the input of an electronic system.

All the information about the interaction are therefore contained in the analytical

properties of the S-matrix coefficients. We will see in one of the following sections

what is the constraint imposed by energy conservation on the S-matrix coefficients.

The implications of Causality on the analytic properties of the S matrix will also be

discussed in Chapter 6 but let us start by defining the S matrix in the vector partial

wave basis.

3.3.1.2 Multipolar formulation of the S matrix

Coming back to the formulation of the scattering problem in the VPWs basis, it has

been shown above that a complete basis for the fields outside the scatterer could be

obtained by combining the VPWs (M
(−)
n,m(kr),N

(−)
n,m(kr)) and (M

(+)
n,m(kr),N

(+)
n,m(kr)).

Consequently, the following expansion of the total electric field outside the scatterer

holds:
Etot(kr) = Ein(kr)+Eout(kr)

= E0

∞∑
n=1

n∑
m=−n

s(h,−)
n,m M(−)

n,m(kr) + s(e,−)
n,m N(−)

n,m(kr)

+s(h,+)
n,m M(+)

n,m(kr) + s(e,+)
n,m N(+)

n,m(kr)

(3.32)

The superscripts (e) and (h) respectively refer to the electric and magnetic multipoles

as Mn,m are the magnetic-type VPWs whereas Nn,m are the electric-type VPWs.

The S matrix being the linear relationship between the incoming and the outgoing

parts of the field, its coefficients in the multipolar formalism are readily found to

be:

S(e)
n,m =

s
(e,+)
n,m

s
(e,−)
n,m

, S(h)
n,m =

s
(h,+)
n,m

s
(h,−)
n,m

(3.33)
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3. multipolar formulation of the scattering problem

The total electric field expansion can consequently be rewritten in the following way

by using the S-matrix coefficients:

Etot(kr) = E0

∞∑
n=1

n∑
m=−n

s(h,−)
n,m

(
M(−)

n,m(kr) + S(h)
n,mM(+)

n,m(kr)
)

+s(e,−)
n,m

(
N(−)
n,m(kr) + S(e)

n,mN(+)
n,m(kr)

) (3.34)

By means of the Maxwell-Faraday equation for non-magnetic media: Htot = 1
iωµ0
∇×

Etot along with the relations (3.14) between M and N, one also finds the following

expansion of the magnetic field:

Htot(kr) =
kE0

iµ0ω

∞∑
n=1

n∑
m=−n

s(e,−)
n,m

(
M(−)

n,m(kr) + S(e)
n,mM(+)

n,m(kr)
)

+s(h,−)
n,m

(
N(−)
n,m(kr) + S(h)

n,mN(+)
n,m(kr)

) (3.35)

The internal field existing inside the scatterer has to satisfy regular boundary condi-

tions at r = 0, it should then be expanded on the regular VPWs basis (M
(1)
n,m, (ksr),

N
(1)
n,m(ksr)) where ks = nsk and ns is the refractive index of the scatterer:

Eint(kr) = E0

∞∑
n=1

n∑
m=−n

u(h)
n,mM(1)

n,m(ksr) + u(e)
n,mN(1)

n,m(ksr)

Hint(kr) =
ksE0

iµ0ω

∞∑
n=1

n∑
m=−n

u(e)
n,mM(1)

n,m(ksr) + u(h)
n,mN(1)

n,m(ksr)

(3.36)

A matrix relating the internal field Eint(ksr) to the incoming field Ein(kr) can

thus be introduced. It will be called the Ξ matrix in what follows and the definition

of its coefficients are:

Ξ(e)
n,m =

u
(e)
n,m

s
(e,−)
n,m

, Ξ(h)
n,m =

u
(h)
n,m

s
(h,−)
n,m

(3.37)

3.3.1.3 S and Ξ matrices of a spherically symmetric scatterer

As the angular momentum is conserved when light is scattered by a spherically

symmetric scatterer, the S and Ξ matrices are diagonal. Moreover, their coefficients

are independent of the variable m.

Analytic expressions of the S-matrix and Ξ matrix coefficients can therefore be

derived by using the Vector Partial Wave expansion of the internal and external fields

(3.34), (3.35) and (3.52) along with the continuity conditions of the electromagnetic

field at an interface (A.1) and the orthogonality conditions of the vector spherical

harmonics. The following expressions are obtained (detailed calculations can be
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3. multipolar formulation of the scattering problem

found in Appendix A):

S(e,h)
n = −

N
(e,h)
S,n (kR)

D
(e,h)
n (kR)

, Ξ(e,h)
n =

1

D
(e,h)
n (kR)

(3.38)

where we have introduced the numerator N
(e,h)
S,n and denominator D

(e,h)
n (kR) func-

tions defined as follows:

N
(e)
S,n(kR) = kR

εsξ
(−)′
n (kR)jn(ksR)− ψ′n(ksR)h

(−)
n (kR)

2ins

N
(h)
S,n(kR) = kR

ξ
(−)′
n (kR)jn(ksR)− ψ′n(ksR)h

(−)
n (kR)

2i

D(e)
n (kR) = kR

εsξ
(+)′
n (kR)jn(ksR)− ψ′n(ksR)h

(+)
n (kR)

2ins

D(h)
n (kR) = kR

ξ
(+)′
n (kR)jn(ksR)− ψ′n(ksR)h

(+)
n (kR)

2i

(3.39)

3.3.1.4 Energy conservation constraints on the S-matrix coefficients:

The conservation of energy during the scattering process can be expressed under the

integral form of the Poynting theorem:

− ∂

∂t

˚
V

u(r)dr =

‹
∂V

S · dA (3.40)

where u(r) = 1
2

(E ·D + B ·H) is the energy density whereas S is the Poynting

vector. The integral on the left hand side of the previous equation is performed

over the volume V . On the other hand, the surface integral on the right hand

side is performed over the surface δV that limits the volume V . In the harmonic

domain, the time average Poynting vector 〈S〉ω = 1
2
Re(E × H∗) is the Poynting

vector. In the far field, incoming and outgoing fields are transverse and the H field

is readily obtained from the electric field using: limr→∞Hin = − k
µ0ω

r̂ × Ein and

limr→∞Hout = k
µ0ω

r̂ × Eout. If the volume V is chosen to be a sphere and if we let

the radius of this sphere tend towards infinity while using the field expansion (6.41),

the following multipolar expansion of the power is found:

lim
r→∞

‹
Ω

r̂ · 〈S〉ωr2dΩ = lim
r→∞

1

2

kr2

ωµ0

‹
Ω

Eout · E∗outdΩ− lim
r→∞

1

2

kr2

ωµ0

‹
Ω

Ein · E∗indΩ

=
c|E0|2

2ω2µ0

∞∑
n=1

n∑
m=−n

|s(e,−)
n,m |2

(∣∣S(e)
n

∣∣2 − 1
)

+ |s(h,−)
n,m |2

(∣∣S(h)
n

∣∣2 − 1
)(3.41)
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3. multipolar formulation of the scattering problem

For passive media, i.e. without optical gain, Eq. (3.40) implies that
˜
∂V

S ·dA ≤ 0.

By using the orthogonality of the VPWs, one can finally show:

|S(e,h)
n,m |2 ≤ 1 (3.42)

The previous relation is the constraint imposed by energy conservation on the S-

matrix coefficients. When there is no loss in the scatterer that is considered, the

S-matrix coefficients are unitary: |S(e,h)
n,m | = 1. In the following section, we will study

the implication of the previous relation to the case of a lossless scatterer.

3.3.1.5 Definition of the phase shift for a lossless scatterer:

For lossless spherical scatterers, the modulus of the S-matrix coefficients reach their

upper limit: |S(e,h)
n |2 = 1. It follows that S

(e,h)
n can be seen as mere phase factors

(see for example [100] p 301, [101] pp 57-58 or [103]):

S(e,h)
n = e2iδ

(e,h)
n (3.43)

The physical meaning of δ
(e,h)
n is found by deriving the far-field expression of Eq.

(6.41) :

lim
r→∞

Etot(kr) = E0

∞∑
n=1

n∑
m=−n

in+1 s
(h,−)
n,m

kr

(
e−ikr − (−1)nS(h)

n eikr
)

Xn,m(θ, φ)

+in
s

(e,−)
n,m

kr

(
e−ikr − (−1)n−1S(e)

n eikr
)
Zn,m(θ, φ)

(3.44)

If now the phase expression of S
(e,h)
n of Eq. (3.43) is used and using the following

equalities e−inπ = (−1)n and ein
π
2 = in, it can be shown that Eq. (3.44) becomes:

lim
r→∞

Etot(kr) = E0

∞∑
n=1

n∑
m=−n

2eiδ
(h)
n
s

(h,−)
n,m

kr
sin
(
kr − nπ

2
+ δ(h)

n

)
Xn,m(θ, φ)

+2eiδ
(e)
n
s

(e,−)
n,m

kr
sin

(
kr − (n− 1)π

2
+ δ(e)

n

)
Zn,m(θ, φ)

(3.45)

Let us recall that, according to Eqs. (3.31), in the absence of scatterer, the total

field would asymptotically tend towards:

lim
r→∞

Etot(kr) = E0

∞∑
n=1

n∑
m=−n

2
s

(h,−)
n,m

kr
sin
(
kr − nπ

2

)
Xn,m(θ, φ)

+2
s

(e,−)
n,m

kr
sin

(
kr − (n− 1)π

2

)
Zn,m(θ, φ)

(3.46)
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3. multipolar formulation of the scattering problem

It then becomes clear that δ
(e,h)
n is the phase shift resulting from the interaction of

the excitation field with the scatterer. This is an illustration of the usefulness of the

S-matrix, by simply measuring in the far field the phase shift caused by the inter-

action of the wave with the scatterer, one gets a full description of the interaction

between the light and the scatterer. In Chapter 4, we will give the expressions of

observable quantities such as the cross sections in terms of the phase shifts δ
(e,h)
n .

3.3.2 T-matrix formulation and polarizability

3.3.2.1 Definition of the T matrix

In the previous section, we have seen the advantages of employing a S matrix de-

scription of the scattering problem, in particular in regard to the energy conservation

laws. It was also shown that physical insight could also be gained by introducing

the phase shift.

One could however argue that using the S matrix representation is not the most

intuitive way of dealing with the scattering problem in particular when one wants

to compare theoretical predictions to experimental results. The interaction of a

scatterer with purely incoming spherically-symmetric fields is rarely studied exper-

imentally.

From an experimental point of view, it would be much more natural to introduce

a matrix permitting to calculate the scattered field while knowing the incident or

excitation field (containing both incoming and outgoing parts) illuminating the scat-

terer. Knowing the scattered field in turn allows to derive experimentally measurable

quantities such as extinction or scattering cross sections.

Such a matrix is called the T matrix in the literature [93, 100, 103]. From a math-

ematical standpoint, its existence is a consequence of the linearity of the Maxwell

equations and of the continuity conditions at an interface leading the coefficients of

the scattered field to be linearly related to those of the incident field.

On top of being convenient for describing experiments, the T-matrix method has

also proved to be very well suited for studying multiple-scattering from an ensemble

of scatterers [104]. All these advantages have motivated the development of the T

matrix method and an abundant literature can be found on this topic [95].

In this section, we shall start by introducing the multipolar formulation of the

T-matrix. Analytical expressions of spherically symmetric scatterers will then be

provided along with their relation to the Mie coefficients. Finally, the link between

the dipolar Mie coefficients of a scatterer and its electric and magnetic polarizabilities

will then be discussed.
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3. multipolar formulation of the scattering problem

3.3.2.2 Multipolar formulation of the T matrix:

Coming back to the discussion of section 3.2.2.2, a complete basis of the total field

outside the scatterer can be formed by use of (M
(1)
n,m(kr),N

(1)
n,m(kr)) and (M

(+)
n,m(kr),N

(+)
n,m(kr)).

The incident field being a plane wave or a superposition of plane waves, it should

be expanded on the set of regular VPWs:

Einc(kr) = E0

∞∑
n=1

n∑
m=−n

e(h)
n,mM(1)

n,m(kr) + e(e)
n,mN(1)

n,m(kr)

Hinc(kr) =
kE0

iµ0ω

∞∑
n=1

n∑
m=−n

e(e)
n,mM(1)

n,m(kr) + e(h)
n,mN(1)

n,m(kr)

(3.47)

Recalling the relation between Bessel and Hankel function: jn(x) = h
(+)
n (x)+h

(−)
n (x)

2
,

it clearly appears that the incident field is a superposition of incoming and outgoing

waves. On the other hand, the scattering wave that satisfies outgoing boundary

condition is to be expanded on the set of VPWs (M
(+)
n,m(kr),N

(+)
n,m(kr)):

Escat(kr) = E0

∞∑
n=1

n∑
m=−n

f (h)
n,mM(+)

n,m(kr) + f (e)
n,mN(+)

n,m(kr)

Hscat(kr) =
kE0

iµ0ω

∞∑
n=1

n∑
m=−n

f (e)
n,mM(+)

n,m(kr) + f (h)
n,mN(+)

n,m(kr)

(3.48)

The T matrix coefficients can then be defined as the coefficient of proportionality

between the coefficients (f
(e)
n,m, f

(h)
n,m) and (e

(e)
n,m, e

(h)
n,m):

T (e)
n,m =

f
(e)
n,m

e
(e)
n,m

, T (h)
n,m =

f
(h)
n,m

e
(h)
n,m

(3.49)

And the total field can be rewritten in terms of the T-matrix as follows:

Etot(kr) = E0

∞∑
n=1

n∑
m=−n

e(h)
n,m

(
M(1)

n,m(kr) + T (h)
n,mM(+)

n,m(kr)
)

+e(e)
n,m

(
N(1)
n,m(kr) + T (e)

n,mN(+)
n,m(kr)

) (3.50)

By comparing eqs. (3.34) and (3.50), one can then derive the relation between the

T and S matrices by means of the relation between the Bessel and Hankel functions:

S = I + 2T (3.51)
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3. multipolar formulation of the scattering problem

Finally, recalling the expansion of the internal field:

Eint(kr) = E0

∞∑
n=1

n∑
m=−n

u(h)
n,mM(1)

n,m(ksr) + u(e)
n,mN(1)

n,m(ksr)

Hint(kr) =
ksE0

iµ0ω

∞∑
n=1

n∑
m=−n

u(e)
n,mM(1)

n,m(ksr) + u(h)
n,mN(1)

n,m(ksr)

(3.52)

One can finally introduce the Ω matrix relating the incident field to the internal

field:

Ω(e)
n,m =

u
(e)
n,m

e
(e)
n,m

, Ω(h)
n,m =

u
(h)
n,m

e
(h)
n,m

(3.53)

3.3.2.3 T and Ω matrices of a spherically symmetric scatterer

For spherically symmetric scatterers, the T matrix is also diagonal and the expres-

sion of the T-matrix coefficients in terms of the phase shift is given by: T
(e,h)
n =

i sin
(
δ

(e,h)
n

)
eiδ

(e,h)
n . Similarly to what was done with the S matrix, it is also possible

to derive analytical expressions for the T and Ω-matrix coefficients. Here, we will

provide only the results but detailed calculations can be found in Appendix A:

T (e,h)
n = −

N
(e,h)
T,n (kR)

D
(e,h)
n (kR)

, Ω(e,h)
n =

1

2

1

D
(e,h)
n (kR)

(3.54)

where the new numerator functions N
(e,h)
T,n (kR) are being used:

N
(e)
T,n(kR) = kR

εsψ
′
n(kR)jn(ksR)− jn(kR)ψ′n(ksR)

2ins

N
(h)
T,n(kR) = kR

ψ′n(kR)jn(ksR)− ψ′n(ksR)jn(kR)

2i

(3.55)

The interaction between the incident field and a spherical scatterer is also often

described by using the electric and magnetic Mie coefficients an and bn. They can

be linked to the T-matrix coefficients by means of the following relations:

T (e)
n = −an
T (h)
n = −bn

(3.56)

3.3.2.4 Dipolar T-matrix coefficients and polarizability for small sized

scatterers:

When scatterers are very small compared to the wavelength, their optical response

is dominated by the dipolar (electric and magnetic) contributions. In this case, the

interaction between the excitation field and the scatterer can be well-described in

30



3. multipolar formulation of the scattering problem

terms of electric and magnetic moments:

p = ε0εbαeEexc

m = αhHexc

(3.57)

εb being the permittivity of the background medium in which the scatterer is lo-

cated. These induced dipoles oscillate at the same frequency as the excitation field:

ω. These dipoles in turn radiate a field, otherwise called the scattered field, that

asymptotically tends towards:

lim
r→∞

Escat(r) = k2 eikr

4πε0εbr
(r̂× p)× r̂

lim
r→∞

Hscat(r) =
k

µ0ω
r̂× Escat

(3.58)

The electromagnetic field radiated by a magnetic dipole can be obtained in a

similar way (see for example [98] pp 431-438). The polarizability expressions can be

related to the dipolar T-matrix coefficients or Mie coefficients:

αe = −i6π
k3
T

(e)
1 = i

6π

k3
a1

αh = −i6π
k3
T

(h)
1 = i

6π

k3
b1

(3.59)

3.3.3 K-matrix formulation

We will finally introduce the K matrix. Even if it has been used for years in the con-

text of the quantum scattering theory [100], it has not been employed for the study

of electromagnetic scattering until recently [105, 106]. As we will see, by definition,

the K matrix links the regular part of the field to the irregular part of the field. It

is then much more complicated to provide a physical interpretation of the K-matrix

than it was for the S and T matrices.

However, this matrix proves to be very useful when dealing with radiative losses.

The quality factors of plasmonics and Mie resonators are usually limited to low val-

ues because light can only be stored for a short time in these types of resonators

before being radiated away. This effect can be described by introducing radiative

losses besides the intrinsic losses reflecting the absorption occuring inside the res-

onators.

Due to the existence of radiative losses, the T and S-matrix coefficients are complex

even for non-absorbing scatterers. On the other hand, the K-matrix coefficients be-

come real as soon as non-absorbing scatterers are considered and that is the reason

why it is well suited to study radiative losses.

Here, after introducing the K-matrix definition, we will discuss the link between

the K-matrix formulation of the scattering problem with the radiative losses. We
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3. multipolar formulation of the scattering problem

will finally show that the reformulation of the polarizability in terms of the K ma-

trix allows for the derivation of polarizability approximations including radiative

corrections.

3.3.3.1 Definition of the K matrix:

In the K-matrix formalism, the total field outside the scatterer is splitted into its

regular part expanded on the regular VPWs (M
(1)
n,m(kr),N

(1)
n,m(kr)):

Ereg(kr) = E0

∞∑
n=1

n∑
m=−n

r(h)
n,mM(1)

n,m(kr) + r(e)
n,mN(1)

n,m(kr) (3.60)

and its irregular part expanded on (M
(2)
n,m(kr),N

(2)
n,m(kr)):

Eirreg(kr) = E0

∞∑
n=1

n∑
m=−n

i(h)
n,mM(2)

n,m(kr) + i(e)n,mN(2)
n,m(kr) (3.61)

The K matrix relates the irregular part of the total field to its regular part.

Consequently, its coefficients are defined as follows:

K(e)
n,m =

i
(e)
n,m

r
(e)
n,m

, K(h)
n,m =

i
(h)
n,m

r
(h)
n,m

(3.62)

The regular part of the total field is constituted of both the excitation field

and the regular part of the scattered field. The irregular part of the total field is

constituted of only the irregular part of the scattered field. It is then somehow more

complicated to find a physical interpretation for the K matrix.

The relationship between the K matrix and the T and S matrices is:

K = iT (I + T )−1 ⇔ T−1 = iK−1 − I
K = i(S − I)(I + S)−1 ⇔ S = (I − iK)(I + iK)−1

(3.63)

Finally for a spherically-symmetric scatterer, similarly to the T and S matrix

coefficients an analytical expression of the K-matrix coefficients can be derived (see

appendix A for detailed calculations)

K(e,h)
n = −

N
(e,h)
T,n (kR)

D
(e,h)
K,n (kR)

(3.64)
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3. multipolar formulation of the scattering problem

where the new denominator functions are used D
(e,h)
K,n (kR):

D
(e)
K,n(kR) = kR

εsχ
(+)′
n (kR)jn(ksR)− ψ′n(ksR)yn(kR)

2ins

D
(h)
K,n(kR) = kR

χ
(+)′
n (kR)jn(ksR)− ψ′n(ksR)yn(kR)

2i

(3.65)

Finally one can also express the K-matrix in terms of the phase shift leading to

K
(e,h)
n = − tan δ

(e,h)
n

3.3.3.2 K-matrix and radiative losses

For lossless scatterers, it has already been shown that the energy conservation is

equivalent to the unitarity of S. By use of the relation (3.63), it can be shown that

this condition is equivalent to the following conditions for the T and K matrices:

T + T † = −2T †T

K = K†
(3.66)

T † being the conjugate transpose of T . For lossless scatterers, the K-matrix coeffi-

cients are then real. On the other hand, when lossy scatterers are considered, the

coefficients K
(e,h)
n become complex with Im

(
K

(e,h)
n

)
≥ 0. The imaginary part of

K
(e,h)
n is then related to intrinsic absorption and does not include radiative losses.

The Mie coefficients can be reformulated in the following way:

a−1
n = −i

(
K(e)
n

)−1
+ 1

b−1
n = −i

(
K(h)
n

)−1
+ 1

(3.67)

This expression can be seen as a multipole generalization of the well-known

energy-conserving representation of the electric dipolar polarizability αe [105, 107,

108]:

α−1
e = α−1

n.r. − i
k3

6π
(3.68)

The term αn.r. accounts for the non-radiative polarizability and is often approx-

imated by its electrostatic value α0. One can however show from (3.67) that

αn.r. = −6πK
(e)
1

k3 . On the other hand, all the information about radiation losses

is contained in the +1 terms in (3.67) or equivalently in the − k3

6π
term in (3.68)

which are often referred to as radiative corrections.

Following [105], it is interesting to give an interpretation of these radiative correc-

tions by use of the self field. The self field ESF can be interpreted as a feedback of

the scattered field on the scatterer. If the self-field is taken into account, the electric

dipolar moment can be cast p = ε0εbαn.r.(Eexc−ESF). By definition, if the scatterer

is located at r0, the self field is ESF = G (r0, r0) p where G (r0, r0) is the dyadic
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3. multipolar formulation of the scattering problem

Green function evaluated in vacuum at the scatterer position r0. Recalling that the

electric dipolar moment usual definition is p = ε0εbαeEexc, it can be shown that:

α−1
e = α−1

n.r. −G (r0, r0) (3.69)

By comparison of eqs. (3.68) and (3.69), it clearly appears that radiative correc-

tions are linked to the imaginary part of the Green function at the position of the

scatterer [109]. This radiative loss term is then dependent on the environment of

the scatterer. Consequently radiative losses can be modified, either inhibited or en-

hanced by changing the environment of the scatterer [110]. This effect is completely

analogous to the control of the decay rate of a quantum emitter by a structured

environment [111] and to the impedance matching for antenna emission.

3.3.3.3 Approximations of the polarizabily for small sized scatterers:

In nanophotonics, we are usually concerned with the study of the scattering prop-

erties of scatterers very small compared to the wavelength. As a consequence, it

can safely be assumed that their optical response is dominated by their electric and

magnetic dipole terms and neglect higher order contributions. It is possible to go

further and derive approximations of the dipolar polarizabilities (or equivalently the

Mie coefficients) in the long-wavelength limit.

According to Eqs (3.66) and (3.67), any real-valued approximation of Kn will pre-

serve the energy conservation relations for the Mie coefficients for non-absorbing

scatterers. The formulations (3.67) are therefore well-adapted for deriving approx-

imations of the Mie coefficients. That is why in this section, we will be using

expressions (3.67) to derive approximations of the Mie coefficients for small sized

scatterers by using the Laurent-series expansions of the K-matrix coefficients.

The Laurent series development of the inverse K-matrix elements, Kn, in powers of

x = kR is given in Appendix A.3.1. Restricting our attention to the dipole term,

n = 1, for small scatterers yields:

[K
(e)
1 ]−1 = − 3(εs + 2)

2(kR)3(εs − 1)

(
1− 3(kR)2(εs − 2)

5(εs + 2)

−3(kR)4(ε2
s − 24εs + 16)

350(εs + 2)

)
(3.70a)

[K
(h)
1 ]−1 = − 45

(kR)5(εs − 1)

(
1− (kR)2(2εs − 5)

21

−(kR)4(ε2
s + 100εs − 125)

2205

)
(3.70b)

The fourth order, x4 size corrections, of Eqs.(3.70), will usually suffice, but the

order x6 size corrections in the parenthesis are given in Appendix A.3.1.

Long wavelength approximations of the electric mode Mie coefficients, like that
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3. multipolar formulation of the scattering problem

found by inserting Eq.(3.70a) into Eq.(3.67), have already been shown to accurately

describe the electric response of small metallic spheres [105, 112] as illustrated in

Fig.(3.2) where we compare exact and approximate a1 coefficients of a R = 60nm

radius gold sphere [113]. It is much less appreciated however, that the analogous

procedure for magnetic modes of inserting Eq.(3.70b) into Eq.(3.67) produces good

approximations to magnetic dipole resonances in high index dielectric spheres. The

results displayed in Fig.(3.3) illustrate the accuracy of this method to describe the

magnetic dipole coefficient of a R = 80 nm, ε = 16 dielectric sphere (despite the

fact that the quasi-static magnetic polarizability is zero due to the absence of per-

meability contrasts).

Figure 3.2: Approximate values for the electric dipole Mie coefficient, a1, (am-
plitude and phase) compared with the exact values (solid black) ; R = 60nm gold
sphere.

Figure 3.3: Approximate values for the magnetic dipole Mie coefficient, b1, (ampli-
tude and phase) compared with the exact values (solid black) ; R = 80nm, ε = 16.

These approximations will be used in Chapter 4 to predict the conditions of

optimal interaction.

3.4 Conclusion:

In this Chapter, we have introduced the theoretical tools allowing us to study the

interaction between light and spherical scatterers in the scope of this thesis. These

35



3. multipolar formulation of the scattering problem

tools will in particular be used in the following Chapter in order to determine the

optimal interaction between light and resonant scatterers. Approximation of the

Mie coefficients and of the dipolar polarizability introduced in this Chapter will also

be derived in Chapter 5. Finally, in Chapter 6 a pole expansion of the S matrix will

be derived and will be used to describe the resonant behavior of Mie resonators by

use of their quasi-normal modes.
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Chapter 4

Optimal interaction between light

and resonant scatterers:

Summary: In this Chapter, we will show how the tools introduced in the previous

chapter can be used to determine the conditions of optimal interaction between light

and a scatterer, i.e conditions at which an object best scatters or absorbs light, for

a given multipolar order. In addition, we shall be concerned with the study of the

maxima of the scattering and absorption cross sections. In particular, we will see

that for a given multipolar order n, the maximum of scattering is reached near the

poles of the corresponding K-matrix coefficients K
(e,h)
n . On the other hand, at the

same multipolar order the maximum of absorption will be seen to be reached at the

zeros of the corresponding S-matrix coefficients S
(e,h)
n .

4.1 Introduction:

The ability of plasmonic and high refractive index scatterers to enhance light-matter

interactions originates from their resonant interaction with light. The resonances

of these structures have consequently been the subject of strong interest. How-

ever, what is precisely referred to as a resonance appears to vary depending on the

context. From a theoretical point of view, resonances or resonant states are syn-

onyms with modes or quasi-normal modes [5] that will be the subject of chapter 6.

These quasi-normal modes correspond to the solutions of Maxwell equations without

sources satisfying outgoing boundary conditions to account for radiative loss. They

can equivalently be defined as the poles of the S and T matrix coefficients intro-

duced in chapter 3. These conditions can only be satisfied at complex frequencies

ωn = ωn,r + iωn,i, the imaginary part ωn,i accounting for the finite lifetime of these

modes. These complex frequencies are not very suitable for interpreting experimen-

tal results. That is why from an experimental standpoint, the term resonance often

designates peaks or local maxima appearing in the spectrum of observable quantities

such as scattering, extinction or absorption cross sections.
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In the particular case of the scattering cross section, the partial cross section σ
(q)
n,s

associated with one multipole order to the scattering cross section will be shown to

be equal to σ
(q)
n,s = (2n+1)λ2

2π

∣∣∣T (q)
n

∣∣∣2. Peaks of the scattering cross-section can conse-

quently be expected to occur at the vicinity of the maxima of
∣∣∣T (q)
n

∣∣∣2. It would be

tempting to assume that such maxima arise at the frequencies ωn,r = Re (ωn). That

would amount to inferring that peaks in the cross section spectra are of lorentzian-

type. Nonetheless, as will be discussed in chapter 6 and shown in Figs. 6.3, these

resonances clearly appear to have asymmetric shapes rather than lorentzian shapes.

Consequently, the simple assumption of ωn,r = Re (ωn) being in general the position

of these peaks is not strictly valid.

After defining the expression of the cross sections, we will study the conditions

at which peaks in the scattering and absorption cross-section can occur. We will

in particular discuss how the peaks of the scattering cross section can be related to

the Unitary Limit which is the upper bound of the partial scattering cross section

σ
(q)
n,s. Equivalently, the relation between the peaks of the partial absorption cross

section and the Ideal Absorption corresponding to the upper bound of the partial

absorption cross section σ
(q)
n,a will be discussed. In addition, permittivity required to

reach either of these bounds for a given size parameter z = ω
c
R will be provided.

Finally, the relation between near and far-field spectra will also be considered.

4.2 Optimal light-particle interactions:

4.2.1 Cross-sections:

First, it is obviously necessary to define quantities that quantify the interaction

between light and a scatterer. For that purpose, we will introduce the absorption,

scattering and extinction cross sections.

Let us start by recalling that the time-averaged Poynting vector associated with

the total field is equal to 〈Stot〉 = 1
2
Re (Etot ×H∗tot). Splitting the total field into

its incident Einc and scattered Escat parts, the time-average Poynting vector of the

total field can consequently be expressed:

〈Stot〉 = 〈Sinc〉+ 〈Sext〉+ 〈Sscat〉 (4.1)
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where 〈Sinc〉, 〈Sext〉 and 〈Sscat〉 are defined as follows:

〈Sinc〉 =
1

2
Re (Einc ×H∗inc)

〈Sext〉 =
1

2
Re (Einc ×H∗scat + Escat ×H∗inc)

〈Sscat〉 =
1

2
Re (Escat ×H∗scat) .

(4.2)

As was already done in chapter 3, one can integrate 〈Stot〉 over an arbitrary closed

surface A that contains the scatterer in order to compute the rate Wabs at which

energy is absorbed by the scatterer:

Wabs = −
‹
A

〈Stot〉 · r̂dA (4.3)

The absorption cross section σa = Wabs

Iinc
is then derived by normalizing Wabs by the

irradiance of the incident field Iinc and has the dimension of an area. Equivalently,

it is possible to define σs and σe as being equal to:

σs =
Wscat

Iinc

=

‚
A
〈Sscat〉 · r̂dA
Iinc

σe =
Wext

Iinc

= −
‚
A
〈Sext〉 · r̂dA
Iinc

.

(4.4)

Finally, if the scatterer is located in a non-absorbing medium, the integration of

〈Sinc〉 over a closed surface is null. It can consequently be shown by means of Eq.

(4.2) that the extinction cross section σe is the sum of the scattering cross section

σs and the absorption cross section σa:

σe = σs + σa, (4.5)

In the particular case of a plane wave impinging on a spherical scatterer located

in a medium whose refractive index is Nb, it is convenient to make use of the orthog-

onality of the VPWs (see chapter 3) in order to derive an expression of the cross

sections as a sum of the contributions from all multipolar orders:

σ =
∞∑
n=1

{
σ(e)
n + σ(h)

n

}
, (4.6)

where σ can be either the scattering (σs), extinction (σe), or absorption (σa) cross

sections and the nth multipolar mode contributions are respectively denoted σ
(q)
n,s,

σ
(q)
n,e, σ

(q)
n,a, with (q) = (e) or (h) for (electric or magnetic modes) and can be expressed
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in terms of the T matrix coefficients [93, 103]:

σ(q)
n,e = −(2n+ 1)λ2

2π
Re
{
T (q)
n

}
σ(q)
n,s =

(2n+ 1)λ2

2π

∣∣T (q)
n

∣∣2 ,

σ(q)
n,a = σ(q)

n,e − σ(q)
n,s

(4.7)

Expressing the multipolar contributions to the cross sections, σs, σe and σa in terms

of the S matrix will also prove to be convenient for determining the optical response

limits [114]:

σ(q)
n,e =

(2n+ 1)λ2

4π
Re
{

1− S(q)
n

}
σ(q)
n,s =

(2n+ 1)λ2

8π

∣∣1− S(q)
n

∣∣2 ,

σ(q)
n,a =

(2n+ 1)λ2

8π

(
1−

∣∣S(q)
n

∣∣2)
(4.8)

where λ = λ0/Nb is the in-medium wavelength. The (2n + 1) factor in Eq.(4.8)

results from the 2n + 1 degeneracy of the projection quantum numbers for each

angular momentum number, n. For non-absorbing scatterers, it is also interesting

to express the scattering and extinction cross sections in terms of the phase shift

δ
(e,h)
n introduced in chapter 3:

σ(q)
n,e = σ(q)

n,s =
(2n+ 1)λ2

2π
sin2

(
δ(e,h)
n

)
(4.9)

Finally, it is particularly useful to introduce the absorption, scattering and extinction

efficiencies that are equal to the cross sections normalized by the geometrical cross

sections πR2 of the spherical scatterer:

Q(e,h)
n =

σ
(e,h)
n

πR2
(4.10)

4.2.2 Optimal scattering condition: unitary limit

According to Eqs. (4.7) and (4.8), the definition of the partial scattering cross

sections is:

σ(q)
n,s =

(2n+ 1)λ2

2π

∣∣T (q)
n

∣∣2 =
(2n+ 1)λ2

8π

∣∣1− S(q)
n

∣∣2 (4.11)

A maximum of this partial scattering cross section can consequently be assumed to

happen at the vicinity of the maximum of the factors
∣∣∣T (q)
n

∣∣∣2 or
∣∣∣1− S(q)

n

∣∣∣2. Energy

conservation entails the following condition |S(q)
1 | ≤ 1 for passive media (|S(q)

1 | = 1

for lossless media). Consequently, one can show that the condition maximizing∣∣∣1− S(q)
n

∣∣∣2, that will henceforth be called the Unitary Limit (UL), is reached when:
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S
(q)
n,UL = −1

T
(q)
n,UL = −1(

K
(q)
n,UL

)−1

= 0

(4.12)

The unitary limit is consequently reached at the poles of the K-matrix coefficients,

defined in Chapter 3, and will thus be calculated by solving the equation D
(e,h)
K,n = 0

where D
(e,h)
K,n is the denominator function defined in chapter 3. At this condition,

the partial scattering cross section reaches the following upper bound [106, 115]:

σ(q)
n,s = σ(q)

n,e =
(2n+ 1)λ2

2π
(4.13)

Permittivities allowing to reach the unitary limit for a given size parameter

z = kR can be derived by finding the solution of D
(e,h)
K,n = 0. In Fig.(4.1), we com-

pare the smallest permittivies that are solutions of the unitary limit as a function

of the particle size parameter, z = kR, with the algebraically obtained predictions

employing the approximations of Eq.(3.70). One remarks that the UL permittivities

are real as required by unitarity and inspection of Eq.(4.8). The approximate pre-

dictions are in good agreement for small size parameters (kR < 1) and remain close

even for larger kR. In practice, permittivities required to reach the unitary limit in

the dipole electric multipole are shown to be close of those of materials possessing

plasmonic responses, like gold or silver, while for the dipole magnetic multipole,

high-index low-loss materials like silicon, εSi ∼ 14 are required.

Figure 4.1: Values of permittivity required to reach the UL for the electric (a) and
magnetic (b) dipole modes as a function of kR. Exact predictions (full black lines)
and approximate predictions (dashed blue).

4.2.3 Optimal absorption condition: ideal absorption

Equivalently to what was done for scattering, one can also study the maxima and

the upper bounds of the partial absorption cross section. The partial absorption
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cross sections for a given multipole takes the following expression in terms of the

S-matrix coefficients:

σ(q)
n,a =

(2n+ 1)λ2

8π

(
1−

∣∣S(q)
n

∣∣2) (4.14)

(
1−

∣∣∣S(q)
n

∣∣∣2) reaches its maxima at the condition:

S
(q)
n,IA = 0 (4.15)

The partial absorption cross section σ
(q)
n,a can consequently be assumed to reach its

maxima at the vicinity of the zeros of the S-matrix coefficients. These conditions

will be called Ideal Absorption (IA) in what follows and are associated with the

following upper bound of the partial absorption cross section [114–116]:

σ(q)
n,a = σ(q)

n,s =
(2n+ 1)λ2

8π
(4.16)

Consequently, for the absorption to be maximized, the scatterer should scatter

as much light as it absorbs it in a given multipolar order. Permittivities required

to reach ideal absorption for a given size parameter z = kR can consequently be

computed by looking for the solution of N
(e,h)
S,n = 0, where N

(e,h)
S,n is the numerator

function of the S-matrix coefficients introduced in chapter 3. In Fig.(4.1), we again

proceed to a comparison between the exact solutions with predictions obtained by

using the approximations of Eq.(3.70) for the permittivities allowing to reach ideal

absorption. Approximate expressions turn out to be even more useful here while

dealing with Ideal Absorption since exact IA solutions require solving a complex

transcendental equation. Exact calculations and predictions of IA again appear to

agree quite well for small size parameters (kR < 1). The electric mode Ideal ab-

sorption turns out to be most readily attainable with materials possessing plasmonic

responses, like gold or silver, while for magnetic modes, high-index low-loss materials

(like silicon in the visible) are required.

4.2.4 Algebraic expressions for optimal magnetic light-particle

interactions

The previous results have shown that the conditions to reach IA and UL in the

magnetic dipole mode are in fact very close to one another. From Fig.(4.1b) and

Fig.(4.2c), one finds that the permittivity required to reach UL at kR = 0.5 and

the real part of the permittivity necessary to reach IA at that same size are both

approximately ε ≈ 38. We further illustrate this point by comparing the exact

values of εUL and Re{εIA} over a range of kR in Fig.(4.3a).

An explanation of this property is found by examining the limit equations giving
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Figure 4.2: Real (a,c) and imaginary (b,d) parts of the dielectric permittivity sat-
isfying IA in the electric (a,b) and magnetic (c,d) dipole modes. Exact predictions
(full black lines) and approximate predictions (dashed blue lines).

Figure 4.3: Permittivities satisfying magnetic dipole UL, ε
(h)
UL, (solid blue) and satis-

fying magnetic IA, ε
(h)
IA (dotted red) as functions of kR: Real parts (a) and imaginary

parts (b). Approximate algebraic expressions of Eqs.(4.20) and (4.21) are plotted
in dashed black.

the UL and IA conditions (see appendix B for additional details). From inspection

of Eq.(4.15), one sees that the condition for IA in the magnetic dipole mode is:

S
(h)
1 = 0 ⇐⇒ ϕ1(ksR) = ϕ

(−)
1 (kR) (4.17)

where the ϕ functions are defined in Eq.(A.12). In the small particle limit, limx→0 h
(−)
n (x) =
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−iyn(x), and the equation for IA becomes:

For kR� 1 S
(h)
1 = 0 ⇐⇒ ϕ1(ksR) ' ϕ

(2)
1 (kR), (4.18)

which is identical to the magnetic dipole UL (see Eq. (4.15) and (4.12):

(K
(h)
1 )−1 = 0 ⇐⇒ ϕ1(ksR) = ϕ

(2)
1 (kR). (4.19)

If the previous equations are solved in the kR → 0 limit, the following simple

expressions are found for the IA and UL conditions:

εUL ' Re(εIA) ' 10

(kR)2
'
( π

kR

)2

(4.20)

Im{εIA} '
49

2

(
1−

√
5

6

)
kR− 203

24
√

30
(kR)3 (4.21)

This approximate expression is compared with exact calculations in Fig.(4.3b).

4.3 Near and far field spectra

So far, we have been considering the optimal interactions for the far-field response of

subwavelength scatterers. Absorption and scattering extrema were found to occur

at the vicinity of IA and UL conditions where the upper bound of absorption and

scattering cross sections are reached. We should however emphasize here that the

position of the extrema cross section may slightly differ from the wavelengths at

which ideal absorption or unitary limit are reached. This comes from the the pres-

ence of a λ2 factor in the cross-section expression. This factor leads to a red-shift

of the maximum position as compared to the ideal absorption or unitary limit con-

dition. As seen in Fig. 4.4 and 4.5, the broader the resonance width the larger the

red-shift of the maximum of the cross section compared to the IA or UL condition.

Resonant response of a scatterer is also of interest due to the near-field enhance-

ments it induces. It has recently been pointed out however that there is a red shift

of the optimal near field enhancements with respect to the cross section maxima

[117–119]. We derived approximate and exact formulas in Eqs.(4.22) and (B.1) re-

spectively in order to quantify these near-field spectral shifts for both electric and

magnetic field enhancements. Our approximate expression for the electric field en-

hancement factor
〈
I

(e)
enh

〉
, given in Eq.(4.22a) below, is quite similar to a formula

derived by Yuffa et al.,[119] but those authors used somewhat different definitions of

field enhancements (apparently due to the fact that they looked at scattered fields

rather than the total fields considered here).

Angle-averaged local electric and magnetic field intensity enhancement factors,
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〈
I

(e)
enh

〉
, and

〈
I

(h)
enh

〉
are functions of the normalized distance to the particle center,

η ≡ kr, and can be defined as:

〈
I

(e)
enh

〉
≡
´
dΩ ‖Etot(ηr̂)‖2

4π ‖Eexc (0)‖2 (4.22a)

' 1 +
∞∑
n=1

g(1)
n (η) |bn|2 + g(2)

n (η) |an|2

〈
I

(h)
enh

〉
≡
´
dΩ ‖Htot (ηr̂)‖2

4π ‖Hexc (0)‖2 (4.22b)

' 1 +
∞∑
n=1

g(1)
n (η) |an|2 + g(2)

n (η) |bn|2

where Etot and Htot are respectively the total electric and magnetic fields outside

the particle. The functions g
(1)
n (η) and g

(2)
n (η) of Eq.(4.22) are given by:

g(1)
n (η) ≡ 2n+ 1

2

∣∣h(+)
n (η)

∣∣2
g(2)
n (η) ≡ 1

2

[
(n+ 1)

∣∣∣h(+)
n−1(η)

∣∣∣2 + n
∣∣∣h(+)
n+1(η)

∣∣∣2] (4.23)

The approximation used in deriving Eqs.(4.22) is accurate only as long as the

respective electric and magnetic excitation fields can be approximated by their values

at the center of the particle, Eexc (0) and Hexc (0). Although this is generally quite

accurate at small kr values, its validity can be tested with the exact expressions for

near field enhancements given in appendix B.1.

The electric field enhancement formulas in Eq.(4.22) explain why the maximum

of the near field enhancements are generally red-shifted with respect to their cross

section maxima. The spherical Hankel functions are rapidly diverging functions in

the kr → 0 limit (due to existence of evanescent waves near the current sources

[117, 120]), which shifts the near-field maximum to smaller values of k compared to

values of k which maximize the amplitude of a Mie coefficient.

In Figs.(4.4a,c), we plot the scattering efficiencies, Qscat = σscat/σgeom (σgeom =

πR2 is the geometrical cross section) of R = 40nm radii spheres whose permittivities

are chosen so that electric (magnetic) dipole UL are respectively reached when kR =

0.5 (ε
(e)
UL = −2.65, ε

(h)
UL = 37.9). Total efficiencies are plotted in dashed blue while

dipole electric and magnetic contributions are plotted in dotted red. Unitary limit

dipole efficiencies are plotted as solid black lines as a reference. Angle averaged field

enhancements,
〈
I

(e,h)
enh

〉
for both electric and magnetic fields at the particle surface

are plotted in Figs.(4.4b,d). The plots of maximal dipole contributions to Q and〈
I

(e,h)
enh

〉
for electric and magnetic modes respectively are plotted as solid black lines

in Figs.(4.4). Their strongly decreasing behaviors as a function of increasing size
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Figure 4.4: Cross section efficiencies (a,c) and field enhancements at the particle sur-
face (b,d) for R = 40nm spheres satisfying dipole UL in electric (a,b) and magnetic

(c,d) at kR = 0.5. Maximal dipole contributions to Q and < I
(e,h)
enh > are plotted as

solid black lines.

parameter explains why we focused attention on small particle sizes (with respect

to λ). The maximum field enhancement
〈
I

(e,h)
enh

〉
are red shifted compared the cross

sections according to the arguments presented after Eq.(4.23). This red-shift is far

less pronounced for narrower resonances like those of the magnetic dipole UL and

IA in Figs.(4.4c,d) and (4.5c,d).

Like in the UL case, the spectral behavior of IA spheres can be studied by plotting

the evolution of the absorption efficiency, Qabs = σabs/σgeom as shown in Fig.(4.5a,c),

for the dipole electric (a) and magnetic (b) modes of R = 40nm spheres designed to

reach IA at a size parameter of kR = 0.5 ( ε
(e)
IA = −2.62 + 0.35i, ε

(h)
IA = 37.9 + i0.85).

4.4 Transition from unitary limit to ideal absorp-

tion

One sees in Fig.(4.3) that a magnetic dipole UL response can transform into an IA

response with the appropriate amount of added absorption. This is illustrated in Fig.

(4.6) by plotting the values of the complex S
(h)
1 coefficient as the permittivity ranges

from the UL permittivity, ε
(h)
UL, to and beyond the IA permittivity, ε

(h)
IA , according
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Figure 4.5: Same plots as in Fig.4.4 except for plotting absorption efficiencies in
(a,c) in dipole IA particles at kR = 0.5. Dipole absorption limit efficiencies are
plotted in solid black.

to the following function for spheres with kR = 0.4 and kR = 0.8:

ε = ε
(h)
UL + j

(ε
(h)
UL − ε

(h)
IA )

3

kR = 0.4 kR = 0.8

ε
(h)
UL = 59.94 ε

(h)
UL = 14.3

ε
(h)
IA = 59.93 + i0.72 ε

(h)
IA = 14.2 + i1.1

(4.24)

where j is an integer between 0 and 6 in each case. The UL value of S
(h)
1 =

−1 corresponds to j = 0, while the S
(h)
1 = 0, IA limit occurs for j = 3. The

permittivities, scattering efficiencies, and field enhancements at the surface of the

particles for the values of Eq.(4.24) and Fig.(4.6) are given in Tables 4.1 and 4.2. A

comparison of Tables 4.1 and 4.2 shows that although the larger kR = 0.8 spheres

require considerably smaller permittivities, this comes at the expense of much weaker

field enhancements.
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Figure 4.6: Values of S
(h)
1 for permittivities calculated from Eq.(4.24) for kR = 0.4

a) and for kR = 0.4 b), the color bar indicating the value of j at each point.

j ε Q
(h)
1,ext Q

(h)
1,scat Q

(h)
1,abs

〈
I

(h)
enh

〉 〈
I

(e)
enh

〉
0 59.94 37.5 37.5 0 1168 71
1 59.94 + 0.24i 28.1 21.1 7 657 42
2 59.94 + 0.48i 22.5 13.5 9 421 28
3 59.94 + 0.72i 18.8 9.4 9.4 293 20
4 59.94 + 0.96i 16.1 6.9 9.2 215 16
5 59.94 + 1.2i 14.1 5.3 8.8 165 13
6 59.94 + 1.44i 12.5 4.2 8.3 131 11

Table 4.1: Cross section and magnetic and electric field enhancement factors for
kR = 0.4 size particles.

j ε Q
(h)
1,ext Q

(h)
1,scat Q

(h)
1,abs

〈
I

(h)
enh

〉 〈
I

(e)
enh

〉
0 14.3 9.4 9.4 0 25 10
1 14.2 + 0.37i 7 5.3 1.8 14.9 7.7
2 14.2 + 0.73i 5.6 3.4 2.3 10.2 6.4
3 14.2 + 1.1i 4.7 2.3 2.4 7.6 5.7
4 14.2 + 1.5i 4 1.7 2.3 6.1 5.3
5 14.1 + 1.8i 3.5 1.3 2.2 5.1 5
6 14.1 + 2.2i 3.2 1.1 2.1 4.4 4.8

Table 4.2: Cross section and magnetic and electric field enhancement factors for
kR = 0.8 size particles.

4.5 Conclusion

In this chapter, we studied unitary limits and ideal absorption limits of the dipolar

modes of small particles. We also derived formulas that allow a qualitative and quan-
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titative analysis of the displacement of the near field-maxima with respect to far-field

maxima. We applied this approach to both metallic and dielectric nanoparticles and

emphasis was placed on magnetic dipolar resonances in high index dielectric parti-

cles. In this latter case, we derived closed expressions for UL and IA in the small

particle limit. Although the study of particles that are small with respect to λ was

privileged on account of their ability to produce large field enhancements, the full

formulas given in the appendices are valid for spheres of arbitrary size and should

prove useful in analyzing finite size corrections of larger resonant particles (as illus-

trated by a detailed analysis of the kR = 0.8 simulations of section 4.4). This study

should help in the design of highly efficient photonic resonators that are of crucial

importance to strengthen the light matter interaction at subwavelength scales.
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Chapter 5

Polarizability Expressions for

Predicting Resonances in

Plasmonic and Mie Scatterers

Summary The purpose of this chapter is twofold. First, asymptotic resonance

conditions of both high-refractive index spherical resonators and spherical plasmonic

resonators are derived. The second purpose of this chapter is to use these asymp-

totic resonance conditions to derive accurate polarizability approximations. Such

polarizability approximations are commonly used in optics and photonics to model

light-scattering by small particles. However, approximate models based on Taylor

series of the Mie coefficients fail to predict the morphological resonances hosted by

dielectric particles. Here, we will show how the knowledge of the asymptotic res-

onance condition can help derive accurate approximations of the polarizabilities of

both high-index dielectric and plasmonic scatterers. This work was presented in

[121].

5.1 Introduction and motivations

In the framework of this work, we are mainly interested in the resonant behavior

exhibited by subwavelength scatterers when they interact with light [93, 97, 103, 122–

124]. The study of localized surface plasmon resonances in sub-wavelength metallic

scatterers have long been the subject of a strong interest [125, 126]. These resonances

come from the excitation of a collective oscillation of the conduction electrons inside

subwavelength metallic scatterers by the impinging electromagnetic field. The pres-

ence of intrinsic losses, i.e. absorption, contributes however to damp this collective

oscillation. Moreover, accelerating charges are known to give rise to a radiated field.

This effect in turn affects the dynamic of the ensemble of electrons and gives rise to

radiative losses as was explained in chapter 3.

However, at some particular frequencies depending on both the geometry and the

51



5. Polarizability Expressions for Predicting Resonances in Plasmonic
and Mie Scatterers

material of the resonator considered, the electromagnetic field can drive a resonance

of the amplitude of oscillations of the free electrons yielding also a resonance of the

electromagnetic field radiated by this scatterer. For very small plasmonic resonators,

this resonance condition can be shown to be equal to the quasi-static resonance con-

dition ε ' −2. This resonance condition has proved to be very useful to study the

resonant behavior of very small plasmonic resonators.

Throughout this work, we are particularly interested in Mie resonances excited in

high refractive-index scatterers. We can point out that some resonance conditions of

Mie resonators were already derived in [127]. Here, we will however employ another

method providing accurate predictions of the resonance conditions of resonators

small compared to the wavelength with a large permittivity.

Furthermore, in order to study the localized surface plasmon resonances beyond

the quasi-static limit, simple analytical approximations of the polarizability of plas-

monic particles are also useful. Such approximate models have been widely used

in the case of small metallic particles behaving like electric dipoles and hosting lo-

calized surface plasmon resonances (LSPR) [123, 128]. As was already discussed in

chapter 3, the electric dipolar polarizability αe relates the dipolar moment p to the

excitation field Eexc : p = ε0εbαeEexc. αe may easily be linked to the dipolar Mie

coefficient a1 through the relation αe = i6π
k3 a1 [106, 129]. Accurate approximations

of αe calculated in the long wavelength limit have greatly contributed to extend the

understanding of the resonant behavior of small plasmonic scatterers [105, 107, 130–

134].

The study of electric and magnetic Mie resonances in high refractive index dielectric

subwavelength-sized particles could also greatly benefit from the use of such simpli-

fied models. However, the classical models widely used in plasmonics fail to predict

the dipolar electric resonant response of these dielectric scatterers. We illustrate

Figure 5.1: Mie coefficient |a1| plotted with respect to the wavelength in the case of
a sphere of radius 60 nm made of silicon [135] and silver [136]. Full lines: calculated
with the exact expression derived in Eq.1 with n = 1 with silicon (blue) and silver

(black). Dashed lines: approximation a
(T1)
1 in Eq. (5.22) in red for silicon and green

for silver.
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this problem by plotting in Fig. 5.1 the real part of the first electric Mie coefficient

calculated with the complete Mie theory (full line) and with a Taylor expansion

(dashed line) derived up to the 3rd order, Eq. (11) in [133], in the case of a sphere,

120 nm in diameter, made of silver or made of silicon. It is clearly seen that while

this expansion does predict the localized surface plasmon resonance around 410 nm,

it fails to predict the morphological resonance at 450 nm. This issue motivates the

development of a generalized point-like model working for both positive and nega-

tive dielectrics.

Here, asymptotic resonance conditions for both Mie and plasmonic resonators

will be provided. We will then propose to derive approximations of the Mie coeffi-

cients and of the polarizabilities from the Weierstrass factorization of Bessel func-

tions.

5.2 Resonance conditions in subwavelength spheres

Here, we propose to determine the resonance conditions (i) graphically and (ii) in

the asymptotic limit z0 → 0 for any arbitrary made material homogeneous particles.

For that purpose, we will be using the formulation of the Mie coefficients in terms

of the K matrix coefficients already used in chapter 3:

(an)−1 = −i(K(e)
n )−1 + 1, (5.1)

(bn)−1 = −i(K(h)
n )−1 + 1. (5.2)

The exact definition of the K-matrix coefficients is provided in Appendix A. Let

us however recall it here using the reduced logarithmic derivative of Neumann and

Bessel functions εsϕ
(2)
n (z0) and ϕ

(1)
n (zs):

K(e)
n = − jn(z0)

yn(z0)
εsϕ

(1)
n (z0)−ϕ(1)

n (zs)

εsϕ
(2)
n (z0)−ϕ(1)

n (zs)
(5.3)

K(h)
n = − jn(z0)

yn(z0)
ϕ

(1)
n (z0)−ϕ(1)

n (zs)

ϕ
(2)
n (z0)−ϕ(1)

n (zs)
(5.4)

where jn and yn are respectively the spherical Bessel functions and the spherical

Neumann functions. As the K-matrix is hermitian for non-absorptive particles [105,

106] and as a consequence the coefficients K
(e)
n and K

(h)
n of a lossless spherical

scatterer are real.
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5.2.1 Definitions of resonances:

Here, as was explained in chapter 4, light-scattering will be considered to be at

resonance when one of the Mie coefficients reaches the unitary limit, i.e. when an = 1

or bn = 1 [106, 126, 137]. This corresponds to the upper limit imposed to the Mie

coefficients by the energy conservation for lossless scatterers. As was also pointed

out in chapter 4, this definition of resonances is equivalent to the following condition

on the K-matrix coefficients:

an = 1⇒
(
K

(e)
n

)−1

= 0, (5.5)

bn = 1⇒
(
K

(h)
n

)−1

= 0. (5.6)

Resonances thus correspond to the poles of the K-matrix coefficients. The reso-

nance conditions provided by Eqs. (5.5) are displayed graphically for a constant and

positive permittivity equal to 16 in Fig. 5.2a. According to Eqs. (5.3) and (5.5),

resonances of the magnetic dipole occur at the intersections between ϕ
(2)
1 (z0) (solid

blue line) and ϕ
(1)
1 (zs) (dashed green line) denoted by (h) whereas resonances of the

electric dipole correspond to the intersections between εsϕ
(2)
1 (z0) (dotted red line)

and ϕ
(1)
1 (zs) (dashed green line) denoted by (e) in Fig. 5.2.
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Figure 5.2: Graphic representation of the resonance condition as a function of the
size parameter z0 for (a) ε = 16 and (b) ε = −2.5: the electric and magnetic
resonances are marked by the black dots, predictions of those resonances provided
by Eqs. 5.9 (full black vertical lines), function ϕ

(1)
1 (zs) (dashed green line), func-

tion ϕ
(2)
1 (z0) (full blue line), εsϕ

(2)
1 (z0) (dotted red line). Dashed black line in (b):

ϕ
(1)
1 (zs) = 2− z2

5
calculated with Eq. (5.12) at the 1st order with n=1.

One can also choose to set a permittivity negative and purely real. Even if

materials with such a permittivity do not exist, this can be enlightening to study

what happens in this case to provide a better understanding of the plasmonic reso-

nances. As illustrated in Fig. 5.2b, a resonance of the electric dipole also occurs at

the intersection between εsϕ
(2)
1 (z0) (dotted red line) and ϕ

(1)
1 (zs) (dotted green line)

denoted by (e). Since ϕ
(2)
1 (z0) is negative for small values of z0, no resonance of the

magnetic dipole occurs. Although the plots of Fig. 5.2 only show the first solutions

of the conditions (5.5) for n = 1, one has to keep in mind that these conditions

are transcendental equations and have an infinity of solutions. However, in what

follows, we will mainly be interested in the first resonance of each multipolar order

for subwavelength-sized scatterers. That is why we will first restrict our study to

the limit of small size parameters z0 → 0. In this limit, it is possible to simplify

the resonance conditions by approximating the functions of z0 by the first term of

their power-series expansion : jn(z0) ' zn0
(2n+1)!!

, ϕ
(1)
n (z0) ' n + 1, yn(z0) ' − (2n−1)!!

zn+1
0

and ϕ
(2)
n (z0) ' −n, where !! is defined in Appendix C. That leads to the following

approximate expressions of the K-matrix coefficients:
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K(e)
n ' −κn (n+1)εs−ϕ(1)

n (zs)

nεs+ϕ
(1)
n (zs)

, (5.7)

K(h)
n ' −κn (n+1)−ϕ(1)

n (zs)

n+ϕ
(1)
n (zs)

, (5.8)

with κn =
z2n+1
0

(2n−1)!!(2n+1)!!
. The exact expression of ϕ

(1)
n (zs) is kept because the in-

medium size parameter zs =
√
εsz0 is not necessarily small even if z0 is small. In fact,

one should keep in mind that morphological resonances, for small particles occur for

large permittivity so that zs may not be small [14, 37]. It is then straightforward

from Eqs. (5.5) and (5.7) to determine an approximation of the resonance conditions

(5.5):

an = 1⇒ ϕ
(1)
n (zs) ' −nεs, (5.9)

bn = 1⇒ ϕ
(1)
n (zs) ' −n. (5.10)

5.2.2 Resonances of plasmonic scatterers:

Only the assumption z0 << 1 has been made so far but no assumption was made

about zs. Eq. 5.9 is in fact valid for both metallic and dielectric small particles. Let

us derive the Taylor expansion to the 6th order of the ϕ
(1)
n function [106]:

ϕ(T1)
n (z) = n+ 1− z2

2n+ 3
− z4

(2n+ 5)(2n+ 3)2
+O(z6). (5.11)

In the limit (zs → 0), it is sufficient to consider the first term of this expansion (n+1)

and it can easily be shown that Eq. (5.9) tends towards the well-known quasi-static

resonance conditions for very small plasmonic particles for electric multipoles [93]:

ε ' −n+ 1

n
(5.12)

In this same limit Eq. (5.10) has no solution, confirming that sub-wavelength plas-

monic particles do not support magnetic resonances.

5.2.3 Morphological Resonances of Mie scatterers:

Electric and magnetic morphological resonances in small dielectric particles can

only occur when zs > 1 requiring the permittivity to be sufficiently large [14].

Thus, approximations made with the assumption zs << 1 will fail to predict the

morphological resonances. That is why approximations of the Mie coefficients based

on Taylor series expansion do not predict morphological resonances unless a lot of

terms are taken into account. This result can be observed in Figs. 5.1 and 5.2 and
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it will be further illustrated in section 5.5.

In fact, the electric morphological resonances can be better understood by studying

the limit |εs| → ∞. One can easily deduce from Eq. (5.9) that multipolar electric

resonances occur at the poles of the ϕ
(1)
n functions in this limit (see in particular [100]

pp. 61-65). These poles correspond to the zeros of the Bessel functions [138, 139]

and in what follows, the first zero of the n-th order Bessel functions will be noted

rn. For high index dielectric scatterers for which |εs| is large but not infinite, it can

then be safely inferred that the first resonance of the n-th order electric multipole

occurs close to the position:

zs ' rn (5.13)

This result can be observed in Fig. 5.2 where the electric resonance condition is seen

to be close to the pole of ϕ
(1)
1 in the case of n = 1. The exact values of r0, r1 and rn

are provided in table 1 but it may be recalled that a good approximation of the l-th

zero of the n-th order Bessel function can be provided by rn,l ' lπ+ nπ
2

[138, 139]. At

this point, one should emphasize that the condition zs = rn actually corresponds to

the first TE modes of the n-th multipole of a spherical hollow resonator (a spherical

cavity with perfectly conducting walls) [140–142]. This provides some insights on

the origin of morphological resonances as will be further discussed in section 5.5.

A prediction of the magnetic resonance condition can then be easily deduced from

Eq. (5.10) by noticing that ϕn(rn−1) = −n (see Appendix C)[100]. If |εs| is large, it

can then be assumed that the first resonance of the n-th magnetic multipole occurs

close to the position:

zs ' rn−1 (5.14)

This is confirmed in Fig. 5.2 in the case of n = 1 where one clearly sees that the

magnetic resonance is close to this condition. This resonance condition differs from

the first TM mode of a spherical hollow resonator occurring for zs = r
′
n, r

′
n being

the first zero of the derivative of the n-th order Bessel functions [140, 142]. This will

be further discussed in section 5.5.

In order to get a good approximation of bn at the vicinity of the magnetic resonance,

one could then choose to approximate ϕ
(1)
n (zs) by its power series expansion around

zs = rn−1 (calculations are made in Appendix D):

ϕ(T2)
n (z) ' −n− rn−1 (z − rn−1)

− (n+ 1) (z − rn−1)2

−1

3

(
n(2n+ 1)

rn−1

)
(z − rn−1)3 (5.15)

Fig. 5.3 shows that Eq. (5.15) provides a very good approximation of ϕ
(1)
n (zs), but

only on a small interval of size parameters close to the resonance.

It can then be concluded from this study that the slow convergence of the Taylor

series expansions does not allow accurate and compact approximated expressions of
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the ϕ
(1)
n functions. It will be confirmed by the results obtained on section 5.4.

5.3 Weierstrass approximations of ϕ
(1)
n

Figure 5.3: Comparison of the approximations of the ϕ
(1)
1 (zs) function. Exact cal-

culation (full blue line). ϕ
(T1)
1 (zs): Taylor expansions around zs = 0 (dashed black

line), ϕ
(W1)
1 (zs): approximation derived in Eq. 5.18 (dashed red line), ϕ

(T2)
1 (zs):

Taylor expansion around zs = rn−1 derived in Eq. 5.15 (dotted green line).

We propose to address this issue of the slow convergence of the Taylor descrip-

tions in the proximity of the poles of ϕ
(1)
n (zs) by using the Weierstrass expansion of

the Bessel function [138, 139]:

jn(z) =
zn

(2n+ 1)!!

∞∏
l=1

(
1−

(
z

rn,l

)2
)
, (5.16)

where rn,l is the l-th zero of the n-th order Bessel function. The expression of the

ϕ
(1)
n function can then be deduced from Eqs. (A.12) and (5.16)[114, 143]:

ϕ(1)
n (z) = n+ 1 +

∞∑
l=1

2z2

z2 − (rn,l)2
. (5.17)

Expression (5.17) is an exact expansion of ϕ
(1)
n which takes into account the ex-

istence of an infinite number of poles located on the real axis, as observed in Fig.5.2,
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Table 5.1: Numerical values of the constants employed for the first multipole orders.

x rn ρ
(e)
n ρ

(h)
n

n = 0 π -0.065 x
n = 1 4.49 -0.05 -0.055
n = 2 5.76 -0.041 -0.047

and corresponding to the zeros of jn. In the previous section, it was shown that

those poles are of great importance in the emergence of the electric morphological

resonances and that is why it is necessary to find approximations of ϕ
(1)
n featuring

the same poles. In our study, we are seeking for approximations capable to pre-

dict the first morphological resonance. Approximations of ϕ
(1)
n can be obtained by

truncating the infinite sum in Eq. (5.17) and by conserving only its first term. But,

rather than completely neglecting the influence of higher order poles, one can also

approximate their contributions. As shown in Appendix C.3, if we consider that

zs << rn,2, we obtain the following approximation:

ϕ(W1)
n (z0) = n+ 1 +

2z2
n

z2
n − 1

+ 2ρ(e)
n z2

0 , (5.18)

where we set for compact notations that zn ≡ z0/rn,1 ≡ z0/rn and ρ
(e)
n ≡ 1

r2
n
− 1

2(2n+3)
,

with rn being the first zero of jn. Regarding the approximation of the magnetic

coefficients, we have seen in section 5.2 that their first resonance occurs near the

condition zs = rn−1. In order to have a good prediction of the magnetic resonances,

an accurate approximation of ϕ
(1)
n (zs) near zs = rn−1 must be found. As seen in the

previous section and in Fig. 5.3, a simple power series expansion of ϕ
(1)
n (zs) does

not provide satisfying results. A better approximation has been found under the

following form:

ϕ(W2)
n (z0) = n+ 1 +

2z2
n

z2
n − 1

+ 2ρ(h)
n z2

0 , (5.19)

where ρ
(h)
n has been derived to impose ϕ

(W2)
n (rn−1) = −n. It can then be easily

shown that ρ
(h)
n ≡ 1

r2
n−r2

n−1
− 2n+1

2r2
n−1

.

Approximations of the Bessel functions can also be derived by following a similar

approach leading to the subsequent expression (see Appendix C.3):

j(W1)
n (z0) =

zn0
(2n+ 1)!!

(
1− z2

n

)
eρnz

2
0 . (5.20)

The approximations obtained for the special functions appearing in the Mie

theory can now be used to find approximations of the Mie coefficients.
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5.4 Approximations of an and bn

In order to find an accurate approximation of the an and bn coefficients, in particular

at the vicinity of their resonances [144–146], we start from the exact expression

(A.22) defined in appendix (A) and make use of the approximations (5.18) and

(5.20) derived with the sole assumption zs << rn,2. If the exact expressions of h
(+)
n

and ϕ
(+)
n are kept, it can be shown, provided several steps of calculations, that the

Mie coefficients can be cast (see Appendix C):

a(A1)
n =

(n+ 1)z2n+1

(2n+ 1)!!

e−iz+ρ
(e)
n z2

Qn(z)
×

(ε− 1) (fn(ε, z)− z2
n)

εgn(z)fn(ε, z)− (n+ 1)

b(A1)
n =

z2n+1

(2n+ 1)!!

e−iz+ρ
(h)
n z2

Qn(z)
×

(ε− 1)Ln(ε, z)

εLn(ε, z)− (n+ 1) + ϕ
(+)
n (z)

(5.21)

with gn(z) = ϕ
(+)
n (z) − 2ρnz

2 and Qn(z) is a polynomial function detailed in

Appendix C and ϕ
(+)
n (z) being simply calculated thanks to equations (A.12) and

(C.31). In the electric coefficient expression, fn(ε, z) = 1−εz2
n

1−n+3
n+1

εz2
n

while in the mag-

netic coefficient expression Ln(ε, z) = − 2z2
n

εz2
n−1
− 2ρ

(h)
n z2.

Comparisons between these approximations and exact calculations are shown

in the following figures. We also make comparisons with approximations based on

power series expansions of the Kn coefficients in Eqs. 5.1 and 5.2 and that were

already provided in chapter 3:

(
a

(T1)
1

)−1

= −i
(
− 3(ε+ 2)

2z3(ε− 1)
+

9(ε− 2)

10z(ε− 1)

)
+ 1(

b
(T1)
1

)−1

= i
45

z5(ε− 1)
− 15i(2ε− 5)

7z3(ε− 1)

− i(ε2 + 100ε− 125)

49z(ε− 1)
+(

a
(T2)
1

)−1

= i
3(ε+ 2)

2z3(ε− 1)
− 9i(ε− 2)

10z(ε− 1)

− 9iz(ε2 − 24ε+ 16)

700(ε− 1)
+ 1

(5.22)

It is clearly observed in Fig. 5.4 that our approximations achieve to reproduce

the resonances predicted by exact calculations in a more accurate way than state-
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of-the-art approximations, even quite lengthy high-order Taylor expansions.

Figure 5.4: Comparison between exact (full blue line) and approximations (5.21)
(dotted green line) and (5.22) (dashed red and black lines) of a1 for a sphere of
silver [136] 60 nm (a) and 80 nm (b) in radius.

Although we did not explicitly derive these approximations for describing plas-

monic scatterers, these new approximations are more accurate than the approxi-

mations (5.22) as can be seen in Fig.5.4. However, the main interest of these new

approximations is that they are highly accurate for high-index dielectric scatterers

as shown in Fig. 5.5 for a silicon scatterer.
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Figure 5.5: Comparison between exact calculations of a1 (full blue line) and b1 (full
green line) with approximations (5.21) of a1 (dashed black line) and b1 (dotted blue
line) and power-series approximations of b1 (5.22) (dashed red line), for a sphere of
silicon [135] of radius 70 nm (a) and 100 nm (b).

In fact, it was already shown in Fig. 5.1 that no approximation based on Taylor

series expansions achieves to predict the resonance of a1 but the approximation

derived in this study (5.21) does predict these resonances accurately. Regarding the

magnetic resonances, even though the approximation b
(T1)
1 in Eq. (5.22) which is a

high-order power-series expansion of b1 shows the dipolar magnetic resonance [106],

our approximation stays more accurate for a larger range of sizes and wavelengths.

We now aim at studying the validity of these expressions in the case of larger particles

62



5. Polarizability Expressions for Predicting Resonances in Plasmonic
and Mie Scatterers

made of lower refractive index. This will allow us to test the accuracy of higher

orders expressions, in particular quadrupolar orders. For that purpose, we consider

a sphere made of TiO2, 140 nm in radius. We compare the calculations of the

dipolar and quadrupolar electric and magnetic Mie coefficients obtained by exact

calculations (Eq. 5.1) with the expressions (5.21). The plot in Fig. 5.6 shows the

very good accuracy of these expressions for dipolar and quadrupolar orders, even

when considering larger particles made of lower refractive indices.

Figure 5.6: Comparison between exact calculations and approximations 5.21 for: a1

(full red line and dashed black line), b1 (full blue line and dotted green line), a2 (full
green line and dashed gray line) and b2 (full cyan line and dotted red line) for a
TiO2 [147] 140 nm in radius.

5.5 Discussion

Conditions of resonance derived in section 5.2.3 have been very useful to derive

accurate approximations of the Mie coefficients in the previous section. Here, we

will show that they can also provide more insight on the origin of morphological

resonances. Since condition (5.13) is close to the TE mode of a hollow resonator,

one can infer that morphological resonances occur due to the ability of high index

dielectric scatterers to play the role of a cavity. Since high index dielectric scatterers

are not perfect cavities, the trapped electromagnetic field leaks in the surrounding

medium driving to resonances of the scattered field. When |εs| → ∞, the scatterer

becomes a very good cavity for the electromagnetic field which can be trapped inside

the resonator for a long time. It is not surprising then to find the same resonance

condition as the one of a hollow resonator in this case.

Nonetheless, the resonance condition (5.14) for magnetic multipoles is different from
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the TM modes of a hollow resonator. These TM modes normally occurs at zs ' r
′
n,

r
′
n being the first zero of the derivative of the n-th order Bessel functions [140] and

not zs ' rn−1. For n = 1, r
′
1 and rn−1 = r0 take the following value r

′
1 = 2.744 and

r0 = π. However, one can infer that magnetic morphological resonances also occur

due to the ability of high index dielectric scatterers to confine light.

In section 5.2.3, these resonance conditions were derived in the limit |εs| → ∞. One

could then question the validity of such conditions of resonance for large but not

infinite values of |εs|. A comparison between the exact values of |εs| required to reach

the resonance, also called unitary limit [106], and the predictions provided in section

5.2.3 needs then to be carried out. The exact values of the permittivity needed to

reach the resonance for a given z0 = kR can be derived by numerically solving the

equation a1 = 1 for the electric dipole resonance and b1 = 1 for the magnetic dipole

resonance. In Fig. 5.7, the exact value of the unitary limit permittivity for the

electric dipole ε
(e)
UL in Fig. 5.7 is compared to the prediction provided by Eq. (5.13)

in section 5.2.3: zs = r1 or equivalently: ε
(e1)
s =

(
r1
z

)2
. One can clearly see that this

expression predicts accurately the asymptotic behavior of the exact ε
(e)
UL for very

small z0 but is not very accurate for larger z0. In Fig. 5.7, the same comparison is

also carried out beween the exact unitary limit permittivity for the magnetic dipole

ε
(h)
UL and the prediction given by Eq. (5.14), ε

(h1)
s =

(
r0
z

)2
. A very good agreement

is observed between the exact value and the prediction.

A more accurate prediction of ε
(e)
UL can also be derived. To do so, one could solve

Eq. (5.9) for n = 1: ϕ
(1)
1 (zs) = −εs. However, this equation can only be solved

numerically. On the other hand, if the approximation ϕ
(W1)
1 (zs) given by Eq. (5.18)

is used, the previous equation reduces to a second order equation in ε and can be

analytically solved leading to the prediction ε
(e2)
UL (the exact expression of ε

(e2)
UL is

provided in appendix 3). This prediction proves to be quite accurate for a large

range of z0 as can be seen in Fig. 5.7.
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Figure 5.7: Comparison between the exact εUL (black full line) required to reach
the resonance and the prediction provided by Eqs. (5.13) and (5.14) respectively

labelled ε
(e1)
UL and ε

(h1)
UL (dotted green line). A better approximation of ε

(e)
UL is obtained

by solving ϕ
(W1)
n (zs) = −nεs, labelled ε

(e2)
UL (dashed blue line)

Finally it is also interesting to notice that the approximation (5.21) also predicts

a zero of the Mie coefficients different from the trivial condition (ε − 1). These

zeros actually correspond to the anapoles in [148]. They are in fact reached when

fn(ε, z)− z2
n = 0 or equivalently 1

z2
n
fn(ε, z) = 1. This latter condition can be found

while searching for solutions to εeq = 1, the definition of εeq(z) =
(
r1
z

)2 1−ε(z/r1)2

1−2ε(z/r1)2
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being provided in [143]. Expression (5.21) also provides a condition for which bn is

null corresponding to Ln(ε, z) = 0 that is different from the trivial solution ε = 1.

5.6 Conclusion

To conclude, the use of the K-matrix has allowed us to derive resonance conditions

for both plasmonic and high-index dielectric resonant particles. We have thus been

able to show that under the condition |εs| >> 1, the electric resonance is close

to zs ' rn and the magnetic resonance is close to zs ' rn−1. The proximity of

the electric resonance to the pole of the ϕn(zs) function at zs = rn explains the

weak convergence of the Taylor series expansion for approximating Mie coefficients

especially near the electric resonances. We proposed to solve this problem by using

a Weierstrass expansion of the Bessel functions. This method allows us to derive for

any multipolar order highly accurate electric and magnetic polarizability expressions.

We evidenced the high accuracy of these expressions by calculating the dipolar and

quadrupolar polarizability expressions of spherical particles made of silver, silicon

and titania. These expressions bring analytical tools to explain the resonant light

interaction with metallic or dielectric particles. They also permitted us to bring

more physical insight on the origin of morphological resonances. In particular, these

formulations allowed us to calculate a very accurate prediction of the dielectric

permittivity required to reach the resonance, also called unitary limit.
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Chapter 6

Quasi-normal mode analysis of

high refractive-index scatterers:

Summary: The aim of this Chapter is to derive resonant state expansions of the

S matrix coefficients and then apply them to the analysis of the optical response of

high-refractive index scatterers in terms of their quasi-normal modes. In particular,

the non-lorentzian shape of the scattered field resonances will be found to be due

to the interference between resonant and non-resonant contributions. Finally, we

should show how such resonant expansions allow for a study of the time-dependent

scattering problem.

6.1 Introduction:

So far, we have been using the Lorenz-Mie theory and our study of light-scattering

has been consequently limited to spherically-symmetric scatterers. With the progress

in nano-fabrication techniques allowing to structure matter at the nanoscale comes

the need for developing methods permitting the study of the electromagnetic re-

sponse of more complex structures. As already pointed out in Chapter 3, the use of

numerical methods such as FEM or FDTD permits to predict the electromagnetic

response of arbitrary-shaped scatterers although it is often at the price of a lack

of understanding of their physical behavior. Consequently when trying to design a

photonic structure with a desired optical response, one would have to use extensive

parametric studies. One way of overcoming this difficulty may be found in the use

of optimization algorithms [85, 149].

On the other hand, the quasi-normal modes (QNM), otherwise called resonant states

or leaky modes, have been attracting attention over the past few years and are seen

as promising tools for studying the resonant interaction of light with complex nanos-

tructures while keeping some physical insight. A review has in particular recently

been written on this subject [4]. These quasi-normal modes are the solutions of the

source-free Maxwell equations satisfying outgoing boundary conditions. Since these
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structures suffer from radiative losses, their modes only have a finite lifetime. Con-

sequently, the eigen-frequencies associated with these modes are complex numbers

with a negative imaginary part: ωn = ωn,r + iωn,i with ωn,i < 0 (reminder: a e−iωt

time dependence is assumed). As these modes also satisfy outgoing boundary con-

ditions, their radial dependence asymptotically tends towards ei
ωn
c r

r
. Consequently,

these modes are exponentially diverging in the far field.

QNM expansions have however been shown to succesfully predict the Purcell factor

of plasmonic [5, 150] and Mie resonators [151]. In all these studies, the apparent

problem of the QNM divergence was addressed by using different schemes to nor-

malize the QNM field [5, 152–154]. Nonetheless, some conceptual problems are yet

to be addressed before applying QNM expansions to study the scattering properties

of optical resonators. In particular, two main problems still remain:

(i) A first fundamental problem can be expressed as follows: how is it possible to

expand the scattered field on the basis of asymptotically exponentially diverging

fields?

(ii) A clear answer has not been found for another fundamental question relative

the QNM: is the basis of QNM complete for expanding the scattered field? In other

words, are there only resonant contributions to the scattered field or are there also

additional non-resonant contributions? The completeness of the QNM basis has

been demonstrated for the internal field by the calculation of the Green function

pole expansion but attempts to generalize this result to the scattered field outside

the scatterer have failed.

Despite these two fundamental problems, some studies have proven to success-

fully describe the optical response of plasmonic [33] and Mie resonators [34, 35] by

means of QNM expansions. These studies relied on expansions of the internal field

induced inside the resonator (or equivalent surface currents in [34, 35]). In [33], it

was shown that quantities quantifying the far-field reponse of the resonators could

then be computed by only knowing the internal field. On the other hand, in [34, 35]

the scattered field was computed by means of the Green function.

In this Chapter, our approach will be based on the S-matrix, already presented

in Chapter 3. Even though we will adopt a slightly different approach, we should

point out the interesting work of Alpeggiani et al. [155] where a quasi-normal

mode expansion of the S-matrix coefficients was obtained by starting from temporal

coupled mode theory models [156, 157]. On the other hand, we will be starting

from causality and energy conservation considerations in order to derive the pole

expansion of the S-matrix coefficients for dispersionless media. We will then use this

pole expansion to study the interaction of light with high refractive index scatterers.

In particular, we should discuss the completeness of the QNM basis by comparing

the shape between the resonances of the scattered field that have a Fano’s type

asymmetric shape and the resonances of the internal field that have a Lorentzian
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shape. We will then conclude that the QNM basis cannot be complete for the

scattered field and consequently an additional non-resonant contribution has to be

taken into account. Finally, we will be considering the scattering problem in the

time domain and we will show that the issue of divergence can be avoided by taking

causality into account.

6.2 Resonant state expansions of the S and Ξ co-

efficients

6.2.1 Causality and analytical properties of the S-matrix

coefficients

The analytical properties of the S-matrix coefficients are constrained by causality

and energy conservation. It is in particular possible to determine the analytic con-

tinuation in the complex plane of the S-matrix coefficients by using causality and

energy conservation arguments. To do so, we will follow the method employed in

([101], pp. 70-72) and study the scattering problem in the time domain. Causality

is much easier to study in the far field area since, in this case, both incoming and

outgoing fields are spherical waves propagating inward and outward respectively. As

was shown in Chapter 3 in the harmonic domain, the total field tends towards:

lim
r→∞

Etot(r, ω) = E0

∞∑
n=1

n∑
m=−n

in+1c(h)
n,m(ω)Xn,m(θ, φ) + inc(e)

n,m(ω)Zn,m(θ, φ)

c(h)
n,m(ω) =

s
(h,−)
n,m (ω)

kr

(
e−ikr − (−1)nS(h)

n eikr
)

c(e)
n,m(ω) =

s
(e,−)
n,m (ω)

kr

(
e−ikr − (−1)n−1S(e)

n eikr
)

(6.1)

In the time domain, we will be considering an incoming field Ein(r, t) impinging

on a spherical scatterer of radius R thus giving rise to an outgoing field Eout(r, t).

In the far field area, the expression for the incoming electric fields can be shown to

be:

lim
r→∞

Ein(r, t) = E0

∞∑
n=1

n∑
m=−n

in+1c(h,−)
n,m (t)Xn,m(θ, φ) + inc(e,−)

n,m (t)Zn,m(θ, φ)

c(h,−)
n,m (t) =

1

2π

ˆ ∞
−∞

s
(h,−)
n,m (ω)

kr
e−ikre−iωtdω

c(e,−)
n,m (t) =

1

2π

ˆ ∞
−∞

s
(e,−)
n,m (ω)

kr
e−ikre−iωtdω

(6.2)
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Similarly, the time-dependent outgoing field expression can be shown to be:

lim
r→∞

Eout(r, t) = E0

∞∑
n=1

n∑
m=−n

(−i)n+1c(h,+)
n,m (t)Xn,m(θ, φ) + (−i)nc(e,+)

n,m (t)Zn,m(θ, φ)

c(h,+)
n,m (t) =

1

2π

ˆ ∞
−∞

S(h)
n (ω)

s
(h,−)
n,m (ω)

kr
eikre−iωtdω

c(e,+)
n,m (t) =

1

2π

ˆ ∞
−∞

S(e)
n (ω)

s
(e,−)
n,m (ω)

kr
eikre−iωtdω

(6.3)

For a given point r located in the far field area, it is possible to define a time

t0 such that the incoming field in r vanishes for t < t0. An outgoing field can only

appear when the incoming field reaches the surface of the scatterer. Consequently,

the outgoing field at r should vanish for t < t0 + 2 r−R
c

leaving enough time for the

incoming field to reach the surface of the scatterer and to give rise to an outgoing

field that will propagate back to the point r at the speed c. After some algebraic

manipulations to introduce t0, c
(i,−)
n,m (r, t) and c

(i,+)
n,m (r, t), where i = e or h, can be

rewritten in the following manner:

c(i,−)
n,m (r, t) =

1

2π

ˆ ∞
−∞

s
(i,−)
n,m (ω)

kr
e−iω(t0+ r

c)e−iω(t−t0)dω

c(i,+)
n,m (r, t) =

1

2π

ˆ ∞
−∞

ei2ω
R
c S(i)

n (ω)
s

(i,−)
n,m (ω)

kr
e−iω(t0+ r

c)e−iω(t−t0−2 r−R
c )dω

(6.4)

As c
(i,−)
n,m (r, t) is null for t < t0,

s
(i,−)
n,m (ω)

kr
e−iω(t0+ r

c) should be holomorphic, i.e. should

not possess poles, in the upper half of the complex plane [101]. The explanation for

this property is readily found by use of the theorem of residues: while calculating the

Fourier transform of
s
(i,−)
n,m

kr
e−iω(t0+ r

c) in Eq. (6.4) by means of the theorem of residues

and for t < t0, one has to close the contour in the upper half of the complex plane.

In fact, in this case t−t0 < 0 hence for complex ω = ωr+ iωi e
−iω(t−t0) would diverge

when ωi < 0 and |ω| → ∞ but it would converge when ωi > 0. That is the reason

why the contour should be closed in the upper half of the complex plane. Since,

according to causality this integral should be null,
s
(i,−)
n,m

kr
e−iω(t0+ r

c) cannot admit any

poles in the upper half of the complex plane.

Equivalently, one can show that as c
(i,+)
n,m (r, t) vanishes for t < t0 + 2 r−R

c
,

ei2ω
R
c S

(e)
n (ω)

s
(i,−)
n,m (ω)

kr
e−iω(t0+ r

c) is also an holomorphic function in the upper half of the

complex plane. As a consequence, one finds that ei2ω
R
c S

(e)
n (ω), as it is the quotient

of the two previous functions that are regular in the upper half plane, should also

be a holomorphic function in the upper half of the complex plane but can admit

zeros there.

On the other hand, the presence of poles of S in the lower half of the complex is

not prohibited by causality. These poles are related to the resonant states of the

70



6. Quasi-normal mode analysis of High refractive-index scatterers

scatterer and in the case of spherical scatterers they should occur when D
(e,h)
n (z) = 0.

D
(e,h)
n (z) being the denominator functions associated with the S-matrix coefficients

introduced in Chapter 3. To conclude, it has been shown by using causality principle

that the S-matrix coefficients can be cast:

S(ω) = e−2iω
c
Rf(ω) (6.5)

where f(ω) is a holomorphic function but can admit zeros in the upper complex

plane and it is analytic in the lower complex plane except for poles.

In addition, there are some properties of symmetry between poles and zeros of

the S-matrix coefficients:

First, since the fields are real, the following relation holds for real ω:

S(−ω) = S∗(ω) (6.6)

This relation can be extended to complex values of ω [101] leading to:

S(−ω∗) = S∗(ω) (6.7)

Consequently, if ωp = ωpr−iωpi is a pole of S located in the lower half of the complex

plane (ωpr and ωpi are then real and positive), according to (6.7), −ω∗p = −ωpr− iωpi

is also a pole of S. The relation (6.7) thus imposes that the poles of S are symmetric

with respect to the imaginary axis.

Furthermore, as was shown in Chapter 3, energy conservation imposes that for a

lossless scatterer:

S(ω)S∗(ω) = 1 (6.8)

We can then combine relations (6.7), (6.6) and (6.8) leading to S(ω)S∗(ω∗) = 1 or:

S(ω) =
1

S∗(ω∗)
(6.9)

Consequently, if ωp = ωpr− iωpi is a pole of S, relation (6.9) imposes that for lossless

scatterers ω∗p = ωpr + iωpi is a zero of S. It then follows that there are zeros of the

S-matrix that are symmetric of the poles of the S matrix with regards to the real

axis. All these symmetry relations of zeros and poles of the S matrix are summarized

in Fig. (6.1) with respect to z = ω
c
R.

The presence of the e−2iω
c
R factor is deeply related to causality because it means

that an outgoing field cannot be created until the incoming field reaches the surface

of the scatterer.
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Figure 6.1: Poles and zeros of the S matrix in the z complex plane

6.2.2 Pole expansion of S-matrix coefficients:

Causality considerations have allowed us to show that the S-matrix coefficients could

be expressed under the form given in Eq. (6.5). However, an exact expression of the

S-matrix coefficients is yet to be determined. Such an expression can be found in the

seminal work of Van Kampen [158] and in some textbooks (see in particular [101]

pp. 59-72 and [100] Chapter 12). This expression was also re-demonstrated more

recently and applied to the particular case of optical nanoresonators [159] leading

to the following general expression which is also called Weierstrass factorization of

the S-matrix coefficients:

S(e)
n (ω) = A(e)

n e−iB
(e)
n ω

∞∏
α=−∞

ω − z(e)
n,α

ω − p(e)
n,α

S(h)
n (ω) = A(h)

n e−iB
(h)
n ω

∞∏
α=−∞

ω − z(h)
n,α

ω − p(h)
n,α

(6.10)

where Ae,hn = Se,hn (0)
∏∞

α=−∞
z

(e,h)
n,α

p
(e,h)
n,α

and −iB(e,h)
n = S(e,h)′ (0)

S(e,h)(0)
+
∑∞

α=−∞
1

z
(e,h)
n,α

− 1

p
(e,h)
n,α

.

z
(e,h)
n,α and p

(e,h)
n,α are respectively the zeros and the poles of S

(e,h)
n . For a spheri-

cal scatterer, the zeros should verify the relation N
(e,h)
S,n

(
z

(e,h)
n,α

)
= 0, N

(e,h)
S,n being

the numerator functions introduced in Chapter 3 while the poles are solutions of

D
(e,h)
n

(
p

(e,h)
n,α

)
= 0, D

(e,h)
n

(
p

(e,h)
n,α

)
being the denominator functions. In the case of a
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lossless scatterer, the A
(e,h)
n factors can be shown to be equal to [160]

A(e)
n = (−1)n+1

A(h)
n = (−1)n

(6.11)

Regarding the factor B
(e,h)
n , one can show that S(e,h)′ (0)

S(e,h)(0)
= 0 [160]. The discussion of

the previous section helps us show that:

∞∑
α=−∞

1

z
(e,h)
n,α

− 1

p
(e,h)
n,α

= 2
R

c
(6.12)

It then follows that the S-matrix coefficients can be cast:

S(e)
n (ω) = (−1)n+1e−2iω

c
R

∞∏
α=−∞

ω − z(e)
n,α

ω − p(e)
n,α

S(h)
n (ω) = (−1)ne−2iω

c
R

∞∏
α=−∞

ω − z(h)
n,α

ω − p(h)
n,α

(6.13)

According to the results presented in the previous Section, for lossless scatterers,

the zeros z
(e)
n,α should be equal to the transpose of the poles z

(e)
n,α =

(
p

(e)
n,α

)∗
. The

previous expressions can consequently be rewritten in the following way:

S(e)
n (ω) = (−1)n+1e−2iω

c
R

∞∏
α=−∞

ω −
(
p

(e)
n,α

)∗
ω − p(e)

n,α

S(h)
n (ω) = (−1)ne−2iω

c
R

∞∏
α=−∞

ω −
(
p

(h)
n,α

)∗
ω − p(h)

n,α

(6.14)

The previous infinite product form can be converted into an infinite sum form [159]:

S(e)
n (ω) = (−1)n+1e−2iω

c
R

(
1 +

∞∑
α=−∞

r
(e)
n,α

ω − p(e)
n,α

)

S(h)
n (ω) = (−1)ne−2iω

c
R

(
1 +

∞∑
α=−∞

r
(h)
n,α

ω − p(h)
n,α

) (6.15)

where r
(e,h)
n,α are the residues associated with the poles p

(e,h)
n,α . This pole expansion

is close to the quasi-nomal mode expansion of the S-matrix coefficient derived in

[155]. Here, however we also predict the presence of a factor e−2iω
c
R that was shown

to be deeply related to causality. Furthermore, by means of Eq. (6.14), one can
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show that:

r(e,h)
n,α =

(
p(e,h)
n,α − z(e,h)

n,α

)∏
β 6=α

p
(e,h)
n,α − z(e)

n,β

p
(e,h)
n,α − p(e)

n,β

(6.16)

As a consequence of the symmetry relations (6.7), r
(e,h)
n,−α = −

(
r

(e,h)
n,α

)∗
where r

(e,h)
n,−α

is the residue associated with p
(e,h)
n,−α = −

(
p

(e,h)
n,α

)∗
. In what follows, an expression of

the S-matrix coefficients in terms of the size parameter z = kR = ω
c
R rather than

the frequency ω will be preferred:

S(e)
n (z) = (−1)n+1e−2iz

(
1 +

∞∑
α=−∞

r
(e)
z,n,α

z − p(e)
z,n,α

)

S(e)
n (z) = (−1)n+1e−2iz

∞∏
α=−∞

z −
(
p

(e)
z,n,α

)∗
z − p(e)

z,n,α

S(h)
n (z) = (−1)ne−2iz

(
1 +

∞∑
α=−∞

r
(h)
z,n,α

z − p(h)
z,n,α

)

S(h)
n (z) = (−1)ne−2iz

∞∏
α=−∞

z −
(
p

(h)
z,n,α

)∗
z − p(h)

z,n,α

(6.17)

By using the symmetry relation (6.7), the previous expansions can be re-expressed

in the following way:

S(e)
n (z) = (−1)n+1e−2iz

1 + 2
∞∑
α=1

ziIm
(
r

(e)
z,n,α

)
+ Re

(
r

(e)
z,n,α. p

(e)
z,n,α

∗)
z2 −

∣∣∣p(e)
z,n,α

∣∣∣2 − 2izIm
(
p

(e)
z,n,α

)


S(e)
n (z) = (−1)n+1e−2iz

∞∏
α=1

z2 −
∣∣∣p(e)
z,n,α

∣∣∣2 + 2izIm
(
p

(e)
z,n,α

)
z2 −

∣∣∣p(e)
z,n,α

∣∣∣2 − 2izIm
(
p

(e)
z,n,α

)
S(h)
n (z) = (−1)ne−2iz

1 + 2
∞∑
α=1

ziIm
(
r

(h)
z,n,α

)
+ Re

(
r

(h)
z,n,α. p

(h)
z,n,α

∗)
z2 −

∣∣∣p(h)
z,n,α

∣∣∣2 − 2izIm
(
p

(h)
z,n,α

)


S(h)
n (z) = (−1)ne−2iz

∞∏
α=1

z2 −
∣∣∣p(h)
z,n,α

∣∣∣2 + 2izIm
(
p

(h)
z,n,α

)
z2 −

∣∣∣p(h)
z,n,α

∣∣∣2 − 2izIm
(
p

(h)
z,n,α

)

(6.18)

These expansions will be applied in Section 6.3 to the study of resonant scatter-

ing by high refractive dielectric particles. However, in order to have a complete

understanding of the interaction of light with these scatterers, one should also de-

termine the internal field inside the scatterer. For this purpose, in the next Section,
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we should be concerned with the derivation of a pole expansion of the Ξ-matrix

coefficients defined in Chapter 3.

6.2.3 Lorentzian expansion of Ξ-matrix coefficients:

Only few results can be found in the literature regarding the pole expansion of the

Ξ-matrix coefficients. Therefore, we will then try to use the results of the previous

sections to derive such an expansion for the Ξ matrix as well.

The first noticeable difference of the Ξ matrix coefficients in comparison to the

S-matrix coefficients is that the former are not bound by unitarity (6.8). In fact,

|Ξ(e,h)
n | can be arbitrarily large as it is the case for example for very high-refractive

index particles [127]. The possibility for Ξ
(e,h)
n to have an arbitrarily large modu-

lus is not in contradiction with energy conservation. In fact it arises from the fact

that when there is a large contrast of permittivity between the scatterer and the

background medium, the field can remain trapped for a long time inside scatterers.

A large field enhancement can thus build up inside this scatterer. It follows that,

unlike for S
(e,h)
n , the relation (6.9) does not hold for Ξ

(e,h)
n . Consequently, these co-

efficients do not have zeros on the upper half of the complex plane.

For spherical scatterers, this property could also have been directly seen by a com-

parison of the analytical expressions of S
(e,h)
n and Ξ

(e,h)
n for spherical scatterers in-

troduced in Chapter 3:

S(e,h)
n = −

N
(e,h)
S,n (kR)

D
(e,h)
n (kR)

, Ξ(e,h)
n =

1

D
(e,h)
n (kR)

(6.19)

From these expressions, it is obvious that the zeros S
(e,h)
n are the roots of the nu-

merator function N
(e,h)
S,n while the numerator of Ξ

(e,h)
n does not admit roots.

On the other hand, Ξ
(e,h)
n and S

(e,h)
n poles appear to be identical and are the roots of

the denominator functions D
(e,h)
n . One can consequently infer that Ξ

(e,h)
n coefficients

admit the following pole expansion:

Ξ(e)
n (z) = A

(e)
Ξ,ne

−iBΞ,zz

∞∑
α=−∞

r
(e)
Ξ,z,n,α

z − p(e)
z,n,α

Ξ(h)
n (z) = A

(h)
Ξ,ne

−iBΞ,zz

∞∑
α=−∞

r
(h)
Ξ,z,n,α

z − p(h)
z,n,α

(6.20)

A
(e,h)
Ξ,n are found to be identical to A

(e,h)
n given in Eq. (6.11). Regarding BΞ,z we

found that BΞ,z = 0. Using the symmetry relation (6.7), the expressions of Ξ
(e,h)
n (z)
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can be shown to be:

Ξ(e)
n (z) = 2.(−1)n+1

∞∑
α=1

izIm
(
r

(e)
Ξ,z,n,α

)
+ Re

(
r

(e)
Ξ,z,n,α. p

(e)
z,n,α

∗)
z2 −

∣∣∣p(e)
z,n,α

∣∣∣2 − 2izIm
(
p

(e)
z,n,α

)
Ξ(h)
n (z) = 2.(−1)n

∞∑
α=1

izIm
(
r

(h)
Ξ,z,n,α

)
+ Re

(
r

(h)
Ξ,z,n,α. p

(h)
z,n,α

∗)
z2 −

∣∣∣p(h)
z,n,α

∣∣∣2 − 2izIm
(
p

(h)
z,n,α

)
(6.21)

Comparing the expansions (6.18) and (6.21), one notices the presence of the

additional 1 in (6.18). This is related to the existence of zeros of the S-matrix

coefficients and will be further discussed in section 6.3. It will be in particular

shown to be one of the origins a non-resonant contribution to the scattering field.

6.2.4 Residues of S
(e,h)
n and Ξ

(e,h)
n :

In principle, the residues r
(e,h)
z,n,α can be determined directly from Eq. (6.16). However,

in practice a large number of quasi-normal modes would have to be derived to

converge towards an accurate value of r
(e,h)
z,n,α with expression (6.16). That is why,

here we propose to take advantage of the analytical expressions of S
(e,h)
n and Ξ

(e,h)
n

for determining r
(e,h)
z,n,α and r

(e,h)
Ξ,z,n,α. The residues associated with the poles of Ξ

(e,h)
n

can be directly computed in the following way [160]:

r
(e)
Ξ,z,n,α =

(−1)n+1

∂D
(e)
n

∂z
(z)
∣∣∣
p

(e)
z,n,α

, r
(h)
Ξ,z,n,α =

(−1)n

∂D
(h)
n

∂z
(z)
∣∣∣
p

(h)
z,n,α

(6.22)

Exact calculations lead to the following analytical expressions for the residues:

r
(e)
Ξ,z,n,α =

(−1)n+12ins

(εs − 1)
(
ξ

(+)′
n

(
p

(e)
z,n,α

)
ψ′n

(
nsp

(e)
z,n,α

)
+ n(n+ 1)jn

(
nsp

(e)
z,n,α

)
h

(+)
n

(
p

(e)
z,n,α

))
r

(h)
Ξ,z,n,α =

(−1)n2i

(εs − 1)
(
p

(h)
z,n,α

)2

h
(+)
n

(
p

(h)
z,n,α

)
jn

(
nsp

(h)
z,n,α

)
(6.23)

An analytical expression of the residues of the S matrix can also be computed

directly from (6.23) along with the continuity condition. Let us start by recalling

the conditions of continuity of the field:

h(−)
n (kR) + S(h)

n h(+)
n (kR) = Ξ(h)

n .jn(ksR)

ξ(−)′

n (kR) + S(e)
n ξ(+)′

n (kR) = Ξ(e)
n

ψ′n(ksR)

ns

(6.24)
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If the infinite sum forms of S
(e,h)
n and Ξ

(h)
n are used:

h(−)
n (z) + (−1)n+1e−2iz

(
1 +

∞∑
α=−∞

r
(h)
z,n,α

z − p(h)
z,n,α

)
h(+)
n (z) = (−1)n+1

∞∑
α=−∞

r
(h)
Ξ,z,n,α

z − p(h)
z,n,α

.jn(nsz)

ξ(−)′

n (z) + (−1)ne−2iz

(
1 +

∞∑
α=−∞

r
(e)
z,n,α

z − p(e)
z,n,α

)
ξ(+)′

n (z) = (−1)n
∞∑

α=−∞

r
(e)
Ξ,z,n,α

z − p(e)
z,n,α

ψ′n(nsz)

ns

(6.25)

Multiplying both sides of the previous equations by z − p(h)
z,n,α or z − p(e)

z,n,α and

choosing z = p
(h)
z,n,α or z = p

(e)
z,n,α, yields the following relations:

e−2ip
(h)
z,n,αr(h)

z,n,αh
(+)
n (p(h)

z,n,α) = r
(h)
Ξ,z,n,α.jn(nsp

(h)
z,n,α)

e−2ip
(e)
z,n,αr(e)

z,n,αξ
(+)′

n (p(e)
z,n,α) = r

(e)
Ξ,z,n,α

ψ′n(nsp
(e)
z,n,α)

ns

(6.26)

As a consequence, the expression of the residues of the S matrix in terms of those

of the Ξ matrix are:

r(h)
z,n,α = e2ip

(h)
z,n,α

jn(nsp
(h)
z,n,α)

h
(+)
n (p

(h)
z,n,α)

r
(h)
Ξ,z,n,α

r(e)
z,n,α = e2ip

(e)
z,n,α

ψ′n(nsp
(e)
z,n,α)

nsξ
(+)′
n (p

(e)
z,n,α)

r
(e)
Ξ,z,n,α

(6.27)

It is also possible to rewrite r
(e)
x,n,α in terms of Bessel and Hankel functions. As,

by definition,

D(e)
n (p(e)

z,n,α) = 0

=⇒ ns
jn(nsp

(e)
z,n,α)

h
(+)
n (p

(e)
z,n,α)

=
ψ
′
n(nsp

(e)
z,n,α)

nsξ
(+)′
n (p

(e)
z,n,α)

,
(6.28)

It follows that:

r(h)
z,n,α = e2ip

(h)
z,n,α

jn(nsp
(h)
z,n,α)

h
(+)
n (p

(h)
z,n,α)

r
(h)
Ξ,z,n,α

r(e)
z,n,α = e2ip

(e)
z,n,αns

jn(nsp
(e)
z,n,α)

h
(+)
n (p

(e)
z,n,α)

r
(e)
Ξ,z,n,α

(6.29)

6.3 Resonant scattering by a High Refractive In-

dex scatterer:

In this section, we will try to show how the analytical expressions derived in the

preceding section can be used to get a better understanding of the resonant behavior
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of high refractive index scatterers. This will also allow us to gain a better physical

understanding of the terms of these expansions. This study will in turn help us

understand the physical meaning of the expansions derived in the previous section.

6.3.1 Resonances of the scattered field and internal field:

In fig. 6.3, the evolution of the scattering efficiency Qscat and the average of the

squared modulus of the internal field 〈|Eint|2〉 of a εs = 16 with the size parameter

z = kR have been plotted. It appears that the shape of their resonances is slightly

different.

Figure 6.2: Plot of the scattering efficiency Qscat and the average of the squared
modulus of the internal field versus the size parameter z = kR of a ε = 16 sphere
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As was shown in Chapter 4, the total scattering efficiency can be obtained by

summing up the contributions of each multipole that are related to the squared

modulus of the Mie coefficients |an|2 or |bn|2. On the other hand, the contribution

of each multipole to 〈|Eint|2〉 can be shown to be related to |Ω(e,h)
n |2 (see appendix

D). This difference in the shape of resonances of the scattered field compared to

those of the internal becomes even more obvious if one plots directly the evolution

of |an|2 or |bn|2 and |Ω(e,h)
n |2 with regards to the size parameter z as was done in Fig.

6.3.

Figure 6.3: Plot of |an|2 or |bn|2 and |Ω(e,h)
n |2 versus the size parameter z = kR of a

ε = 16 sphere

More precisely, the resonances of the internal field are seen to have lorentzian

shapes while the shape of the resonances of the scattered field are found to be

asymmetric with zeros and peaks located close one to another. This asymmetric
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shape of the resonances of high refractive index scatterers has already been observed

for 2D scattering by high-refractive index cylinders [161, 162] as well as 3D scattering

by Mie resonators [127]. They are usually explained to be Fano-type resonances, as

they can be fitted by the Fano formula [163]. Fano found that this asymmetric shape

originated from the interference of a sharp resonance with a continuum. It is always

admitted that this explanation also holds for optical resonators. One can also point

out that one of the consequences of this difference of shape between the internal

and the scattered field resonances is that, for some carefully designed and lossless

scatterers, the scattered field can vanish at frequencies where the internal field is

not necessarily null. This phenomenon has recently attracted a lot of attention

[148, 160, 164, 165] and is usually referred as anapole condition.

In the following section, we will use the pole expansions previously derived to

explain the origin of this difference of shape between the resonances of the internal

field compared to those of the scattered field.

6.3.2 Resonant and non-resonant contributions to the scat-

tered field:

In this section, we shall apply the resonant-state expansions derived in Section 6.2 to

understand the origin the apparent difference of the resonance shapes observed in the

previous section. In this case, the T-matrix formalism may prove more appropriate.

Pole expansions of the T and Ω matrix coefficients can easily be derived from those

of the S and Ξ matrix coefficients by a simple use of the following relations:

T =
S − 1

2

Ω =
Ξ

2

(6.30)

Consequently, the coefficients of the T and Ξ matrices admit the following expan-

sions:

T (e)
n (z) =

(−1)n+1e−2iz − 1

2
+ (−1)n+1e−2iz

∞∑
α=1

izIm
(
r

(e)
z,n,α

)
+ Re

(
r

(e)
z,n,α. p

(e)
z,n,α

∗)
z2 −

∣∣∣p(e)
z,n,α

∣∣∣2 − 2izIm
(
p

(e)
z,n,α

)
T (e)
n (z) = −1

2

1− (−1)n+1e−2iz

∞∏
α=1

z2 −
∣∣∣p(e)
z,n,α

∣∣∣2 + 2izIm
(
p

(e)
z,n,α

)
z2 −

∣∣∣p(e)
z,n,α

∣∣∣2 − 2izIm
(
p

(e)
z,n,α

)


Ω(e)
n (z) = (−1)n+1

∞∑
α=1

izIm
(
r

(e)
Ξ,z,n,α

)
+ Re

(
r

(e)
Ξ,z,n,α. p

(e)
z,n,α

∗)
z2 −

∣∣∣p(e)
z,n,α

∣∣∣2 − 2izIm
(
p

(e)
z,n,α

)
(6.31)
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And similar expansions can be derived for T
(h)
n and Ω

(h)
n by replacing (−1)n+1 by

(−1)n. Obviously, the frequencies of the modes need first to be determined. We will

only present the calculations for the electric dipolar coefficients but the following

derivations could easily be generalized to higher multipolar orders. For spherical

scatterers, the poles of T
(e,h)
1 , also the poles Ω

(e,h)
n , can be determined by solving

D
(e,h)
1 = 0 as can be seen in (6.19). Since we only consider non-dispersive media

here, the permittivity will be assumed constant over the complex frequency plane.

However for dispersive media, it would have been necessary to define a function

representing the analytic continuation of the permittivity in the complex plane. In

a first approximation, Drude models or even Lorentz-Drude models can be used

as an analytic continuation of the permittivity. More accurate models could even

be employed but they should not violate the causality principle [166]. Assuming a

constant permittivity εs = 16, we derived the roots of D
(e)
1 = 0 that are represented

in Fig. 6.4.

Figure 6.4: Position of the poles of S
(e)
1 of a εs = 16 sphere with regards to the

z = ω
c
R

Using the multipolar expansion of the internal field, one can show that the aver-

age of the square of the electric field inside the scatterer has the following expression:

〈|Eint|2〉
|E0|2

=
∞∑
n=1

〈
∣∣∣E(e)

i,n

∣∣∣2〉
|E0|2

+
〈
∣∣∣E(h)

i,n

∣∣∣2〉
|E0|2

(6.32)
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where

〈
∣∣∣E(e)

i,n

∣∣∣2〉
|E0|2

=
3(2n+ 1)

2z2
In
∣∣Ω(e)

n

∣∣2
〈
∣∣∣E(h)

i,n

∣∣∣2〉
|E0|2

=
3(2n+ 1)

2z2
Jn
∣∣Ω(h)

n

∣∣2
(6.33)

The expressions of In(εs, z) and Jn(εs, z) are provided in Appendix D. We begin

by comparing the exact calculation of 〈
∣∣∣E(e)

i,n

∣∣∣2〉 to its truncated pole expansion:

〈
∣∣∣E(e)

i,n

∣∣∣2〉
|E0|2

=
3(2n+ 1)

2z2
In

∣∣∣∣∣∣∣(−1)n+1

αmax∑
α=1

izIm
(
r

(e)
Ξ,z,n,α

)
+ Re

(
r

(e)
Ξ,z,n,α. p

(e)
z,n,α

∗)
z2 −

∣∣∣p(e)
z,n,α

∣∣∣2 − 2izIm
(
p

(e)
z,n,α

)
∣∣∣∣∣∣∣
2

(6.34)

Figure 6.5: Comparison between exact calculations and pole expansions of 〈
∣∣∣E(e)

i,n

∣∣∣2〉
In Fig. 6.5, a comparison between the values of 〈

∣∣∣E(e)
i,n

∣∣∣2〉 predicted by exact

calculations and using expression (6.34) is shown for a spherical scatterer with a

relative permittivity εs = 16. We do not specify the radius R since we consider

the size parameter z = ω
c
R instead. It can be clearly observed that a good predic-

tion of the first resonance of 〈
∣∣∣E(e)

i,n

∣∣∣2〉 is obtained when the first two terms in the

pole expansion (6.34), corresponding to the poles 1 (z
(e)
1,1 = 1.0395 − i0.501) and 2

(z
(e)
1,2 = 1.05274 − i0.07236) in Fig. 6.4, are taken into account. The residues asso-
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ciated with these poles are r
(e)
Ξ,z,1,1 = 0.323− i0.0168 and r

(e)
Ξ,z,1,2 = −0.597− i0.218.

The internal field is consequently well described by a sum of resonant terms. This

result can be seen as a consequence of the completeness of the Quasi-normal mode

basis inside a scatterer that has already been demonstrated in [167].

We shall now repeat the study for the scattered field. Let us recall that the

scattering efficiency, which corresponds to the scattering cross section normalized

by the geometrical cross section of the scatterer, can be expressed in terms of the

T-matrix coefficients:

Qscat =
∞∑
n=1

Q(e)
s,n +Q(h)

s,n (6.35)

where

Q(e)
s,n = 2

2n+ 1

z2

∣∣T (e)
n

∣∣2
Q(h)
s,n = 2

2n+ 1

z2

∣∣T (h)
n

∣∣2 (6.36)

Here again, we will focus on the electric dipolar term but a generalization to higher

order multipoles is straightforward. The results provided by the two types of pole

expansions of T
(e,h)
n in Eqs (6.31) will be compared and in particular we will see

what happens when the infinite product or infinite sum are truncated:

T (e)
n (z) =

(−1)n+1e−2iz − 1

2
+ (−1)n+1e−2iz

αmax∑
α=1

izIm
(
r

(e)
z,n,α

)
+ Re

(
r

(e)
z,n,α. p

(e)
z,n,α

∗)
z2 −

∣∣∣p(e)
z,n,α

∣∣∣2 − 2izIm
(
p

(e)
z,n,α

)
T (e)
n (z) = −1

2

1− (−1)n+1e−2iz

αmax∏
α=1

z2 −
∣∣∣p(e)
z,n,α

∣∣∣2 + 2izIm
(
p

(e)
z,n,α

)
z2 −

∣∣∣p(e)
z,n,α

∣∣∣2 − 2izIm
(
p

(e)
z,n,α

)


(6.37)

In Fig. 6.6, such a comparison is again performed for the same ε = 16 spherical

scatterer.

For the first resonance of Q
(e)
s,1, while the contributions from the first two poles

(and from the corresponding zeros for the product form) are taken into account,

we can clearly see that the two forms of pole expansions do not provide the same

result. In fact, the infinite sum and product expansions of T
(e)
n are mathematically

equivalent as shown in section 6.2.2 and in [159]. However as soon as they are

truncated the equivalence is lost and the product form seems to provide a better

result while being truncated. Even though the sum form is not as accurate as the

product form, it still predicts quite correctly the general trend of this first resonance.

It can be assumed that it will be even more accurate when a larger number of poles

is taken into account. It is furthermore much more convenient to use this sum form

to provide an interpretation of this asymmetric shape of the resonances of Q
(e)
s,1.
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Figure 6.6: Comparison between exact calculations and a) the sum pole expansions

of Q
(e)
s,1 b) the product pole expansion of Q

(e)
s,1 for a ε = 16 sphere

In fact, two types of contributions can be distinguished in expression (6.37). On

the one hand, there is a non-resonant term : (−1)n+1e−2iz−1
2

that was not present

for the internal field. In the Fano resonance picture, this term plays the role of the

continuum. The origin of this term should be further investigated in the next section.
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On the other hand, the resonant terms have of the form:
izIm

(
r
(e)
z,n,α

)
+Re

(
r
(e)
z,n,α. p

(e)
z,n,α

∗)
z2−

∣∣∣p(e)
z,n,α

∣∣∣2−2izIm
(
p

(e)
z,n,α

)
that also corresponds to the resonances of the internal field.

It clearly appears here that it is the superposition of these two types of responses

that causes the asymmetric shape of the scattered field resonances. At the vicinity

of a resonance of the internal field, there are conditions where the resonant and

the non-resonant contributions to the scattered field are constructively interfering

yielding a peak in the scattering cross section. On the other hand, there are also

conditions where those contributions destructively interfere creating a dip in the

cross-section spectrum.

As a consequence of this result, it now becomes clear that while the quasi-normal

mode basis is complete when one tries to expand the internal field (as was already

demonstrated in [167]), it is necessary to include an additional non-resonant contri-

bution when considering the scattered field. So far, we have based our discussion

on resonant expansion of the S and T matrices. In the following section, we will be

discussing the possibility of using the field associated with the QNM as a basis.

6.4 QNM field and time-dependent scattering:

In their seminal paper [5], Sauvan et al. achieved to predict the Purcell Factor for a

dipole located in the vicinity of a plasmonic resonator by using the fields associated

with the QNM as a basis for the field radiated by the dipole:

E (r, ω) ≈
M∑
m=1

αm(ω)Em(r) (6.38)

where Em(r) are the fields associated with the QNM and M is the number of QNM

necessary to accurately reproduce exact calculations. Even though it was clearly

explained in this article that the validity of such an expansion had yet to be demon-

strated, such an expansion clearly appeared to provide very accurate results. In

short, in this section we will study the validity of such an expansion for the scat-

tered field. As this expansion will be based on the S-matrix coefficient expansions

derived in section 6.2.2, it will strictly be valid only for lossless scatterers.

6.4.1 Time-dependent scattering problem:

Leaving aside the ”completeness” problem that was partially treated in the preced-

ing section and may be further discussed in what follows, there is another striking

problem appearing while considering expansion (6.38). As was already pointed out

in the introduction, the fact that the QNM fields Em(r) are exponentially diverging

in the far-field region should proscribe such an expansion of the scattered field.
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Fortunately, this issue has been known for a long time as it is well explained in

[101, 168]. In the late nineteenth century, J.J. Thomson working on the interaction

of an electromagnetic field with a perfectly conducting sphere found that it could

be well described by introducing outgoing modes, that we would call now quasi-

normal modes, associated with complex frequencies ωn = ωr,n − iωi,n, ωi,n being

positive and representing the damping constant of these modes [169]. However,

Lamb later noticed that since Thomson’s modes were satisfying outgoing boundary

conditions they should asymptotically behave like 1
r
e−iωn(t−

r
c)[170]. Their complex

frequency should then give rise to an exponential divergence, or as he put it an

”exponential catastrophe”. However, he also pointed out that the origin of this

exponential divergence could be found in the wrong and hidden assumption that

the modes had been existing since t = −∞. In fact, if the mode is excited at a

time t0, causality imposes that after a time interval ∆t it can only propagate over a

distance ∆r = c∆t. In other words, causality imposes that r and t are related one to

another. That is why while considering the scattering problem in the time domain

and clearly defining the initial condition of the problem, i.e. the time when the

excitation field reaches the scatterer, one can avoid the ”exponential catastrophe”

and derive an expansion of the scattered field in terms of the QNM field. In the

next section, we should present our derivations of an expansion of scattered field in

terms of the fields associated with the QNM in the time domain. It is worth pointing

out that QNM expansions were recently applied to describe the temporal dynamic

of plasmonic resonators [171]. The study carried out in this article was however

focused on the temporal response in the near field region of the optical resonators.

Here, on the contrary, we will restrict our study to the far-field region in order to

make calculations more tractable.

6.4.1.1 S-matrix description of the time-dependent scattering problem:

In the S-matrix picture of the scattering problem, causality is readily expressed

as was seen in Section 6.2.1. That is why we will start by considering the time-

dependent scattering problem by using the S-matrix formalism.

In the time domain, the incoming field is derived by a simple inverse Fourier

transform of the incoming field in the harmonic domain:

Ein (r, t) =
1

2π

ˆ +∞

−∞
Ein(r, ω)e−iωtdω (6.39)

Using the multipolar expansion of the incoming field, Ein (r, t) can be shown to be
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equal to:

Ein(r, t) =
E0

2π

ˆ +∞

−∞

(
∞∑
n=1

n∑
m=−n

s(h,−)
n,m (ω)M(−)

n,m(kr) + s(e,−)
n,m (ω)N(−)

n,m(kr)

)
e−iωtdω

(6.40)

where k = ω
c
. Let us consider only one term in the previous sum:

E
(e)
in,n,m(r, t) =

E0

2π

ˆ +∞

−∞
s(e,−)
n,m (ω)N(−)

n,m(kr)e−iωtdω. (6.41)

The derivation of this integral is not trivial in the general case. However, in the

far-field region this expression simplifies as already pointed out in section 6.2:

lim
r→∞

E
(e)
in,n,m(r, t) = in

E0

2πr
Zn,m(θ, φ)

ˆ +∞

−∞
A(e,−)
n,m (ω)e−iω(t+ r

c)dω (6.42)

where we have introduced A
(e,−)
n,m (ω) =

s
(e,−)
n,m (ω)

k
. By use of the convolution theo-

rem, one could even show that limr→∞E
(e)
in,n,m(r, t) ∝ A

(e,−)
n,m (t) ∗ δ

(
t+ r

c

)
Zn,m(θ, φ)

where A
(e,−)
n,m (t) is the inverse Fourier transform of A

(e,−)
n,m (ω). This just means that

E
(e)
in,n,m(r, t) is an incoming wave with a temporal envelope A

(e,−)
n,m (t). Repeating what

was already done in section 6.2, for a point r0 a time t0 can be defined such that the

incoming field vanishes at r0 for t < t0. Eq. (6.42) can consequently be rewritten in

the following way:

E
(e)
in,n,m(r0, t) ≈ H(t− t0)in

E0

2πr0

Zn,m(θ, φ)

ˆ ∞
−∞

A(e,−)
n,m (ω)e−iω(t0+

r0
c )e−iω(t−t0)dω

(6.43)

Given this definition of the incoming field, we will try to determine the outgoing

field at the point r also located in the far-field area. It can be determined by this

inverse Fourier transform:

E
(e)
out,n,m(r, t) ≈ (−i)n E0

2πr
Zn,m(θ, φ)×ˆ ∞

−∞
ei2ω

R
c S(e)

n (ω)A(e,−)
n,m (ω)e−iω(t0+

r0
c )e−iω(t−t0− r0c −

r
c
+2R

c )dω
(6.44)

where we have used the initial conditions on the incoming field. We can now intro-
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duce the pole expansion of S
(e)
n provided in Eq. (6.15):

E
(e)
out,n,m(r, t) ≈ (−1)n+1(−i)n E0

2πr
Zn,m(θ, φ)×(ˆ ∞

−∞
A(e,−)
n,m (ω)e−iω(t0+

r0
c )e−iω(t−t0− r0c −

r
c
+2R

c )dω+

ˆ ∞
−∞

∞∑
α=−∞

r
(e)
n,α

ω − p(e)
n,α

A(e,−)
n,m (ω)e−iω(t0+

r0
c )e−iω(t−t0− r0c −

r
c
+2R

c )dω

) (6.45)

The first integral corresponds to the non-resonant response. By applying again the

convolution theorem, it can be shown to be proportional to A
(e,−)
n,m (t)∗δ

(
t− r

c
+ 2R

c

)
which is obviously an outgoing wave with a time advance of 2R

c
and with the same

temporal envelope A
(e,−)
n,m (t) as the incoming wave. This non resonant response can

consequently be seen as a ”reflection” of the incoming wave by the surface of the

scatterer.

On the other hand, in Eq. (6.45), there is also a resonant part of the response

which is associated with each resonant term of the S-matrix. Again this resonant

part of the scattered field can be assumed to be a convolution between the tempo-

ral envelope of the incoming field A
(e,−)
n,m (t) and a function describing the temporal

response associated with the resonance p
(e)
n,α that is given by:

1

2π

ˆ ∞
−∞

r
(e)
n,α

ω − p(e)
n,α

e−iω(t0+
r0
c )e−iω(t−t0− r0c −

r
c
+2R

c )dω (6.46)

Detailed calculations for the derivation of this integral are provided in appendix D.

In summary, this integral can be calculated by means of the residues theorem. When

t− t0 − r0
c
− r

c
+ 2R

c
≥ 0, it can be derived by closing the contour of integration in

the lower half of the complex plane as shown in Fig. 6.7 leading to:

ˆ ∞
−∞

r
(e)
n,α

ω − p(e)
n,α

e−iω(t0+
r0
c )e−iω(t−t0−2

r0−R
c )dω =

− 2π.i.r(e)
n,αe

−ip(e)
n,α(t0+

r0
c )e−ip

(e)
n,α(t−t0− r0c −

r
c
+2R

c )

− lim
RC→∞

ˆ −π
0

r
(e)
n,α

RCeiθC − p(e)
n,α

e−iRCe
iθC (t0+

r0
c )e−iRCe

iθC (t−t0− r0c −
r
c
+2R

c )RCe
iθCdθC

(6.47)

The second term which is an integral over the semi-circle in the lower part of the

complex plane can be shown to vanish for t − t0 − r0
c
− r

c
+ 2R

c
≥ 0 (see detailed

calculations in appendix D). Consequently only the first term remains. This term is

in fact proportional to the field created by the Quasi-Normal Mode associated with

the frequency p
(e)
n,α
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Figure 6.7: Contour used to derive integral 6.46

On the other hand when t− t0 − r0
c
− r

c
+ 2R

c
< 0, the integral in (6.46) can be

derived by closing the contour in the upper half of the complex plane. There is no

pole in the upper half of the complex plane, consequently this integral is null (see

appendix D). In summary, this integral has been shown to be equal to:

For t ≥ t0 +
r0

c
+
r

c
− 2

R

cˆ ∞
−∞

r
(e)
n,α

ω − p(e)
n,α

e−iω(t0+
r0
c )e−iω(t−t0− r0c −

r
c
+2R

c )dω = −2π.i.r(e)
n,αe

−ip(e)
n,α(t− rc+2R

c )

For t < t0 +
r0

c
+
r

c
− 2

R

cˆ ∞
−∞

r
(e)
n,α

ω − p(e)
n,α

e−iω(t0+
r0
c )e−iω(t−t0− r0c −

r
c
+2R

c )dω = 0

(6.48)

The result obtained by rigorously deriving the integral in Eq. (6.47) also appears

to be in perfect agreement with causality discussions of section 6.2. We should

emphasize that t ≥ t0 + r0
c

+ r
c
− 2R

c
implies that t− r

c
+ 2R

c
≥ t0 + r0

c
≥ 0. It then

follows that |e−ip
(e)
n,α(t− rc+2R

c )| ≤ 1. That is why there is not any divergence of the

field associated with the QNM when causality is taken into account. We can also

point out that t ≥ t0 + r0
c

+ r
c
− 2R

c
is equivalent to r ≤ c (t− t0)− r0 + 2R, meaning

that at a given time t, the outgoing field has only been able to reach at best the

position r = c (t− t0) − r0 + 2R. The requirement that −(p
(e)
n,α)∗ should also be a

pole of the S-matrix implies that the actual field corresponds to the real part of the

preceding equation.

To sum up, we have shown that Eq. (6.45), which represents the outgoing field

produced by the interaction of the scatterer with the incoming field of Eq. (6.43),
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was equal to:

E
(e)
out,n,m(r, t) ≈ H

(
t− t0 −

r0

c
− r

c
+ 2

R

c

)
(−1)n+1(−i)nE0

r
Zn,m(θ, φ)

A(e,−)
n,m (t) ∗

(
δ

(
t− r

c
+

2R

c

)
− i

∞∑
α=−∞

r(e)
n,αe

−ip(e)
n,α(t− rc+2R

c )

) (6.49)

The Heaviside function has been introduced to show that this expression is only

valid when t− t0− r0
c
− r

c
+2R

c
≥ 0 and null for t− t0− r0

c
− r

c
+2R

c
< 0 as was shown

in Eq. (6.48). It can then be concluded that the outgoing field associated with each

multipole E
(e)
out,n,m(r, t) is the convolution of the temporal envelope of the incoming

field with two types of responses. The first type of response is the non-resonant

response that can be seen as a reflection by the surface of the scatterer and the

second one is the resonant contributions associated with eigen-frequencies p
(e)
n,α that

are exponentially decreasing. Finally, the total outgoing field can be obtained by

summing the contributions of all multipoles.

6.4.1.2 Scattered field expansion:

Now that the outgoing field expansion has been derived, it is relatively easy to

derive the scattered field expansion. In fact, the excitation field being regular it is

a superposition of incoming and outgoing waves as was pointed out in Chapter 3.

Consequently, in order to derive the scattered field, one only needs to subtract the

outgoing part of the excitation field to the outgoing field given in Eq. (6.49). The

scattered field associated with each multipole E
(e)
scat,n,m(r, t) can be expressed in the

following way:

E
(e)
scat,n,m(r, t) ≈H

(
t− t0 −

r0

c
− r

c
+ 2

R

c

)
A(e,−)
n,m (t)∗(

E
(e,nr)
scat,n,m(r, t) +

∞∑
α=−∞

(−i)r(e)
n,αE

(e,res)
scat,n,m,α(r, t)

) (6.50)

where we have introduced E
(e,nr)
scat,n,m(r, t) and E

(e,res)
scat,n,m,α(r, t) that are respectively

the non-resonant and the resonant parts of the scattered field and can be expressed

as follows:

E
(e,nr)
scat,n,m(r, t) = (−i)nE0

r

(
(−1)n+1δ

(
t− r

c
+

2R

c

)
− δ

(
t− r

c

))
Zn,m(θ, φ)

E
(e,res)
scat,n,m,α(r, t) = (−1)n+1(−i)nE0

r
e−ip

(e)
n,α(t− rc+2R

c )Zn,m(θ, φ)

(6.51)
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Similar calculations would allow us to show that:

E
(h,nr)
scat,n,m(r, t) = (−i)n+1E0

r

(
(−1)nδ

(
t− r

c
+

2R

c

)
− δ

(
t− r

c

))
Xn,m(θ, φ)

E
(h,res)
scat,n,m,α(r, t) = (−1)n(−i)n+1E0

r
e−ip

(h)
n,α(t− rc+2R

c )Xn,m(θ, φ)

(6.52)

To conclude this section, we have shown that in the far-field region the expansion

of the scattered field in terms of the quasi normal mode of the scatterer should take

the following form:

Escat(r, t) =H

(
t− t0 −

r0

c
− r

c
+ 2

R

c

)
(

Escat,nr(r, t) +
∞∑
u=1

(−i)ruEscat,res,u(r, t)

) (6.53)

where

Escat,nr(r, t) =
∞∑
n=1

n∑
m=−n

A(e,−)
n,m (t) ∗ E

(e,nr)
scat,n,m(r, t) + A(h,−)

n,m (t) ∗ E
(h,nr)
scat,n,m(r, t) (6.54)

and we have introduced the sum over u to avoid writing the following triple sum-

mation

∞∑
u=1

(−i)ruEscat,res,u(r, t) =
∞∑
n=1

n∑
m=−n

∞∑
α=−∞

(−i)r(e)
n,αA

(e,−)
n,m (t) ∗ E

(e,res)
scat,n,m,α(r, t)

+(−i)r(h)
n,αA

(h,−)
n,m (t) ∗ E

(h,res)
scat,n,m,α(r, t)

(6.55)

6.4.2 Outlooks:

First, the pole expansions of the S matrix presented here were only restricted to

dispersionless media. A generalization to dispersive media would nonetheless be

possible. In this case, a function representing an analytic continuation of the per-

mittivity in the complex plane would have to be employed. Moreover, the unitary

condition of the S-matrix (6.8) would not be valid anymore. The pole expansion of

the S-matrix would also be modified in order to account for dispersion 6.15.

Regarding the scattering problem in the time domain, we have had to restrict our

study to the far-field region in order to make more tractable the derivations of the

expansions of the scattered field in terms of quasi-normal mode. The next step

would be to prove that these expansions are valid everywhere, even in the near-field

region. It will also be interesting to derive the expansion of the internal field [167].

It should also be pointed out that the results obtained for spherical scatterers could

certainly be generalized to arbitrary-shaped scatterers. In fact, the S-matrix of

non spherical scatterers can also be computed by coupling numerical methods with
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multipolar expansions. Since the pole expansion of the S-matrix coefficients were

derived by using causality and energy conservation considerations, they should stay

valid for nonspherical scatterers.

More generally, we believe that the theory of the quasi-normal modes could cer-

tainly be clarified by studying more thoroughly the pole expansions of the S-matrix

coefficients.

Finally, this theory could also provide a theoretical ground to the phenolomenogical

models of the temporal coupled mode theory.

6.5 Conclusion:

In summary, the first part of this chapter was devoted to the derivation of pole

expansions of the S and Ξ matrix coefficients. These pole expansions are only valid

for dispersionless media but could be generalized to dispersive media. While the Ξ

matrix coefficients could be cast as a sum of lorentzian terms, in the case of the S

matrix coefficients, the introduction of an additional non-resonant term was neces-

sary.

This difference was then demonstrated to be the origin of the different shapes be-

tween the internal and scattered field resonances. In particular, it was shown that

the asymmetric or Fano-type shape of the resonances of the scattered field could be

explained by an interference of the non-resonant and the resonant responses of the

scatterer.

Finally, the QNM fields were introduced and were shown to be an appropriate basis

for the scattered field only in the time domain. In particular, we could establish that

the divergence of the QNM fields could be avoided by taking causality into account.
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Chapter 7

Four-wave mixing in Mie

resonators:

Summary: In the previous chapters, the resonant interaction of light with sub-

wavelength silicon spheres was studied. In particular, it was shown that the exci-

tation of this resonant response came with an enhancement of the field inside these

resonators. A similar resonant behavior can be observed in the optical response of

subwavelength silicon nanodisks. This field enhancement can in turn be used to

enhance nonlinear effects. Here, we will experimentally study the possibility of tak-

ing advantage of the field enhancement associated with two resonances to enhance

degenerate four-wave mixing.

7.1 Introduction:

Due to their ability to confine and control light at the nanoscale, nanoresonators

have long been considered as promising structures to enhance intensity-dependent

effects. Nonlinear optical phenomena could in particular greatly benefit from the

light concentration created by resonant nanostructures. Plasmonic nanoparticles

were first considered to enhance nonlinear effects [7, 172]. In particular, second har-

monic generation has been observed from gold nanoparticles whereas second-order

nonlinear effects are usually inhibited from bulk gold as it is a centrosymmetric ma-

terial. Second-harmonic generation is actually allowed in gold nanoparticles since

the inversion symmetry is broken at their surface or by the excitation of higher order

responses than simple dipole electric resonances [60, 173–175]. The third-harmonic

generation [176, 177] and four-wave mixing [178] from single plasmonic nanoparti-

cles as well as ensembles of nanoparticles have also been investigated.

Following the pionneering work [56] where third-harmonic generation by silicon

nanodisks was studied, high-refractive index resonators are now being considered

as a promising alternative to plasmonic nanoresonators for enhancing non-linear ef-

fects. Several reasons have motivated the study of the nonlinear response of Mie
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resonators.

First, high-refractive index materials usually suffer from less losses than plasmonic

materials in the visible and near infrared regions. Secondly, the excitation of Mie

resonances in high-refractive index scatterers, especially magnetic-type Mie reso-

nances as can be seen from Fig. 6.3 in Chapter 6, can lead to reasonably large

electric field enhancements inside these resonators. Unlike plasmonic resonators for

which field enhancements are usually restricted to the surface of the scatterers, field

enhancements in Mie resonators are usually sustained over larger effective mode vol-

umes and are mostly occurring inside the resonators. As, on top of that, materials

used to fabricate Mie resonators such as silicon and germanium usually have quite

large third-order optical susceptibilities [179–181], a large nonlinear response can be

expected at the vicinity of their resonances. This was confirmed by the measure-

ment of large third harmonic generation inside single silicon nanodisks [56, 182] as

well as germanium single resonators [181, 183]. Oligomers, i.e. ensemble of coupled

resonators, have been considered to further enhance nonlinearities [57, 58]. The

third harmonic generation of metasurfaces and arrays of closely spaced resonators

proved to be largely enhanced too [56, 59].

In addition, it is worth pointing out that an enhancement of the second harmonic

generation at the magnetic resonance of AlGaAs nanodisks and GaAs nanopillars

has been predicted and observed [62, 63, 184–186].

Finally, in addition to allow for an enhancement of nonlinear effects by creat-

ing resonant field enhancements, high refractive index scatterers offer the unique

possibility of shaping the radiation pattern of the nonlinear field. For linear light-

scattering, the interference between electric and magnetic type responses of Mie

scatterers already proved to allow for the control of the scattered field radiation

pattern. In particular, the interference between the field radiated by electric and

magnetic dipoles [37, 38] has been shown to result in directive scattering either in

the backward or in the forward direction. This phenomenon is usually called the

Kerker effect [36]. This effect has also been generalized to higher order mulitpoles

[42, 43]. This property of linear scattering can actually be used in nonlinear scat-

tering. It was in particular demonstrated that the radiation pattern of the third

harmonic generation could also be tailored [60, 61] for a dimer of silicon nanodisks.

In addition, it has been shown that it was theoretically possible to control the shape

of second harmonic generation from an AlGaAs dielectric nanoantenna [64].

Four-wave mixing was recently studied in germanium nanodisks [187] but in this

chapter we shall be concerned with the experimental study of degenerate four-wave

mixing inside silicon nanodisks that was. For that purpose, the nanodisk will be

illuminated by laser radiations at two different wavelengths λ1 and λ2. In particular,

we will study the four-wave mixing signal obtained when the two pump wavelengths

λ1 and λ2 are close to two resonances of a silicon nanodisk. But let us start by
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introducing the theoretical framework of non-linear optics.

7.2 Non-linear optics:

In all the previous chapters, only linear light-scattering by high-refractive index

nanospheres was considered. The interaction between light and matter was conse-

quently assumed to be fully described by introducing an induced polarization P (t)

with a linear relationship with the electric field. For homogeneous, isotropic, local,

dispersionless media, this linear relationship reads as follows:

P (t) = ε0χ
(1)E(t) (7.1)

χ(1) being the linear susceptibility of the medium. This assumption is completely

valid when the amplitude of the applied field E(t) is reasonably low. However, as

soon as the amplitude increases, it becomes necessary to take into account the non-

linear response of the medium. In this case, the polarization (7.1) can be generalized

by expressing P (t) as a power series expansion in terms of the electric field amplitude

[188]:

P (t) = ε0
(
χ(1)E(t) + χ(2)E(t)2 + χ(3)E(t)3 + ...

)
(7.2)

where χ(2) and χ(3) are the second order and third order susceptibilities. For sim-

plifying the notations, P(t) and E(t) were taken to be scalar quantities. However,

in practice these quantities are vectors and the nonlinear susceptibilities are conse-

quently tensors, χ(2) being a third-rank tensor and χ(3) being a fourth-rank tensor.

The symmetry constraints on the elements of these tensors shall be discussed in the

next section.

As the amplitude of the field increases, a second-order nonlinear response from the

material is consequently expected to appear. However, second-order nonlinear effects

are inhibited in centrosymmetric media [188]. As a consequence, no second-order

nonlinear response can be observed from either amorphous or crystalline silicon that

both verify inversion symmetry. That is why we will only be considering the third-

order nonlinear responses that do not suffer from the same symmetry restrictions as

second order processes. The nonlinear polarization will consequently read as follows:

PNL(t) = χ(3)E(t)3 (7.3)

In the most general case of an applied field with three different frequency compo-

nents:

E(t) = E1e
−iω1t + E2e

−iω2t + E3e
−iω3t + c.c. (7.4)
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the non-linear polarization would contain 44 different frequency components [188]:

PNL(t) =
∑
n

P (ωn)e−iωnt (7.5)

In our particular experiment however, we will be considering an applied field with

only two frequency components ω1 and ω2. The principal frequency components of

the non-linear polarization will consequently be:

P (3ω1) = ε0χ
(3)
(
E3

1e
−i3ω1t + c.c.

)
P (3ω2) = ε0χ

(3)
(
E3

2e
−i3ω2t + c.c.

)
P (ω1) = ε0χ

(3)
((

6E∗2E2E1 + 3E2
1E
∗
1

)
e−iω1t + c.c.

)
P (ω2) = ε0χ

(3)
(
6E∗1E1E2 + 3E2

2E
∗
2e
−iω2t + c.c.

)
P (2ω1 + ω2) = ε0χ

(3)
(
3E2

1E2e
−i(2ω1+ω2)t + c.c.

)
P (2ω2 + ω1) = ε0χ

(3)
(
3E2

2E1e
−i(2ω2+ω1)t + c.c.

)
P (2ω1 − ω2) = ε0χ

(3)
(
3E2

1E
∗
2e
−i(2ω1−ω2)t + c.c.

)
P (2ω2 − ω1) = ε0χ

(3)
(
3E2

2E
∗
1e
−i(2ω2−ω1)t + c.c.

)

(7.6)

Here, we should mainly be interested in the processes of four-wave mixing, that

correspond to the four last terms in (7.6).

7.2.1 Symmetries and tensor components of the third order

susceptibility:

Even though, for the sake of simplicity, we have been considering P (t) and E(t)

as scalar quantities so far, these quantities are actually vectors. The third-order

susceptibility is consequently a fourth-rank tensor. That means in practice that it

should normally be described by 81 separate elements χ
(3)
ijkl, i j k and l being the

indices associated with each component [188]. However, the number of independent

elements can be drastically reduced when the symmetries of the system are consid-

ered. As will be discussed in the experimental section, the silicon nanodisks will be

fabricated from a thin film of amorphous silicon. We will consequently determine

here the form of the third-order susceptibility tensor of amorphous silicon.

One can start by making use of the spatial symmetry of the medium to establish

the relationship between the different elements of the tensor. Amorphous silicon

being an isotropic medium, all the coordinate axes should be equivalent. As a

consequence, the tensor elements should remain unchanged by a change of coordinate

axis. That leads to the following symmetry properties [188]:
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χ
(3)
1111 = χ

(3)
2222 = χ

(3)
3333 (7.7)

χ
(3)
1122 = χ

(3)
1133 = χ

(3)
2211 = χ

(3)
2233 = χ

(3)
3311 = χ

(3)
3322 (7.8)

χ
(3)
1212 = χ

(3)
1313 = χ

(3)
2323 = χ

(3)
2121 = χ

(3)
3131 = χ

(3)
3232 (7.9)

χ
(3)
1221 = χ

(3)
1331 = χ

(3)
2112 = χ

(3)
2332 = χ

(3)
3113 = χ

(3)
3223 (7.10)

All the other tensor-elements, different from those listed above, should vanish

[188]. Finally, one can also show that the following relation holds between the 4

types of tensor elements listed above:

χ
(3)
1111 = χ

(3)
1122 + χ

(3)
1212 + χ

(3)
1221 (7.11)

The problem of determining a fourth-rank tensor comprising 81 different elements

has then been reduced by means of symmetry considerations to the determination of

the 3 linearly independent tensor components out of the tensor components in Eq.

7.10. Here, we consider the process of degenerate four-wave mixing. In what follows,

we will measure the signal at the frequency ωs = 2ωI − ωII obtained when illumi-

nating the nanodisk with two pumps at the wavelengths ωI and ωII . In this case, ωI
appears twice in the arguments of the susceptibility χijkl(ωs = 2ωI−ωII , ωI , ωI , ωII).
χijkl should consequently remain unchanged by permutation of its second and third

arguments. As a consequence, χijkl(ωs = 2ωI − ωII , ωI , ωI , ωII) can be cast [188]:

χijkl(ωs = 2ωI − ωII , ωI , ωI , ωII) =

χ1122(ωs = 2ωI − ωII , ωI , ωI , ωII) (δijδkl + δikδjl)

+ χ1221(ωs = 2ωI − ωII , ωI , ωI , ωII)δilδjk

(7.12)

where δij is the Kronecker delta equal to 1 if i = j and null if i 6= j. That finally

leads to the following expression for the non-linear polarization for a signal at the

frequency ωs = 2ωI − ωII :

PNL(ωs) = 6ε0χ
(3)
1122 (E(ωI) · E∗(ωII)) E(ωI) + 3ε0χ

(3)
1221 (E(ωI) · E(ωI)) E∗(ωII)

(7.13)

Consequently, it is still necessary to know the tensor components χ
(3)
1122 and χ

(3)
1221

to compute the non-linear polarization PNL. The numerical values of these compo-

nents are however not easily found in the literature. While the dispersion of the χ(3)

of crystalline silicon may be found in several papers [179, 189], we only found one

measurement performed at 1550 nm for the χ(3) of amorphous silicon [180]. In what

follows, in order to overcome this difficulty and get an estimate of the non-linear

polarization we may calculate the overlap integral of the field at the wavelengths ωI
and ωII .
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7.3 Four-wave mixing in Mie resonators:

7.3.1 Introduction:

Since we are concerned with the process of degenerate four-wave mixing, the applied

field illuminating the sample has two different frequency components ωI and ωII .

As was explained before, nonlinear effects can only be observed with strong enough

applied field amplitudes. Such amplitudes can only be provided by powerful laser

sources. The laser source we are using consists of a titanium sapphire laser pump-

ing an optical parametric oscillator (O.P.O). The titanium sapphire laser module

is a Coherent Chameleon Ultra capable of delivering femtosecond pulses centered

around a wavelength that can be tuned between roughly 680 and 950 nm. The

temporal width of the pulses is roughly equal to 140 fs. When the wavelength of

the Ti:sapphire laser is kept between 780 and 880 nm, it can be used to pump the

O.P.O. module (Coherent Chameleon) that also delivers femtosecond pulses with

a center wavelength ranging from 1050 nm to 1500 nm. In our experiment, one

frequency component of the applied field will be provided by the Ti:sapphire laser

module while the other will come from the O.P.O. module.

On the other hand, the nonlinear signal will be collected and analyzed by means of

the spectrometer IsoPlane SCT 320 of Princeton Instruments along with the camera

PIXIS 1024 of Princeton Instruments. This camera permits to detect a signal with

a wavelength ranging from roughly 350 nm to 1000 nm. All the constraints on both

the pump frequencies ωI and ωII and the signal frequencies ωs are summarized in

Fig. 7.1.

Figure 7.1: Summary of the ranges allowed for the 2 pumps and the range of sensi-
tivity of the camera.
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7.3.2 Design and fabrication

7.3.2.1 Design

We want to design a nanostructure which exhibits two resonances in the range of

the 2 available pumps. Because of the constraints listed in the previous section, one

of the pumps should be in the range 800 and 880 nm while the other one should

be located between 1100 nm and 1500 nm. Even though in the previous chapters,

Figure 7.2: Silicon nanodisk on top of a glass substrate: the optical response of
the silicon nanodisk can be controlled by changing the radius or the height of the
nanodisk

we have only been considering spherical Mie resonators, the same kind of resonant

behavior can be obtained using resonators with different geometries [11]. Nanodisks

or nanocylinders appear in particular to be a very good geometry: a control of

the wavelength of both electric and magnetic type resonances of silicon has been

demonstrated by varying either the height or the diameter of these resonators [19].

These nanodisks can moreover be fabricated by patterning a silicon film by electron

beam lithography with a fairly good control over both their height and diameter

[20]. Detailed information regarding the techniques employed for fabricating these

nanodisks will be provided in the next section. However, here we will start by

defining the design of the nanodisks.

To do so, we will first determine the linear scattering properties of nanodisks by use of

the commercial software COMSOL based on Finite Element Method. The COMSOL

model consists of an amorphous silicon nanodisk (refractive index taken from [190])

located on top of a glass substrate (refractive index is taken to be constant and

equal to 1.5). The incident field is a plane wave coming from the substrate. To

characterize the scattering properties of the disks, the scattering cross sections can

then be computed. The evolution of the average field inside the resonator 〈|Eint|〉
can also be computed, where:

〈|Eint|〉 =

´
VD
|Eint|dr´

VD
|E0|dr

(7.14)
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VD being the volume of the scatterer while E0 is the amplitude of the excitation

field. We computed the scattering properties for a wide range of sizes of silicon

nanodisks with various heights and diameters. We found that a silicon nanodisk

with a 240 nm height and a 340 nm diameter had resonances in the desired ranges.

In Fig. 7.3, the evolution of the scattering cross section for a nanodisk with a 240

nm height and a 340 nm diameter is plotted.

Figure 7.3: Calculated scattering efficiency and average internal field 〈|Eint|〉 for a
nanodisk 240 nm in height and 340 nm in diameter.

For this geometry, an enhancement of the average internal field is clearly ob-

served near 1200 nm, which is inside the range of the O.P.O., and another resonance

between 800 and 900 nm which is inside the range that can be reached with the

Ti:sapphire. That is why nanodisks with a 240 nm height will be fabricated. The

diameter of the fabricated nanodiks will vary between 250 nm to 360 nm.

7.3.2.2 Overlap integrals:

Even though we could not calculate the exact value of the nonlinear polarization

because we did not know the exact values of the susceptibility tensors. We calculated

the overlap integrals between the fields at the frequencies ωI and ωII to have at least

an estimate of the evolution of the degenerate four-wave mixing signal. The overlap

integrals are defined as follows:

INL1 = |
˚

VD

(E(ωI) · E∗(ωII)) E(ωI)dr| (7.15)

INL2 = |
˚

VD

(E(ωI) · E(ωI)) E∗(ωII)dr| (7.16)

where VD is the volume of the nanodisk. The first integral INL1 is associated with

the first term in the nonlinear polarization (7.13) whereas the second integral is

associated with the second term. We calculate these integrals for a nanodisk h =
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240 nm in height and D = 320 nm in diameter slightly smaller than the one in the

previous section. The scattering efficiency and field enhancement associated with

this nanodisk geometry are plotted in Fig. 7.4.

Figure 7.4: Scattering efficiency Qscat and average internal field enhancement of a
D = 320 nm and h = 240 nm amorphous silicon nanodisk

In Fig. 7.4, resonances and enhancements of the internal field are clearly observed

at the two wavelengths 1200 nm and at roughly 860 nm. In Fig. 7.5, we show the

overlap integrals for the same geometry

Figure 7.5: Overlap integrals of the field at the frequencies ωI and ωII of a D = 320
nm and h = 240 nm amorphous silicon nanodisk

We can observe an enhancement of the overlap integrals when λI is roughtly equal

to 860 nm and λII is between 1250 nm and 1300 nm which is slightly shifted with

respect to the resonance of the internal field occuring at 1200 nm. The four-wave

mixing process at those wavelengths would give rise to a signal at the wavelength:

λs =
λIλII

2λII − λI
' 660 nm (7.17)
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The signal at this wavelength would be detectable by our camera. The calculation

of these overlap integrals were meant to provide a qualitative prediction of the

evolution of the four-wave mixing signal. We will see in the following that our

experimental results do not fully agree with these predictions.

7.3.2.3 Fabrication of the nanodisks:

Figure 7.6: First steps of the fabrication: a PMMA layer is spin-coated on the silicon
film. After the electron beam lithography and development steps, the PMMA layer
is removed from the areas exposed during the electron beam lithography stage.
A 16 nm thick nickel layer that will be a mask during the reactive-ion etching is
evaporated onto the sample. The lift-off step is performed to remove the remaining
PMMA resist on the sample. At the end of this step, the nickel mask only protects
the zones that had been exposed during the EBL step.

The nanodisks have been fabricated by structuring an amorphous silicon thin

film by electron-beam lithography (performed at the Planete CT PACA cleanroom

facility). A 240 nm thick amorphous silicon layer is deposited on top of a 150

µm thick glass cover slip by plasma assisted reactive magnetron (performed at the

photonic space, Institut Fresnel)(see supplementary material of [191]).

As illustrated in Fig. 7.6, a 60 nm thick PMMA (Poly(methyl methacrylate)) layer,

which is an electron beam positive resist, is spin-coated on top of the silicon layer.

An additional conduction layer can be deposited on top of the PMMA layer by spin

coating in order to improve the resolution of the Electron Beam Lithography (EBL).

The EBL is then performed in an EBL tool (Pioneer, Raith). Only the areas that

will not be etched, i.e. the nanodisks, are exposed by the electron beam. Several

arrays of isolated disks with different diameters ranging from 250 nm to 360 nm are
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patterned. All these arrays have a 10 µm pitch in order to make sure that there

is no coupling effect between the resonators. After washing away the conducting

layer with deionized water, the sample is developed in a commercial solution (see

supplementary material of [191]). During the development stage, the PMMA is

removed from the zones that have been exposed to the electron beam during the

process of electron beam lithography. A 16 nm thick nickel layer, that will be

a mask during the reactive ion etching step, is subsequently evaporated onto the

sample (Auto 306, Edwards). A lift-off is then performed in an ultrasonic cleaning

bath of ethyl lactate. During this lift-off step, the remaining PMMA and the nickel

layer on top of it are removed. Consequently, after this stage only the zones that

had been exposed to the electron beam are still protected by the nickel mask as can

be seen in Fig. 7.6.

The zones of the silicon layer no more protected by the nickel mask are then

Figure 7.7: Optical microscope image of the nickel mask through a ten times mag-
nifying objective. The bright square in the image is a 100 microns per 100 microns
square.

etched by Reactive-Ion Etching in a RIE tool (MG-200, Plassys) by a gas mixture

containing SF6, O2 and CHF3 alternating with a pure O2 plasma . Finally, the

remaining nickel mask is chemically removed in the acid solution of HCl and FeCl3
as shown in Fig. 7.8.

7.3.3 Linear characterization:

A linear characterization of the isolated silicon nanodisks has then to be performed to

verify that the measured extinction of these isolated silicon nanodisks are comparable

with those predicted by Comsol simulations. For that purpose, a confocal microscope

is used. A schematic representation of the setup is shown in Fig. 7.9. The sample

is illumimated by a collimated white light source that has just been slightly focused

in order to obtain an intense enough and homogeneous illumination on the sample.

This setup allows for a collection of the light only from the zone of the sample

corresponding to the image of the spatial filter put in the focal plane of the second

lens.
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Figure 7.8: Last two steps of the nanofabrication process: during the Reactive Ion
Etching step, the silicon that is not protected by the nickel mask is removed. In the
last step, the remaining nickel mask is removed.

Figure 7.9: Schematic representation of the confocal microscope

The extinction measurement are performed by taking a measurement of the light

transmitted by the substrate Is, another measurement of the light transmitted by

an isolated disk Id and finally one measurement of the noise In. The extinction is

then obtained by computing:

Ext = −Id − Is

Is − In

(7.18)
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In Fig. 7.10, a comparison between the measured extinction for a nanodisk

340 nm in diameter (measured diameter 335 nm) and 240 nm in height and the

simulated extinction efficiency is carried out. The camera used for the measurements

in the near-infrared region is a Princeton Instruments NIRvana 640 while for visible

measurements, the Princeton Instruments camera PIXIS 1024 is used.

Figure 7.10: Comparison between experimental measurments of the extinction of
a silicon nanodisk with a h = 240 nm height and a D = 340 nm diameter and
calculated extinction cross sections.

In Fig. 7.10, a general qualitative agreement between the measurements of the

extinction and the extinction efficiency computed with COMSOL is observed. It

might have been worth using a less rough wavelength step for comsol simulations.

Since these simulations have been carried out while using textbook values for amor-

phous silicon [190], it further confirms that it is safe to assume that the silicon

of the sample is indeed amorphous. In particular, the presence of the two desired

resonances at wavelengths around 1210 nm and 850 nm is confirmed. From these

extinction measurements and the simulations previously done, we can expect a field

enhancement inside the silicon nanodisks at around 1210 nm and 850 nm. In the

next section, we will be making degenerate four wave-mixing measurements and we

will in particular study how the four-wave mixing signal varies when pump wave-

lengths are swept around these two resonance wavelengths.

7.4 Four-wave mixing experimental results:

7.4.1 Experimental setup:

The four-wave mixing measurements are performed with the experimental setup

represented in Fig. 7.11. The pump at the wavelength λ1 (between 800 nm and

880 nm) is provided by the Ti:sapphire laser. The other pump at the wavelength λ2

(between 1050 nm and 1500 nm) is provided by the O.P.O. module. The paths of
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Figure 7.11: Experimental setup for four-wave mixing measurements. D.M. 1
is a short pass dichroic mirror with a cut-off wavelength of 1000 nm (Thorlabs,
DMSP1000R). D.M. 2 is a short-pass dichroic mirror with a cut-off wavelength of
805 nm (Thor Labs, DMSP805R).

both pumps are then merged by inserting a short pass dichroic mirror with a cut-off

wavelength of 1000 nm (Thor labs, DMSP1000R). They are then reflected towards

the objective by another dichroic mirror with a cut-off wavelength of 805 nm (Thor

Labs, DMSP805R). They are focused on the sample with a 100 times magnifying

objective with a 0.85 numerical aperture (Olympus LCPLN100XIR). This objective

is specifically designed for working with wavelengths between 700 and 1300 nm

where it best transmits light and where it has also been corrected for chromatic

aberrations. For the four-wave mixing process to occur, the two pumps focal spots

have to spatially overlap. Therefore, we checked that both pumps were focused on

the same focal plane. This was expected since both pumps belong to the working

range of the objective, where it is chromatically corrected. A good spatial overlap

can then be obtained by independently tuning the position in the focal plane of the

focal spot of each pump. This can be done by independently tuning the orientations

of mirrors located in the Ti:sapphire beam path and in the O.P.O. beam paths.

However, the spatial overlap is not sufficient to obtain a four-wave mixing signal.

In fact, since the two pumps are provided by pulsed sources, the pulses from both

pumps also have to temporally overlap when they reach the sample for the four-wave

mixing process to occur. In other words, pulses from both pumps should arrive on

the sample at the same time. That is why a delay line has been introduced in the

Ti:sapphire beam path. It allows for a compensation of the path difference between

the Ti:sapphire and the O.P.O. beam and it thus permits to reach a good temporal

overlap of the two pulsed pumps. This is illustrated in Fig. 7.12.

In order to maximize the temporal overlap, we search the position of the delay

line that permits to maximize the four-wave mixing signal. Once both temporal

and spatial overlaps are reached, the four-wave mixing process can occur. For our

experiments, the four-wave mixing signal will typically be in the range 580 nm to 650
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Figure 7.12: The temporal overlap of the two pulsed pumps can be reached by
tuning the delay line postion.

nm. It is important to note that the signal is collected in the reflection configuration

and not in transmission as shown in Fig 7.11. The signal is consequently collected

with the same objective as the one used to focus the two pumps on the sample. The

signal wavelength does not belong to the working range of the objective. However,

we have however checked that in practice the focal plane height difference at the

signal wavelength was within the Rayleigh range. Once the signal is collected by the

objective, it is then analyzed by the spectrometer (Princeton Instruments, Isoplane

320) along with a visible camera (Princeton Instruments, Pixis 1024).

7.4.2 Crystallization of the amorphous silicon:

As was explained in section 7.3.2.3, the nanodisks are fabricated by structuring an

amorphous silicon film. The fact that silicon is amorphous rather than crystalline

was further confirmed by comparing the experimentally measured extinction with

simulations obtained using the refractive index of amorphous silicon. However,

after our first attempts for measuring a four-wave mixing signal, a blue-shift of the

resonances of the extinction spectrum of the silicon nanodisks was observed. The

shift observed after illumination by both pumps with an intensity at each pump of

roughly 0.2 MW/cm2 is illustrated in Fig. 7.13.

In [17], such a blue-shift was also obtained for the resonances appearing in the

scattering spectrum of spherical amorphous silicon after irradiation by a femtosec-

ond laser. They explained that this blue-shift was due to the crystallization of the

amorphous silicon. This was clearly supported by transmission electron microscopy

images showing the crystalline structure of the silicon [17]. The amorphous to crys-

talline phase transition of the silicon induced by femtosecond laser illumiation had

already been studied in thin films [192–194]. For that reason, we assume that the

blue shift we observed is due to the crystallization or at least the partial crystalliza-

tion of the amorphous silicon in the silicon nanodisks.

We however wanted to make sure that no further blue-shift of the resonances oc-

curred when the silicon nanodisks were illuminated several times. For that purpose,
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Figure 7.13: Blue shift of the resonances of the silicon nanodisks after illumination
by a laser pulses of a femto-second lasers

we illuminated the same nanodisk several times with the same intensity as before

for the two pumps to confirm that the resonances do not shift any further. This is

indeed confirmed in Fig. 7.14 where no further shift occurs for the resonances in the

visible range.

Figure 7.14: Resonances position after several illuminations by the laser

We can consequently proceed to four-wave mixing measurements. In the next

section, we will then present the results for the measurements of degenerate four-

wave mixing with the pump set around the shifted resonance wavelengths obtained

after crystallization.

7.4.3 Four-wave mixing measurements:

In this section, the degenerate four-wave mixing by the silicon nanodisks will be

studied when the pump wavelengths are close to the resonance wavelengths of the

nanodisks. In Fig. 7.15 we plot again the extinction spectrum after crystallization
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of the nanodisk we are considering. The wavelength of the nanodisks resonance in

Figure 7.15: Resonances after laser-induced crystallization of the silicon nanodisks

the near infrared appears to be around 1180 nm while the resonance in the visible

is around 810 nm. For that reason, we will fix the wavelength of the first pump to

be λ1 = 810 nm while the second pump wavelength will be swept between 1100 and

1350 nm. We will then compare these measurements to the degenerate four-wave

mixing signal from the non patterned silicon film of the same height as the disk as

a reference. It is of crucial importance to know the power delivered on the sample,

because the measurements at different wavelengths need to be done at a constant

intensity in order to be comparable. For that reason, we have calibrated the setup

to control the power delivered on the sample by the two pumps. Even though

we can keep the power of the second pump constant when varying its wavelength

thanks to our calibration, the size of the focal spot is also wavelength dependent

and as a consequence the intensity will vary. We will assume that the diffraction

limit d(λ) = λ
2NA

, where NA is the numerical aperture of the objective, provides a

good estimate of the evolution with the wavelength of the focal spot diameter. The

four-wave mixing signal will consequently be normalized by

Nnorm =

 Pλ1

π
(
d(λ1)

2

)2


2

· Pλ2

π
(
d(λ2)

2

)2 (7.19)

where Pλ1 and Pλ2 are the pump powers, as the four-wave mixing intensity

depends on the squared intensity at λ1 and the intensity at λ2. The experimental

results for both the nanodisk and the homogeneous film are plotted in Fig. 7.16.

First, it clearly appears in Fig. 7.16a that there is a peak for the four-wave mixing

signal at around λ2 = 1200 nm, close to the resonance wavelength observed in the

extinction cross section (1180 nm). This result is not in complete agreement with the

predictions from the calculation of the overlap integrals but these overlap integrals
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Figure 7.16: Four-wave mixing signal normalized by the factor Nnorm at each wave-
length for a) the silicon nanodisk with a diameter equal to 340 nm and height equal
to 240 nm and b) for a silicon film of the same height.

can only provide a rough estimate of the evolution of the four-wave mixing signal.

Moreover, the derivation of these overlap integrals were based on the expression

of the non-linear polarization assuming our disk were made of amorphous silicon.

However, the amorphous silicon were crystallized or at least partially crystallized

during the measurements, it is consequently not strictly valid to compare these

calculations to our measurements. We can thus assume that this peak is associated

with the field enhancement occurring at resonance. Moreover, at a given wavelength,

a comparison can be carried out between the four-wave mixing signal from the silicon

nanodisk and the four-wave mixing signal from the silicon film that has not been

patterned. The signal from the film also exhibits a large wavelength dependence.

This could be explained by the presence of Fabry-Perot resonances for the silicon

film. In fact, the four-wave mixing signal depends on the optical response and on

the internal field inside the silicon thin film at the two pump wavelengths. It also

depends on the optical response of the thin film at the signal wavelength. It is

consequently not easy to interpret the dispersion of the signal from the thin film.

The enhancement factor from the disk compared to the film of the signal clearly

depends on the wavelength and it roughly varies between 200 and 1000. This large

enhancement must have several contributing factors, the first of which being the

enhancement of the four-wave mixing process due to the enhancement of the field

inside the disk. The radiation pattern of the field can also be assumed to be different

for the disk as compared to the film. In particular, more field can be assumed to be

radiated in the backward direction for the silicon nanodisk. This could be confirmed

by imaging the radiated signal in the back focal plane.
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7.5 Conclusion:

In this chapter, we have experimentally studied the possibility of enhancing the

four-wave mixing process inside a silicon nanodisk. By choosing the right nan-

odisk geometry, we have seen that we could obtain two resonances and consequently

enhance the internal field in the wavelength ranges of the laser two pumps. We

then wanted to see if these enhancements of the internal field could in turn lead

to an enhancement of the four-wave mixing process in the silicon nanodisk. How-

ever, we noticed that the illumination of the amorphous silicon by the femtosecond

laser pulses lead to a blue shit of the resonances of these disks. This blue shift

was assumed to originate from the crystallization or at least the partial crystalliza-

tion of the amorphous silicon. After crystallization of the silicon, four-wave mixing

measurements from the nanodisks were performed in the reflection configuration.

A clear resonant behavior was observed when the pump wavelength λ2 was swept

around the resonance of the nanodisk in the near-infrared region. Moreover, as a

reference we also performed the same four-wave mixing measurements on a non pat-

terned silicon film. The signal from the nanodisks was found to be larger by a factor

varying between 2 and 3 orders of magnitude compared to the thin film. This large

enhancement can certainly be explained by several factors. First, the four-wave mix-

ing process is enhanced thanks to the enhancement of the internal field. Another

factor that can explain this enhancement is the difference in the radiation pattern

of the nanodisk compared to the film. This could be confirmed by a measurement

of the radiation patterns in the Fourier plane of the objective. Finally it would also

be worth sweeping the wavelength of the other pump λ1 around the other resonance

of the nanodisk to see if a resonant behavior can be also observed.
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Chapter 8

Conclusion

Throughout this thesis, the interaction of light with high-refractive index scatterers

was studied from both a theoretical and an experimental point of view. We were

particularly interested in the resonant behavior such structures exhibit while inter-

acting with light making them a good platform to control and enhance light-matter

interactions. Theoretical studies were performed in the framework of the multipolar

theory and were aiming at improving our understanding of Mie resonances. The

main theoretical result presented in this thesis is certainly the modal analysis of

high refractive index scatterers presented in Chapter 6. We finally experimentally

studied degenerate four-wave mixing enhancement in a silicon nanodisk. Here we

should provide a slightly more detailed summary of the work.

After presenting an overview of the latest advances of the field of Mie resonators

in Chapter 2, an introduction of the multipolar theory, which was framework of the

subsequent theoretical studies was provided in Chapter 3. Several formulation of

the scattering problem were in particular introduced: the S, T and K matrix formu-

lations.

In Chapter 4, the conditions of optimal interations between light and a scatterer

were studied. The objective was in fact to determine the conditions that optimize

the scattering or absorption of light by subwavelength sized scatterers. Since this

study was performed in the framework of the multipolar basis, it consisted to deter-

mine the conditions that allowed to reach the upper bound of the partial scattering

and absorption cross sections for one given multipolar order.

The objective of the work presented in Chapter 5 was twofold. First, we aimed to

present the asymptotic resonance conditions for high-refractive index sub-wavelength

resonators. We subsequently used these resoance conditions in order to derive ap-

proximate models capable of predicting the behavior of both plasmonic and Mie

resonators.
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In Chapter 6, we performed a modal analysis of Mie resonators. This analysis

was based on pole expansions of the S matrix coefficients. Using considerations

based on energy conservation and causality, the S-matrix coefficients pole expan-

sions were first derived. The presence of an additional non-resonant term in these

pole expansions was in particular evidenced.

These pole expansions were subsequently used to study the resonant behavior of high

refractive index scatterers. We showed in particular that the asymmetric shape of

the resonances observed in the scattering cross-sections spectra could be explained

by the interference between resonant and non-resonant terms. On the other hand,

resonances of the internal field were shown to have a lorentzian shape as there are

only resonant contributions to the internal field. It has already been shown in the

literature that these modal expansions could be beneficial to study the coupling of a

quantum emitter to optical resonators [5, 45]. Here we showed that the quasi-normal

mode expansions could be used to study the scattering problem in the time domain.

They are consequently a very powerful tool since they would enable analytical pre-

dictions of the temporal dynamic of photonic resonators [171]. This analysis was

however only restricted to lossless scatterers. It would consequently be interesting

to generalize this study to lossy materials. In this case, the pole expansion derived

for the S-matrix coefficients would have to be modified to take temporal dispersion

into account.

The use of quasi-normal modes analysis would certainly prove to be useful in the

more general context of the study of open systems described by a non-hermitian

Hamiltonian [195]. A number of interesting phenomena occur in such kind of sys-

tems. For instance, the appearance of bound states in the continuum has lately

been evidenced in open photonic cavities [196, 197] and were shown to be a good

platform to implement nanolasers [198].

Chapter 7 was finally devoted to the experimental study of non-linear effects in

silicon sub-wavelength resonators. The enhancement of the internal field associated

with the excitation of Mie resonances in silicon resonators can be very beneficial

when considering non-linear effects. Here, we wanted to study degenerate four-wave

mixing. We consequently designed and fabricated silicon nanodisks possessing two

resonances showing field enhancements in the near-infrared region. The degenerate

four-wave mixing signal from the nanodisks was measured when two laser pumps

at wavelengths close to the resonance wavelengths were shown on the nanodisks. A

clear enhancement of the four-wave mixing signal was measured as compared to the

signal measured from an unpatterned silicon thin film. This study further confirms

that silicon nanodisks and more generally high-index dielectric resonators are a good

platform to enhance nonlinear effects.
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Appendix A

A.1 Mie theory: S, T and K matrices of spherically-

symmetric scatterers:

Here, we will derive the analytical expressions of the S, T and K-matrix coefficients

for spherical scatterers. For that purpose, we will be using the continuity conditions

of the electromagnetic field at an interface:

n12 × (E2 − E1) = 0

n12 × (H2 −H1) = 0
(A.1)

The subscripts 1 and 2 correspond respectively to the field inside and outside the

scatterer of radius R and refractive index ns. The vector n12 is the normal to

the surface of the scatterer and thus for spherically-symmetric scatterers n12 =

r. Eqs. (A.1) can be interpreted as the continuity of the tangential part of the

electromagnetic field at the interface. From the discussion of chapter 1, we can

show that both the total fields existing inside and outside the scatterer admit the

following expansion on the Vector Spherical Harmonics (VSH) basis:

E(kr) =
∞∑
n=1

n∑
m=−n

E(X)
n,m(r)Xn,m(θ, φ) + E(Y )

n,m(r)Yn,m(θ, φ) + E(Z)
n,m(r)Zn,m(θ, φ)

H(kr) =
∞∑
n=1

n∑
m=−n

H(X)
n,m(r)Xn,m(θ, φ) +H(Y )

n,m(r)Yn,m(θ, φ) +H(Z)
n,m(r)Zn,m(θ, φ)

(A.2)
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At the interface, only the contributions from Xn,m(θ, φ) and Zn,m(θ, φ) are actu-

ally tangential to the surface, on the other hand, the contribution from Yn,m(θ, φ) is

normal to the surface. By using the previous expansion (A.2) along with the orthog-

onality of the vector spherical harmonics, the continuity conditions (A.1) become:

E
(X)
1,n,m(R) = E

(X)
2,n,m(R)

E
(Z)
1,n,m(R) = E

(Z)
2,n,m(R)

H
(X)
1,n,m(R) = H

(X)
2,n,m(R)

H
(Z)
1,n,m(R) = H

(Z)
2,n,m(R)

(A.3)

where again the subscripts 1 and 2 refer respectively to the internal and external

fields. In what follows we will use the conditions (A.3) to derive the analytical

expressions of the S, T and K-matrix coefficients for spherical scatterers.

A.2 S-matrix coefficients of a spherical scatterer:

Let us recall the expressions of the external and internal fields in the S-matrix

formalism:

Etot(kr) = E0

∞∑
n=1

n∑
m=−n

s(h,−)
n,m

(
M(−)

n,m(kr) + S(h)
n M(+)

n,m(kr)
)

+ s(e,−)
n,m

(
N(−)
n,m(kr) + S(e)

n N(+)
n,m(kr)

)
Htot(kr) =

kE0

iµ0ω

∞∑
n=1

n∑
m=−n

s(e,−)
n,m

(
M(−)

n,m(kr) + S(e)
n M(+)

n,m(kr)
)

+ s(h,−)
n,m

(
N(−)
n,m(kr) + S(h)

n N(+)
n,m(kr)

)
Eint(kr) = E0

∞∑
n=1

n∑
m=−n

u(h)
n,mM(1)

n,m(ksr) + u(e)
n,mN(1)

n,m(ksr)

Hint(kr) =
ksE0

iµ0ω

∞∑
n=1

n∑
m=−n

u(e)
n,mM(1)

n,m(ksr) + u(h)
n,mN(1)

n,m(ksr)

(A.4)
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It follows that in the S-matrix formalism, Eqs. (A.3) become:

E0.s
(h,−)
n,m

(
h(−)
n (kR) + S(h)

n h(+)
n (kR)

)
= E0.u

(h)
n,m.jn(ksR)

E0.s
(e,−)
n,m

(
ξ

(−)′
n (kR)

kR
+ S(e)

n

ξ
(+)′
n (kR)

kR

)
= E0.u

(e)
n,m

ψ′n(ksR)

ksR

kE0

iµ0ω
s(e,−)
n,m

(
h(−)
n (kR) + S(e)

n h(+)
n (kR)

)
=
ksE0

iµ0ω
u(e)
n,m.jn(ksR)

kE0

iµ0ω
s(h,−)
n,m

(
ξ

(−)′
n (kR)

kR
+ S(h)

n

ξ
(+)′
n (kR)

kR

)
=
ksE0

iµ0ω
u(h)
n,m

ψ′n(ksR)

ksR

(A.5)

As s
(e,−)
n,m and s

(h,−)
n,m can be directly computed from the excitation field, we end up

with 4 unknowns and 4 equations. The expressions of S
(e)
n and S

(h)
n are then found

to be:

S(e)
n =

εsξ
(−)′
n (kR)jn(ksR)− h(−)

n (kR)ψ′n(ksR)

h
(+)
n (kR)ψ′n(ksR)− εsjn(ksR)ξ

(+)′
n (kR)

S(h)
n =

h
(−)
n (kR)ψ′n(ksR)− ξ(−)′

n (kR)jn(ksR)

jn(ksR)ξ
(+)′
n (kR)− h(+)

n (kR)ψ′n(ksR)

(A.6)

Recalling that:

Ξ(e)
n =

u
(e)
n,m

s
(e,−)
n,m

, Ξ(h)
n =

u
(h)
n,m

s
(h,−)
n,m

(A.7)

The analytical expressions of Ξ
(e)
n and Ξ

(h)
n can also be found from Eq. (A.5):

Ξ(e)
n =

ns

(
h

(+)
n (kR)ξ

(−)′
n (kR)− h(−)

n (kR)ξ
(+)′
n (kR)

)
h

(+)
n (kR)ψ′n(ksR)− εsjn(ksR)ξ

(+)′
n (kR)

Ξ(h)
n =

h
(−)
n (kR)ξ

(+)′
n (kR)− ξ(−)′

n (kR)h
(+)
n (kR)

jn(ksR)ξ
(+)′
n (kR)− h(+)

n (kR)ψ′n(ksR)

(A.8)

the numerator of the Ξ
(e,h)
n can be re-expressed by using the wronskian of Hankel

functions: W
(
h

(+)
n (z), h

(−)
n (z)

)
= −2iz−2
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Ξ(e)
n =

2ins

kR
(
εsjn(ksR)ξ

(+)′
n (kR)− h(+)

n (kR)ψ′n(ksR)
)

Ξ(h)
n =

2i

kR
(
jn(ksR)ξ

(+)′
n (kR)− h(+)

n (kR)ψ′n(ksR)
) (A.9)

In Chapter 3, we can then introduce numerator and denominator functions:

N
(e)
S,n(kR) = kR

εsξ
(−)′
n (kR)jn(ksR)− ψ′n(ksR)h

(−)
n (kR)

2ins

N
(h)
S,n(kR) = kR

ξ
(−)′
n (kR)jn(ksR)− ψ′n(ksR)h

(−)
n (kR)

2i

D(e)
n (kR) = kR

εsξ
(+)′
n (kR)jn(ksR)− ψ′n(ksR)h

(+)
n (kR)

2ins

D(h)
n (kR) = kR

ξ
(+)′
n (kR)jn(ksR)− ψ′n(ksR)h

(+)
n (kR)

2i

(A.10)

and rewrite the S
(e,h)
n and Ξ

(e)
n coefficients:

S(e,h)
n = −

N
(e,h)
S,n (kR)

D
(e,h)
n (kR)

, Ξ(e,h)
n =

1

D
(e,h)
n (kR)

(A.11)

Finally, we can also introduce the partial logarithmic derivatives of the Bessel,

Neumann and Hankel functions:

ϕ(1)
n (z) =

ψ′n(z)

jn(z)
, ϕ(2)

n (z) =
χ′n(z)

yn(z)
, ϕ(±)

n (z) =
ξ

(±)′
n (z)

h
(±)
n (z)

(A.12)

and rewrite the S-matrix coefficients as:

S(e)
n = −h

(−)
n (kR)

h
(+)
n (kR)

εsϕ
(−)
n (kR)− ϕ(1)

n (ksR)

εsϕ
(+)
n (kR)− ϕ(1)

n (ksR)

S(h)
n = −h

(−)
n (kR)

h
(+)
n (kR)

ϕ
(−)
n (kR)− ϕ(1)

n (ksR)

ϕ
(+)
n (kR)− ϕ(1)

n (ksR)

(A.13)
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A.2.1 T-matrix coefficients of a spherical scatterer:

Calculations of the previous section can be repeated to evaluate the analytical ex-

pressions of the T and Ω matrix coefficients. In this case, the internal and external

total field expansions are:

Etot(kr) = E0

∞∑
n=1

n∑
m=−n

e(h)
n,m

(
M(1)

n,m(kr) + T (h)
n,mM(+)

n,m(kr)
)

+ e(e)
n,m

(
N(1)
n,m(kr) + T (e)

n,mN(+)
n,m(kr)

)
Htot(kr) =

kE0

iµ0ω

∞∑
n=1

n∑
m=−n

e(e)
n,m

(
M(1)

n,m(kr) + T (e)
n,mM(+)

n,m(kr)
)

+ e(h)
n,m

(
N(1)
n,m(kr) + T (h)

n,mN(+)
n,m(kr)

)
Eint(kr) = E0

∞∑
n=1

n∑
m=−n

u(h)
n,mM(1)

n,m(ksr) + u(e)
n,mN(1)

n,m(ksr)

Hint(kr) =
ksE0

iµ0ω

∞∑
n=1

n∑
m=−n

u(e)
n,mM(1)

n,m(ksr) + u(h)
n,mN(1)

n,m(ksr)

(A.14)

The continuity conditions (A.3) thus become:

E0.e
(h)
n,m

(
jn(kR) + T (h)

n h(+)
n (kR)

)
= E0.u

(h)
n,m.jn(ksR)

E0.e
(e)
n,m

(
ψ′n(kR)

kR
+ T (e)

n

ξ
(+)′
n (kR)

kR

)
= E0.u

(e)
n,m

ψ′n(ksR)

ksR

kE0

iµ0ω
e(e)
n,m

(
jn(kR) + T (e)

n h(+)
n (kR)

)
=
ksE0

iµ0ω
u(e)
n,m.jn(ksR)

kE0

iµ0ω
e(h)
n,m

(
ψ′n(kR)

kR
+ T (h)

n

ξ
(+)′
n (kR)

kR

)
=
ksE0

iµ0ω
u(h)
n,m

ψ′n(ksR)

ksR

(A.15)

We obtain the following expression of the T-matrix coefficients:

T (e)
n =

εsψ
′
n(kR)jn(ksR)− jn(kR)ψ′n(ksR)

ψ′n(ksR)h
(+)
n (kR)− εsξ(+)′

n (kR)jn(ksR)

T (h)
n =

ψ′n(ksR)jn(kR)− ψ′n(kR)jn(ksR)

jn(ksR)ξ
(+)′
n (kR)− h(+)

n (kR)ψ′n(ksR)

(A.16)

and recalling the Ω matrix coefficient definitions:

Ω(e)
n =

u
(e)
n,m

e
(e)
n,m

, Ω(h)
n =

u
(h)
n,m

e
(h)
n,m

(A.17)
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we can also derive the following analytical expression for Ω
(e,h)
n :

Ω(e)
n =

ns

(
ψ′n(kR)h

(+)
n (kR)− ξ(+)′

n (kR)jn(kR)
)

ψ′n(ksR)h
(+)
n (kR)− εsξ(+)′

n (kR)jn(ksR)

Ω(h)
n =

jn(kR)ξ
(+)′
n (kR)− h(+)

n (kR)ψ′n(kR)

jn(ksR)ξ
(+)′
n (kR)− h(+)

n (kR)ψ′n(ksR)

(A.18)

Again, we can use the wronskian between Bessel and Hankel functionsW (jn(z), hn(z)) =

iz−2 calculated from W (jn(z), yn(z)) = z−2, the previous expressions become:

Ω(e)
n =

ins

kR
(
εsξ

(+)′
n (kR)jn(ksR)− ψ′n(ksR)h

(+)
n (kR)

)
Ω(h)
n =

i

kR
(
jn(ksR)ξ

(+)′
n (kR)− h(+)

n (kR)ψ′n(ksR)
) (A.19)

Once again, we can use numerator and denominator functions to rewrite the

T-matrix coefficients. The same denominator functions as for the S-matrix are used

but different numerator functions have to be introduced:

N
(e)
T,n(kR) = kR

εsψ
′
n(kR)jn(ksR)− jn(kR)ψ′n(ksR)

2ins

N
(h)
T,n(kR) = kR

ψ′n(kR)jn(ksR)− ψ′n(ksR)jn(kR)

2i

D(e)
n (kR) = kR

εsξ
(+)′
n (kR)jn(ksR)− ψ′n(ksR)h

(+)
n (kR)

2ins

D(h)
n (kR) = kR

ξ
(+)′
n (kR)jn(ksR)− ψ′n(ksR)h

(+)
n (kR)

2i

(A.20)

leading to the following expressions for the T matrix coefficients:

T (e,h)
n = −

N
(e,h)
T,n (kR)

D
(e,h)
n (kR)

, Ω(e,h)
n =

1

2D
(e,h)
n (kR)

(A.21)

That also leads to the following expressions of the T-matrix coefficients in terms

of the partial logarithmic derivative of the Bessel and Hankel functions:
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T (e)
n = − jn(kR)

h
(+)
n (kR)

εsϕ
(1)
n (kR)− ϕ(1)

n (ksR)

εsϕ
(+)
n (kR)− ϕ(1)

n (ksR)

T (h)
n = − jn(kR)

h
(+)
n (kR)

ϕ
(1)
n (kR)− ϕ(1)

n (ksR)

ϕ
(+)
n (kR)− ϕ(1)

n (ksR)

(A.22)

A.2.2 K-matrix coefficients of a spherical scatterer:

Finally, the K-matrix ceofficients of spherically symmetric scatterers can also be

obtained in similar way leading to:

K(e)
n =

εsψ
′
n(kR)jn(ksR)− jn(kR)ψ′n(ksR)

yn(kR)ψ′n(ksR)− εsχ′n(kR)jn(ksR)

K(h)
n =

ψ′n(kR)jn(ksR)− jn(kR)ψ′n(ksR)

yn(kR)ψ′n(ksR)− χ′n(kR)jn(ksR)

(A.23)

Introducing new denominator functions:

N
(e)
T,n(kR) = kR

εsψ
′
n(kR)jn(ksR)− jn(kR)ψ′n(ksR)

2ins

N
(h)
T,n(kR) = kR

ψ′n(kR)jn(ksR)− ψ′n(ksR)jn(kR)

2i

D
(e)
K,n(kR) = kR

εsχ
(+)′
n (kR)jn(ksR)− ψ′n(ksR)yn(kR)

2ins

D
(h)
K,n(kR) = kR

χ
(+)′
n (kR)jn(ksR)− ψ′n(ksR)yn(kR)

2i

(A.24)

Expressions (A.26) can be cast:

K(e,h)
n = −

N
(e,h)
T,n (kR)

D
(e,h)
K,n (kR)

(A.25)

and they can also be reexpressed in terms of the partial logarithmic derivative

of Bessel and Neumann functions:

K(e)
n = − jn(kR)

yn(kR)

εsϕ
(1)
n (kR)− ϕ(1)

n (ksR)

εsϕ
(2)
n (kR)− ϕ(1)

n (ksR)

K(h)
n = − jn(kR)

yn(kR)

ϕ
(1)
n (kR)− ϕ(1)

n (ksR)

ϕ
(2)
n (kR)− ϕ(1)

n (ksR)

(A.26)
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A.3 Multipole expansion of the power:

We aim at deriving the flow of the Poynting vector over a spherical surface Ω:

lim
r→∞

¨
Ω

r̂ · 〈S〉ωr2dΩ = lim
r→∞

1

2

kr2

ωµ0

¨
Ω

Eout · E∗outdΩ− lim
r→∞

1

2

kr2

ωµ0

¨
Ω

Ein · E∗indΩ

(A.27)

One can calculate independently the 2 terms on the right hand side of the previous

equation by using the multipolar formulation of the incoming and outgoing fields:

lim
r→∞

Ein(kr) =
E0

kr
e−ikr

∞∑
n=1

n∑
m=−n

in+1s(e,−)
n,m Xn,m(θ, φ) + ins(h,−)

n,m Zn,m(θ, φ)

lim
r→∞

Eout(kr) =
E0

kr
eikr

∞∑
n=1

n∑
m=−n

(−i)n+1s(e,−)
n,m S(e)

n Xn,m(θ, φ) + (−i)ns(h,−)
n,m S(h)

n Zn,m(θ, φ)

(A.28)

It follows that the contributions of the outgoing and incoming fields to the Poynting

vector are:

lim
r→∞

1

2

kr2

ωµ0

¨
Ω

Eout · E∗outdΩ = lim
r→∞

c|E0|2

2ω2µ0

∞∑
n=1

n∑
m=−n

|s(e,−)
n,m |2

∣∣S(e)
n

∣∣2 + |s(h,−)
n,m |2

∣∣S(h)
n

∣∣2
lim
r→∞

1

2

kr2

ωµ0

¨
Ω

Ein · E∗indΩ = lim
r→∞

c|E0|2

2ω2µ0

∞∑
n=1

n∑
m=−n

|s(e,−)
n,m |2 + |s(h,−)

n,m |2
(A.29)

where the orthogonality relation of the vector spherical harmonics has been used:

〈W(i)
n,m|W(j)

n,m〉 =

ˆ 4π

0

W(i)∗
n,m.W

(j)
n,mdΩ = δijδnνδmµ (A.30)

A.3.1 Taylor series Expansions of Kn

We give below the development up to the 6th order in kR of the inverse reaction

matrix. In most of the predictions and simulations of this work, a fourth order ex-

pansion in kR suffices, but the 6th order sometimes proved useful to test convergence
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or to achieve additional accuracy.

[K(e)
n ]−1 ' − (2n− 1)!!(2n+ 1)!!

(n+ 1)(εs − 1)x2n+1

(
(nεs + n+ 1) +

(2n+ 1)((n− 2)εs + n+ 1)

(2n− 1)(2n+ 3)
x2

(A.31a)

+x4C
(e)
4 + x6C

(e)
6

)
(A.31b)

[K(h)
n ]−1 ' −(2n+ 1) (2n+ 3) (2n− 1)!! (2n+ 1)!!

(εs − 1)x2n+3

(
1 +

(2n− 2εs + 3)

(2n+ 1)(2n+ 5)
x2

(A.31c)

+x4C
(h)
4 + x6C

(h)
6

)
(A.31d)

where the fourth and sixth order coefficients, respectively C4 and C6, are given by:

C
(e)
4 = (2n+ 1)

(n+ 3)(n+ 1)2 + (n− 4)(n+ 3)(n+ 1)εs − (2n− 3)ε2
s

(n+ 1)(2n− 3)(2n+ 3)2(2n+ 5)
(A.32a)

C
(h)
4 =

(n+ 4)(2n+ 3)2 − 4(n+ 4)(2n+ 3)εs − (2n− 1)ε2
s

(2n− 1)(2n+ 3)(2n+ 5)2(2n+ 7)
(A.32b)

C
(e)
6 = (2n+ 1)

(n+ 1) (2n2 + 15n+ 30) [(n+ 1) + (n− 6)εs]− 3(2n− 5)ε2
s [(2n+ 9) + 2εs]

3(n+ 1)(2n− 5)(2n+ 3)3(2n+ 5)(2n+ 7)

(A.32c)

C
(h)
6 =

(2n+ 3) (2n2 + 19n+ 47) [(2n+ 3)− 6εs]− 3(2n− 3)ε2 [(2n+ 11) + 2ε]

3(2n− 3)(2n+ 3)(2n+ 5)3(2n+ 7)(2n+ 9)

(A.32d)

which for the n = 1 case are:

C
(e)
6 = −188− 470εs + 99ε2

s + 18ε3
s

47250(εs + 2)
(A.33a)

C
(h)
6 = −1700− 2040εs + 39ε2

s + 6ε3
s

509355
(A.33b)

and the double factorial operator !! is defined such that:

n!! =
m∏
k=0

(n− 2k) = n(n− 2)(n− 4) . . . (A.34)

where m = Int [(n+ 1)/2]− 1 with 0!! = 1; or in terms of ordinary factorials via the

relations (2n− 1)!! = (2n)!
2nn!

and (2n)!! = 2nn! for n = 0, 1, 2, . . .
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Appendix B

B.1 Exact formulas for near-field enhancements

Formally exact expressions for the field enhancement factors, Eq.(4.22) can be writ-

ten:

〈
I

(e)
enh

〉
=
∞∑
n=1

{
g̃(1,e)
n (η)

∣∣T (h)
n

∣∣2 + g̃(2,e)
n (η)

∣∣T (e)
n

∣∣2}
〈
I

(h)
enh

〉
=
∞∑
n=1

{
g̃(1,h)
n (kr)

∣∣T (e)
n

∣∣2 + g̃(2,h)
n (kr)

∣∣T (h)
n

∣∣2} (B.1)

We remark that Eq.(B.1) is valid numerically only if the infinite multipole summa-

tion is cutoff to a value nmax > kr with r being the distance from the center of the

particle. This differs from approximate formula of Eq.(4.22) where the multipole

summation can be be stopped at the usual Mie cutoff condition of nmax > kR.

The enhancement functions of Eq.(B.1) are written:

g̃(1,e)
n (η) =

2n+ 1

2

∣∣∣∣jn(η)

T
(h)
n

+ h(+)
n (η)

∣∣∣∣2
g̃(2,e)
n (η) =

n+ 1

2

∣∣∣∣jn−1(η)

T
(e)
n

+ h
(+)
n−1(η)

∣∣∣∣2 +
n

2

∣∣∣∣jn+1(η)

T
(e)
n

+ h
(+)
n+1(η)

∣∣∣∣2
g̃(1,h)
n (η) =

2n+ 1

2

∣∣∣∣jn(η)

T
(e)
n

+ h(+)
n (η)

∣∣∣∣2
g̃(2,h)
n (η) =

n+ 1

2

∣∣∣∣jn−1(η)

T
(h)
n

+ h
(+)
n−1(η)

∣∣∣∣2 +
n

2

∣∣∣∣jn+1(η)

T
(h)
n

+ h
(+)
n+1(η)

∣∣∣∣2
(B.2)
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Appendix C

C.1 Resonance and zero conditions of bn

It has been shown in section 5.2 that a good prediction of the first resonance of bn
in the limit z0 << 1 could be provided by the solution of the following equation:

ϕ(1)
n (z) = −n (C.1)

If we use the following recurrence relation for spherical Bessel functions (ref.[139],p.439):

j′n(z) = −n+ 1

z
jn(z) + jn−1(z)

⇒ [zjn(z)]′ = −njn(z) + zjn−1(z)

⇒ ϕ(1)
n (z) = −n+ z

jn−1(z)

jn(z)

(C.2)

It then follows that Eq. C.1 is verified for the zeros of Bessel functions of order

n− 1: z = rn−1,l.
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C.2 Weierstrass factorization of Bessel functions

As demonstrated by Watson in [138] (p 497-498), it is possible to express cylindrical

Bessel functions as an infinite product of factors involving their zeros:

Jν(z) =
1

Γ(ν + 1)

(z
2

)ν ∞∏
n=1

(
1−

(
z

zν,n

)2
)

(C.3)

where zν,n is the nth zero of the cylindrical Bessel functions of order ν. This ex-

pression can be generalized to the spherical Bessel functions jn by means of the

relation: jn(z) =
√

π
2z
Jn+1/2(z). If we set rn,j ≡ zn+1/2,j and if we notice that

Γ(n+ 1/2) = 2−n
√
π(2n− 1)!!, we get the following expression (5.16):

jn(z) =
zn

(2n+ 1)!!

∞∏
l=1

(
1−

(
z

rn,l

)2
)

(C.4)

The double factorial operator !! is defined such that:

n!! =
m∏
k=0

(n− 2k) = n(n− 2)(n− 4) . . . (C.5)

where m = Int [(n+ 1)/2]− 1 with 0!! = 1; or in terms of ordinary factorials via the

relations (2n− 1)!! = (2n)!
2nn!

and (2n)!! = 2nn! for n = 0, 1, 2, . . ..

These expressions are designated as Weierstrass factorizations throughout the

article as it can also be obtained by using the Weierstrass factorization theorem.

It can then be used to derive an expression of ϕ
(1)
n functions also appearing in our

formulation of the Mie coefficients. One should first notice that ϕ
(1)
n as defined in

(A.12) is equal to z times the logarithmic derivative of the Ricatti Bessel functions

zjn(z). From (5.16), it is then straightforward to show that:

ϕ(1)
n (z) =

z

(n+ 1)
1

z
+
∞∑
l=1

(
− 2z

(rn,l)2

)
1

1−
(

z
rn,l

)2

 ,

ϕ(1)
n (z) = n+ 1 +

∞∑
l=1

2z2

z2 − (rn,l)2
.

(C.6)

128



C.3 Approximation of ϕ
(1)
n for an

As suggested in [159] (see notably the supplementary material), the expressions

derived in Appendix C.1 can be used to approximate functions jn and ϕ
(1)
n as an

alternative to their Taylor series expansions. It was this method that was followed

to derive the approximations (5.18), (5.19) and (5.20). Here, we provide a demon-

stration of these two expressions. ϕ
(1)
n is equal to:

ϕ(1)
n (z) = n+ 1 +

2z2

z2 − r2
n

+
∞∑
l=2

2z2

z2 − (rn,l)2

= n+ 1 +
2z2

z2 − r2
n

− 2z2

∞∑
l=2

1

(rn,l)2

1

1− z2

(rn,l)2

(C.7)

As in our study z << rn,2, for l ≥ 2 1

1− z2

(rn,l)
2

' 1 which leads to:

ϕ
(1)
1 (z) ' 2 +

2z2

z2 − r2
n

− 2z2

∞∑
l=2

1

(r1,l)2
. (C.8)

Finally, as
∞∑
l=1

1
(rn,l)2 = 1

2(2n+3)
(see [138], p 502), Eq. C.8 simplifies to:

ϕn(z) ≈ n+ 1 +
2z2

z2 − (rn)2
+ 2ρnz

2, (C.9)

where ρn ≡ 1
r2
n
− 1

2(2n+3)
.

Moreover, we can apply the same idea to approximate the spherical bessel func-

tions jn:

jn(z) =
zn

(2n+ 1)!!

(
1−

(
z

rn,1

)2
)
∞∏
l=2

(
1−

(
z

rn,l

)2
)
, (C.10)

and
∞∏
l=2

(
1−

(
z
rn,l

)2
)

can be approximated:

∞∏
l=2

(
1−

(
z

rn,l

)2
)

= exp(ln(
∞∏
l=2

(
1−

(
z

rn,l

)2
)

))

= exp(
∞∑
l=2

ln

(
1−

(
z

rn,l

)2
)

).

(C.11)
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If z << rn,2,
∞∑
l=2

ln

(
1−

(
z
rn,l

)2
)
→ −

∞∑
l=2

(
z
rn,l

)2

, it then follows from the previous

results that:
∞∏
l=2

(
1−

(
z

rn,l

)2
)
' exp(ρnz

2), (C.12)

which leads to the following approximation for jn:

jn(z) ' zn

(2n+ 1)!!

(
1−

(
z

rn,1

)2
)
exp(ρnz

2) (C.13)

C.4 Approximation of ϕ
(1)
n for bn

In order to approximate the function ϕ
(1)
n at the vicinity of the resonance condition

of bn, we can make the choice to take the power series expansion around zs = rn−1:

ϕ(1)
n (z) ' ϕ(1)

n (rn−1) + (z − rn−1)
dϕ

(1)
n

dz

∣∣∣∣∣
rn−1

+ ... (C.14)

dϕ
(1)
n

dz
(z) =

d

dz

(
z
jn−1(z)

jn(z)

)
=
jn−1(z)

jn(z)
+ zjn−1(z)

d

dz

(
1

jn(z)

)
+

z

jn(z)

djn−1

dz
(z)

(C.15)

which leads to:
dϕ

(1)
n

dz

∣∣∣∣∣
rn−1

=
rn−1

jn(rn−1)
j′n−1(rn−1) (C.16)

By using a recurrence relation for spherical Bessel functions (ref.[139],p.439):

−n
z
jn(z) + j′n(z) = −jn+1(z), (C.17)

we can show that j′n−1(rn−1) = −jn(rn−1). This result leads to:

dϕ
(1)
n

dz

∣∣∣∣∣
rn−1

= −rn−1 (C.18)
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Similar calculations allow us to show that ϕ
(1)′′
n (rn−1) = −2(n+ 1) and d3ϕ

(1)
n

dz3

∣∣∣
rn−1

=

−2n(2n+1)
rn−1

− 2rn−1.

C.5 Approximation of an

ϕ
(A1)
n may be re-expressed in the following way:

ϕ
(A1)
n (z0) = n+ 1 + 2z2

n

z2
n−1

+ 2ρn.z
2
0 (C.19)

= (n+3)z2
n−(n+1)

z2
n−1

+ 2ρn.z
2
0 (C.20)

ϕ
(A1)
n (z0) = (n+ 1)

(n+3)
(n+1)

z2
n−1

z2
n−1

+ 2ρn.z
2
0 (C.21)

that leads to:

εsϕ
(A1)
n (z0)− ϕ(A1)

n (zs) =

εs

(
(n+ 1)

(n+3)
(n+1)

z2
n − 1

z2
n − 1

+ 2ρn.z
2
0

)
−(

(n+ 1)

(n+3)
(n+1)

εsz
2
n − 1

εsz2
n − 1

+ 2ρn.εs.z
2
0

)

=
(n+ 1)(εs − 1)

1− z2
n

(
1− z2

n

(n+3)
(n+1)

εsz
2
n − 1

εsz2
n − 1

)
εsϕ

(A1)
n (z0)− ϕ(A1)

n (zs) =

(n+ 1)(εs − 1) (fn(εs, z0)− z2
n)

(1− z2
n)fn(εs, z0)

(C.22)

The numerator of an can then be re-expressed in the following way:

j(A1)
n (z0)

(
εsϕ

(A1)
n (z0)− ϕ(A1)

n (zs)
)

=

(n+ 1)zn0
(2n+ 1)!!

eρnz
2
0

fn(εs, z0)
(εs − 1)

(
fn(εs, z0)− z2

n

) (C.23)

where the function fn has been defined in the article. The denominator can be also
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simplified:

h(+)
n (z0)

(
εsϕ

(+)
n (z0)− ϕ(A1)

n (zs)
)

=

eiz0

zn+1
0

Qn(z0)×(
εsϕ

(+)
n (z0)− (n+ 1)

(n+3)
(n+1)

εs.z
2
n − 1

εs.z2
n − 1

− 2ρn.εsz
2
0

)
h(+)
n (z0)

(
εsϕ

(+)
n (z0)− ϕ(A1)

n (zs)
)

=

eiz0

zn+1
0

Qn(z0)

.fn(εs, z0)
(εs.fn(εs, z0)gn(z0)− (n+ 1))

(C.24)

where gn has been defined in the article. That finally leads to the following approx-

imation of the electric Mie coefficients:

a(A1)
n =

(n+ 1)z2n+1
0

(2n+ 1)!!

eρnz
2
0−iz0

Qn(z0)
×

(εs − 1) (fn(εs, z0)− z2
n)

εs.fn(εs, z0)gn(z0)− (n+ 1)

(C.25)

C.6 Approximation of bn

ϕ(A1)
n (z0)− ϕ(A1)

n (zs) =

2z2
n

z2
n − 1

+ 2ρn.z
2
0 −

2εsz
2
n

εsz2
n − 1

− 2ρn.εs.z
2
0

= −2ρn.z
2
0(εs − 1) + 2z2

n

(
εs − 1

(z2
n − 1)(εsz2

n − 1)

) (C.26)

if we assume that z2
n << 1 it then leads to:

ϕ(A1)
n (z0)− ϕ(A1)

n (zs) ' (εs − 1)

(
− 2z2

n

εsz2
n − 1

− 2ρn.z
2
0

)
(C.27)

keeping the assumption z2
n << 1 in the approximation j

(A1)
n , it then follows that

j(A1)
n (z0)

(
εsϕ

(A1)
n (z0)− ϕ(A1)

n (zs)
)

' z2n+1
0

(2n+ 1)!!
eρnz

2
0(εs − 1)Ln(εs, z0)

(C.28)
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the denominator can be also approximated:

ϕ(+)
n (z0)− ϕ(A1)

n (zs) =

ϕ(+)
n (z0)− (n+ 1)− εs

(
2z2

n

z2
n − 1

+ 2ρn.z
2
0

)
= εsLn(εs, z0) + ϕ(+)

n (z0)− (n+ 1)

(C.29)

that then leads to the following approximation for bn :

b(A1)
n =

z2n+1
0

(2n+ 1)!!
×

eρnz
2
0−iz0

Qn(z0)

(εs − 1)Ln(εs, z0)

εsLn(εs, z0) + ϕ
(+)
n (z0)− (n+ 1)

(C.30)

C.7

The outgoing spherical Hankel functions can be written in the following form:

h(+)
n (z) = (−i)n+1 e

iz

z

n∑
s=0

is

s!(2z)s
(n+ s)!

(n− s)!

=
eiz

zn+1

n∑
s=0

(−1)n+1 i
n+s+1

s!(2)s
(n+ s)!

(n− s)!
zn−s

h(+)
n (z) =

eiz

zn+1
Qn(z)

(C.31)

where the polynomial function Qn(z) =
n∑
s=0

(−1)n+1 in+s+1

s!(2)s
(n+s)!
(n−s)!z

n−s

C.8

ε
(e2)
UL =

−
((

n+3
r2
n
− 2ρ

(e)
n

)
z2

0 − n
)

+

√((
n+3
r2
n
− 2ρ

(e)
n

)
z2

0 − n
)2

+ 4(n+ 1)

(
n
(
z
rn

)2

+ 2ρ
(e)
n

z4

r2
n

)
(
n
(
z
rn

)2

+ 2ρ
(e)
n

z4

r2
n

)
(C.32)
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Appendix D

Appendix D

D.0.1 Average of the squared modulus of the internal field:

If the internal field is expanded on the VPW basis, it can be shown that the average

of the squared modulus of the internal field takes the following expression:

〈|Eint|2〉
|E0|2

=
∞∑
n=1

〈
∣∣∣E(e)

i,n

∣∣∣2〉
|E0|2

+
〈
∣∣∣E(h)

i,n

∣∣∣2〉
|E0|2

(D.1)

where

〈
∣∣∣E(e)

i,n

∣∣∣2〉
|E0|2

=
3(2n+ 1)

2z2
In
∣∣Ω(e)

n

∣∣2
〈
∣∣∣E(h)

i,n

∣∣∣2〉
|E0|2

=
3(2n+ 1)

2z2
Jn
∣∣Ω(h)

n

∣∣2
(D.2)

The functions In(εs, z) and Jn(εs, z) that have been used have the following

expression:

In(εs, z) =
z

2εs

(
ψ′n(nsz) (ψ′n(nsz) + js(nsz)) + (εsz

2 − n(n+ 1))j2
n(nsz)

)
Jn(εs, z) =

z

2εs

(
ψ′n(nsz) (ψ′n(nsz)− js(nsz)) + (εsz

2 − n(n+ 1))j2
n(nsz)

) (D.3)
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D.0.2 Calculation of the resonant part of the outgoing field:

In Chapter 6, the calculation of the resonant part of the outgoing field required the

derivation of the following integral:

ˆ ∞
−∞

r
(e)
n,α

ω − p(e)
n,α

e−iω(t0+
r0
c )e−iω(t−t0− r0c −

r
c
+2R

c )dω (D.4)

As was pointed out in Chapter 6, due to the presence of poles, this integral can be

computed by using the theorem of residues. In particular, when t−t0− r0
c
− r
c
+2R

c
≤ 0

one needs to close the contour of integration in the lower part of the complex plane

as shown in Fig. D.1.

Figure D.1: Contour used to derive integral D.4

This integral thus becomes:

ˆ ∞
−∞

r
(e)
n,α

ω − p(e)
n,α

e−iω(t0+
r0
c )e−iω(t−t0− r0c −

r
c
+2R

c )dω =

− 2π.i.r(e)
n,αe

−ip(e)
n,α(t0+

r0
c )e−ip

(e)
n,α(t−t0− r0c −

r
c
+2R

c )

− lim
RC→∞

ˆ −π
0

r
(e)
n,α

RCeiθC − p(e)
n,α

e−iRCe
iθC (t0+

r0
c )e−iRCe

iθC (t−t0− r0c −
r
c
+2R

c )RCe
iθCdθC

(D.5)

We will now try to demonstrate that the integration over the semi-circle in

the lower part of the complex plane is null. Since t − t0 − r0
c
− r

c
+ 2R

c
≥ 0,∣∣∣e−iω(t−t0− r0c −

r
c
+2R

c )
∣∣∣ ≤ 1 for all ω belonging to the lower part of the complex plane.

Consequently,

∣∣∣∣∣ r
(e)
n,α

RCeiθC − p(e)
n,α

e−iRCe
iθC (t0+

r0
c )e−iRCe

iθC (t−t0− r0c −
r
c
+2R

c )RCe
iθCdθC

∣∣∣∣∣ ≤∣∣∣∣∣ r
(e)
n,α

RCeiθC − p(e)
n,α

e−iRCe
iθC (t0+

r0
c )

∣∣∣∣∣
(D.6)
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t0 + r0
c

being positive, the previous expression tends towards zero faster than
1
R2
C

when RC → ∞. According to [199] (see in particular pp 422-424), the integral

over the semi-circle in the lower half of the complex plane vanishes when RC →∞.

Equation (D.6) consequently becomes:

ˆ ∞
−∞

r
(e)
n,α

ω − p(e)
n,α

e−iω(t0+
r0
c )e−iω(t−t0− r0c −

r
c
+2R

c )dω =

− 2π.i.r(e)
n,αe

−ip(e)
n,α(t0+

r0
c )e−ip

(e)
n,α(t−t0− r0c −

r
c
+2R

c )

(D.7)

On the other hand, when t − t0 − r0
c
− r

c
+ 2R

c
> 0, the contour of integration

has to be closed in the upper part as shown in Fig. D.2. As the integrand in Eq.

Figure D.2: contour of integration upper half complex plane

(D.4) does not admit any poles in the upper half of the complex plane and as the

integration over the semi-circle in the upper half of the complex plane can be shown

to vanish with similar calculations as those done previously, Eq. (D.4) turns out to

be null for t− t0 − r0
c
− r

c
+ 2R

c
> 0. These results are in complete agreement with

the causality principle.
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A. Locatelli, C. De Angelis, I. Favero, et al. Polarization properties of second-
harmonic generation in AlGaAs optical nanoantennas. Optics Letters, 42,
559–562, 2017. 94

[185] L. Carletti, D. Rocco, A. Locatelli, C. De Angelis, V. Gili, M. Ravaro,
I. Favero, G. Leo, M. Finazzi, L. Ghirardini, et al. Controlling second-harmonic
generation at the nanoscale with monolithic AlGaAs-on-AlOx antennas. Nan-
otechnology, 28, 114005, 2017.

[186] S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M.
Peake, F. Setzpfandt, I. Staude, T. Pertsch, et al. Resonantly enhanced second-
harmonic generation using III–V semiconductor all-dielectric metasurfaces.
Nano letters, 16, 5426–5432, 2016. 94

[187] G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier. Degenerate
Four-Wave Mixing in a Multiresonant Germanium Nanodisk. ACS Photonics,
4, 2144–2149, 2017. 94

[188] R. W. Boyd. Nonlinear optics. Academic press, 2003. 95, 96, 97

[189] A. D. Bristow, N. Rotenberg, and H. M. Van Driel. Two-photon absorption
and Kerr coefficients of silicon for 850–2200 nm. Applied Physics Letters, 90,
191104, 2007. 97

[190] D. Pierce and W. E. Spicer. Electronic structure of amorphous Si from pho-
toemission and optical studies. Physical Review B, 5, 3017, 1972. 99, 105

[191] R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Oze-
rov, T. Begou, J. Lumeau, H. Rigneault, et al. All-dielectric silicon nanogap
antennas to enhance the fluorescence of single molecules. Nano Letters, 16,
5143–5151, 2016. 102, 103

[192] S. Sundaram and E. Mazur. Inducing and probing non-thermal transitions
in semiconductors using femtosecond laser pulses. Nature Materials, 1, 217,
2002. 107

[193] T. Y. Choi, D. J. Hwang, and C. P. Grigoropoulos. Ultrafast laser-induced
crystallization of amorphous silicon films. Optical Engineering, 42, 3383–3388,
2003.

[194] J.-M. Shieh, Z.-H. Chen, B.-T. Dai, Y.-C. Wang, A. Zaitsev, and C.-L. Pan.
Near-infrared femtosecond laser-induced crystallization of amorphous silicon.
Applied Physics Letters, 85, 1232–1234, 2004. 107

153



REFERENCES

[195] I. Rotter. A non-Hermitian Hamilton operator and the physics of open quan-
tum systems. Journal of Physics A: Mathematical and Theoretical, 42, 153001,
2009. 114

[196] C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić. Bound
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