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So close, no matter how far

Couldn't be much more from the heart

Forever trusting who we are

And nothing else matters

Never opened myself this way

Life is ours, we live it our way

All these words I don't just say

And nothing else matters

Trust I seek and I �nd in you

Every day for us something new

Open mind for a di�erent view

And nothing else matters

Never cared for what they do

Never cared for what they know

But I know

So close, no matter how far

Couldn't be much more from the heart

Forever trusting who we are

And nothing else matters

Never cared for what they do

Never cared for what they know

But I know

Never opened myself this way

Life is ours, we live it our way

All these words I don't just say

Trust I seek and I �nd in you

Every day for us, something new

Open mind for a di�erent view

And nothing else matters

Never cared for what they say

Never cared for games they play

Never cared for what they do

Never cared for what they know

And I know

So close, no matter how far

Couldn't be much more from the heart

Forever trusting who we are

No, nothing else matters

Metallica, �Nothing Else Matters� (1991)
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Chapter 1

Introduction

�A journey of a thousand li starts with a single step.�

Lao Tzu, Chinese philosopher
(around 6th − 5th century B.C.)
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Optical antennas act as transducers of the visible spectrum electromagnetic
�elds: they convert electromagnetic power coming from the far-�eld (i.e. from
sources �in�nitely� far away), to localized electromagnetic power, and vice versa.
They are thus able to convert freely-propagating light beams into sub-wavelength,
high intensity �hot spots�, the power being then readily available to sub-wavelength
sized absorbers, e.g. �uorescent molecules, thereby increasing the excitation rate of
those molecules, since more photons per unit time are available in their immediate
proximity. Reciprocally, for a light emitter in an excited state, optical antennas can
enhance both its radiative and non-radiative decay rates, since antenna elements act
as secondary sources that scatter light back onto the emitter, thereby modifying the
power that the emitter dissipates for a given transition dipole moment. Scattered
and emitted �elds also interfere in the far-�eld, thereby modifying the radiation
pattern of the emission. The outline of this thesis is based on this dual behavior of
optical antennas: chapter 2 treats the case of a far-�eld excitation of the antenna
structure, while chapter 3 treats the case of the local excitation of the antenna, via
a point dipole light source that is placed near the antenna structure.
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Throughout this thesis, we adopt a multipole formulation of the electromagnetic
�elds based on the separation of variables treatment of the the Helmholtz equation
in spherical coordinates. The angular variations of the electromagnetic �elds can be
developed in terms of Laplace's spherical harmonics. Two linearly independent solu-
tions for the radial dependence of the equations, the scattered �elds and the incident
�elds, are discriminated by imposing di�erent boundary conditions on a spherical
surface enclosing the origin. Scattered �elds are characterized by an outgoing Poynt-
ing vector at every point of the boundary, which means that they enclose a source;
their radial dependence is described using outgoing spherical Hankel functions and
their derivatives. Incident �elds are characterized by a null Poynting vector �ux
through the boundary (e.g. a plane wave that travels through the sphere) and cor-
respond to the superposition of a scattered �eld and an opposite, �ingoing� �eld
that cancels source divergences, their dependence is described using spherical Bessel
functions and their derivatives.

In this manuscript, we analyze and theoretically conceive optical antennas em-
ploying sub-wavelength resonators made of metallic or dielectric materials. The
resonances of the scatterers, or ensemble of scatterers, can be de�ned by resonances
of their T-matrix eigenvalues, which in the multipole formalism, link the coe�cients
of the scattered �elds to those of the incident �elds. In most of our examples (with
the only notable exception of section 2.2) we privilege scatterers that are spheri-
cal, and made of homogeneous materials; which ensures that the diagonal scalar
T-matrix assumption (see glossary) is veri�ed. This assumption considerably re-
duces the complexity of explicit formulas, and thus allows more intuitive insight for
the physical phenomenons under study. Moreover, the individual response of the
scatterers is known for those homogeneous spherical particles (in terms of explicit
functions of their radius, size and permittivity): it is given by Mie theory [Mie 1908];
in contrast, there is generally no known solution in the case of non-spherical shapes
and/or inhomogeneous materials. Nevertheless, multiple-scattering T-matrix the-
ory is not restricted to spherical scatterers, and the formulas we derive could be
extended to non-spherical and/or inhomogeneous scatterers. In this case, the com-
putation of numerical values requires numerical estimates of the T-matrix of the
individual scatterers, which is possible, e.g. using Discrete Dipole Approximation
(DDA) and derived methods [Evlyukhin 2011].

The mathematical demonstrations of most of the formulas given in the main
text are relegated to the appendices: appendix A presents the multipole expansion
of the electromagnetic �elds; appendix B treats the Mie theory for single particles;
appendix C gives a derivation of the multiple scattering T-matrix; appendix D
contains the derivation of formulas for �gure of merit computations, and appendix
E gives a derivation of the di�erent simpli�ed models that are used throughout the
manuscript.
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1.1 Sub-wavelength photonic resonators

We consider a homogeneous, spherical particle of radius a, made of an isotropic
material of relative permittivity εs, embedded in a background medium of relative
permittivity εb and refractive index nb =

√
εb (since they are highly uncommon in

the visible spectrum, we do not consider materials with non-unit relative permeabil-
ity). We further assume that a plane wave of frequency ω = 2π c

λ0
(λ0 is the vacuum

wavelength), characterized by an electric �eld E(ω), is incident on the particle. The
wave vector is kb = 2π nb

λ0
in the embedding medium, and ks = 2π ns

λ0
inside the

sphere.
We present below the e�ect of this plane-wave excitation, assuming a linear

response of the scatterer. Since the scatterers are typically sub-wavelength, it
is convenient to describe their response within the multipole expansion of the
�elds (see appendix A): in this case, a somewhat low maximal multipolarity or-
der nmax is required in order to accurately describe the scattering process, typically,
nmax ≈ floor(a|ks|) + 1 in the present case of a plane wave excitation. The re-
sponse of the spheres is thus characterized by the excitation of induced dipoles and
multipoles. These originate from the bond and free polarization charges produced
by the incident �eld inside the scatterers. We will �rst consider the electric dipole
resonances of metals, and explain their origin under a quasi-static framework, then
we will introduce the multipole resonances by taking into account the �nite size of
metallic particles. Next, we will introduce the dipole and multipole resonances of
dielectric particles, which can be of electric as well as magnetic nature.

1.1.1 Electric resonances in metallic particles

Electric dipoles: The induced electric dipole moment p(ω) inside the sphere
is proportional to the incoming �eld and to its electric dipole polarizability
α(ω): [Jackson 1999]

p(ω) ≡ ε0εbα(ω)E(ω),

For particles su�ciently small compared to the wavelength (a � λ), the polar-
izability can be derived from the Clausius-Mossotti relation:

αqs(ω) = 3V
εs − εb
εs + 2εb

, (1.1)

where V = 4πa3/3 is the sphere's volume and the (qs) subscript denotes the
quasi-static approximation. For metallic particles, since <(εs) < 0, equation
1.1 predicts that whenever <(εs + 2εb) = 0, the polarizability can be resonant,

α = 3V i=(εs)−3εb
i=(εs) = 3V

(
1 + 3iεb

=(εs)

)
, if the imaginary part of the relative permittiv-

ity of the metal at the same frequency, =(εs) is low compared to 3εb. In this case,
the polarizability α can be approximated as a large imaginary number, α ≈ 9V iεb

=(εs) .
This means that the induced dipole moment p will be resonant, and have a +π/2

relative phase with respect to the incoming �eld. This large induced dipole will
produce a strong electric �eld in the vicinity of the scatterer, even for very small
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particles of metal (see �gure 1.1). In the surrounding homogeneous medium, the
electric �eld produced by the induced dipole can be cast [Jackson 1999]:

Escat(r) =
eikr

4πεsε0r3

{
k2r2(r̂×p)× r̂ + (1− ikr)

[
3(r̂ · pr̂− p

]}
. (1.2)

Figure 1.1: (a) (Black line, left scale) Modulus, and (blue line, right scale) argu-
ment of the theoretical volumic polarizability, α(ω)/a3, given by Mie theory for a
gold sphere (refractive index taken from experimental bulk values [Johnson 1972])
of radius 1 nm, embedded into a nb = 2 medium, as functions of the vacuum
wavelength λ0. The horizontal blue line indicates the π/2 argument value, and the
black vertical line indicates the abscissa of the maximal polarizabilitymodulus. (b)
Theoretical electric �eld intensity map at the polarizability resonance (λ0 = 586

nm) of the sphere. The intensity is normalized by the incoming �eld's intensity.

The induced dipole resonance will also result in a resonant light scattering, the
scattered power Wscat being proportional to |α|

2

λ4
. The metallic sphere will also

resonantly dissipate energy via ohmic losses; the sum of the scattered power plus
the power dissipated by ohmic losses, Wext, is proportional to

=(α)
λ [Bohren 1983].

We recall that in the derivation of equation 1.1, the a � λ assumption represents
a quasi-static approximation: in order to derive the polarizability in the form of
equation 1.1, the incoming electric �eld is assumed to be constant over the volume
of the particle. Since α ∝ V ∝ a3 � λ3, one consequence of equation 1.1 is
that the induced dipole resonance of small metallic particles mainly leads to ohmic
dissipation of the energy of the incoming �eld:

Wext ∝
=(α)

λ
∝ a3 3εb

=(εs)λ
� λ2 (since a� λ)

Wscat ∝
|α|2

λ4
≈ V 2 9ε2

b

=(εs)2λ4
∝ a6 9ε2

b

=(εs)2λ4
≈ W 2

ext

λ2
�Wext

However, the quasistatic approximation of the electric dipole polarizability
(equation 1.1) does not comply with the �optical theorem� [Colas des Francs 2008].
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One can use a corrected form of the quasi-static electric dipole polarizability in order
to satisfy the optical theorem; this is done by including a radiation damping and a
dynamic polarization term into the polarizability [Colas des Francs 2008]:

αcorr =
αqs

1− [(1− ikba)eikba − 1] 1
2πa3

αqs
. (1.3)

This model thus takes into account the �rst corrections to the polarizability of
the particle, that are induced by its �nite size. When the particle becomes compa-
rable in size with the wavelength (diameter 2a . λ), the more accurate description
of the polarizability α shows that metallic particles whose size are smaller than (but
not negligible compared to) the wavelength can radiate more power than they dis-
sipate in ohmic losses. The exact solution of the dipole polarizability of spherical
particles can be derived from Mie theory[Mie 1908]: Mie solved the scattering prob-
lem for spherical scatterers of arbitrary size � though this method is impractical for
scatterers that are too large compared to the wavelength. Using Mie theory, the
electric dipole polarizability can be cast:

αMie = 6πa1/(ik
3), (1.4)

where a1 is the electric dipole Mie coe�cient of the sphere (see section 1.3.3.1).

Figure 1.2: (Black lines, left scale) (left) Extinction and (right) scattering cross-
sections for a hypothetical gold sphere (permittivity εs = −3.946161 + 2.58044i

corresponding to λ = 521 nm bulk material value [Johnson 1972], chosen at the
small radius extinction resonance in the optical domain) as a function of the radius.
The embedding medium is vacuum, nb = 1. (Right scale) Relative errors when using
the polarizabilities of the (red line) corrected polarizability of equation 1.3, (green
line) quasi-static polarizability of equation 1.1, instead of the Mie theory.

In �gure 1.2 we see that the quasi-static polarizability approximation holds when
considering resonant metallic particles under ≈ 10 nm in radius. For radii > 20 nm,
neither the quasistatic approximation of the polarizability (equation 1.1), nor the
corrected dynamic polarizability (equation 1.3) are within a < 5% error bound
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(compared to Mie theory) for the estimation of the scattered and absorbed powers.
As expected, for small radii, the corrected polarizability yields lower error than the
quasistatic approximation.

Electric multipoles: Another e�ect arises when the size of the particle is no
longer negligible compared to the wavelength : on account of retardation e�ects
of the incoming �eld in the volume of the particle, electric multipoles can also be
excited in sub-wavelength metallic particles. Indeed, Mie theory predicts that mul-
tipoles can also be resonantly excited in spherical scatterers. For metallic particles
at optical wavelengths, multipoles (quadrupoles, octopoles, etc.) generally lead to
a high ohmic dissipation of the incoming electromagnetic �eld. These induced mul-
tipoles are a major obstacle when trying to reduce ohmic losses in designs that
use plasmonic resonators. Even at frequencies where the induced quadrupoles and
higher order multipoles are not resonant, they can induce high losses. In the case of
a �uorescent dye brought to within a few nanometers from the surface of a metallic
particle for instance, a high amount of energy is dissipated because of the multi-
pole excitation of the particle, which leads to a drastic decrease of the emission's
quantum e�ciency [Thomas 2004] (see section 1.2.1 below).

1.1.2 Electric and Magnetic resonances of dielectric particles

The seminal work of Mie [Mie 1908] was originally aimed at the understanding of
the colors featured by gold colloidal suspensions, but the so-called �Mie� resonances
also occur in dielectrics. We remark two main di�erences between the resonances
in metals and dielectrics. First, the resonances in dielectrics generally require the
particle size to be non-negligible compared to the wavelength, whereas highly sub-
wavelength sized metallic particles can be resonant in the optical regime. Secondly,
dielectric spheres naturally present magnetic resonances, while the resonances of
metallic spheres are predominantly of electric nature.

Size comparison: The polarizability of dielectric particles can also be derived
from the Clausius-Mossotti relation (equation 1.1) in the quasi-static regime:
αqs(ω) = 3V εs−εb

εs+2εb
, which means that no particular resonance is expected for parti-

cles of small radius, as opposed to the case of metallic particles where the negative
real part of the permittivity ensures a resonance whenever <(εs + 2εb) = 0. Still,
when considering the full analytical result of Mie theory, electric resonances are
expected to occur for sub-wavelength dielectric spheres, if the permittivity of the
material is su�ciently high. Indeed, we show in �gure 1.3 that dielectric particles
of relatively high refractive index can present a resonance in terms of volumic po-
larizability when their size is not too small (e.g. for a refractive index n = 4 and at
λ = 521 nm, the resonance occurs for a radius a = 83 nm).

Magnetic resonances: In the quasi-static approximation, the volumic magnetic
polarizability of any spherical scatterer tends to zero, and this is true for any non-
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Figure 1.3: Volumic electric dipole polarizabilities as a function of the radius at
λ = 521 nm for spheres embedded in air and made of (black, red, green, and blue
lines) gold, and lossless dielectrics of refractive index 2,3, and 4 respectively.

Figure 1.4: Volumic magnetic dipole polarizabilities as a function of the radius at
the chosen wavelength λ = 521 nm for spheres made of (black) gold, (red, green,
blue respectively) lossless dielectrics of refractive index 2,3, and 4 respectively. (log-
arithmic scale)
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Figure 1.5: Modulus of the volumic polarizabilities, |α|/a3, of a sphere of radius 200
nm, as a function of the wavelength. (left) ns = 2, (right) ns = 4. The coe�cients
have been scaled by di�erent factors in order to keep the same global scale (see
legends). αqn is the polarizability of order n and type q (see appendix A)

magnetic material (unit relative permeability). However, when the size of the scat-
terer is not negligible compared to the wavelength, Mie theory predicts that dielectric
particles also present magnetic dipole and multipole resonances (see below equation
1.8). Once again, as seen in �gure 1.4, a higher refractive index results in a stronger
resonance of the polarizability.

Finally, we want to point out the e�ect of high refractive index dielectrics on the
various resonances. Figure 1.5 is a comparative plot of the �rst four Mie resonances
(electric and magnetic dipoles and quadripoles) for two spheres of radius 200 nm
and of refractive index ns = 2 and ns = 4 respectively. We remark three e�ects
of an increase of the refractive index. First, the resonances become narrower (they
have a higher quality factor). The quality factor of the resonances also increase
with the multipolarity order n. Secondly, in link with the �rst point, the resonances
have a tendency to be more spectrally separated. Finally, the order in which the
resonances appear (e.g. for increasing frequencies) can be modi�ed: the electric
dipole resonance occurs before the magnetic dipole one, when ns = 2 in �gure 1.5a;
whereas the order is reversed when ns = 4 in �gure 1.5b.

1.2 Enhancing light-matter interactions

1.2.1 Enhancing decay rates

Let us consider an atom or molecule with 3 energy states: the ground state (0),
and two excited states (1) and (2) (see �gure 1.6). An electron may be excited by
an incoming photon at frequency ν20, thus bringing the molecule from the ground
state (0), to the excited state (2). The latter is considered to decay non-radiatively
to the excited state (1), which can spontaneously decay to the ground state, either
radiatively (by emitting a photon at frequency ν10), or non-radiatively. Right after
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the transition between excited states (2) and (1) occurs, the time interval (averaged
over a number of transitions) before the molecule decays to the ground state is
called the lifetime, τ , of the excited state (1). This lifetime is a Poisson process: the
probability, Pexc(t), that the atom is still in the excited state at time t if it is in the
excited state at time t = 0, follows an exponential law:

Pexc(t) = e−t/τ = e−tΓtot (Γtot ≡ 1/τ),

where the inverse of the lifetime, Γtot, is called the total decay rate [Novotny 2006].
By decomposing the total decay rate into radiative and non-radiative decay rates,
Γtot = Γrad + Γnr, we can cast �radiative� and �non-radiative� lifetimes, that are the
inverses of the radiative and non-radiative decay rates respectively:

τrad = 1
Γrad

τnr =
1

Γnr

Γtot = 1
τ =

1

τrad
+

1

τnr
,

and the probability Pexc(t) can thus be cast:

Pexc(t) = e−t/τrade−t/τnr = e−tΓrade−tΓnr

where the successive exponential decays correspond to the partial probability of a
radiative or non-radiative decay, respectively. Thus, when the emitter deexcites,
there is a probability:

η =
τ

τrad
=

Γrad

Γtot

that the transition is a radiative one. Since non-radiative transitions are generally
an undesirable source of energy dissipation, η is called the quantum e�ciency of the
emission.

Figure 1.6: The 3-level atom or molecule considered
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Figure 1.7: (a) Sketch of the considered dimer. The incoming �eld is either a plane
wave with electric �eld parallel to the gap, or an electric dipole placed at the centre
of the dimer and oriented along its axis (red arrow). The spheres are made of silver
and the surrounding medium is air. (b) Numerical computation of the enhancements
of (black line) excitation and (red line) radiative decay rate; (blue line, right scale)
quantum e�ciency of the emission, for η0 = 1

The decay rates are dependent on the electromagnetic environment of the emit-
ter. Compared to a reference decay rate Γ0 (i.e. the predicted or measured decay
rates when the emitter is isolated in vacuum or in a given embedding medium),
the modi�cation, Γ/Γ0, of the decay rate provided by structures like optical an-
tennas can attain several orders of magnitude, e.g. for gap structures like bow-
tie antennas [Novotny 2011] or dimer antennas [Lereu 2008]; �gure 1.7 shows an
example, when considering two spherical silver particles 80 nm in diameter and
separated by a 20 nm nanogap. The modi�cation of the decay rates, a quantum me-
chanical phenomenon in essence, can be calculated within a semi-classical approach
[Novotny 2006, Gre�et 2010, Stout 2011]. This approach uses the Green function
of the structure to compute the Local Density of Optical States (LDOS, see e.g.

[Novotny 2006]).

Lastly we point out that both radiative and non-radiative decay rates can be
increased, particularly when using metallic resonators. The quantum e�ciency of
the 1 → 0 transition for the isolated emitter, η0 = Γrad,0/Γtot,0 = 1 − Γnr,0/Γtot,0

is also modi�ed when it is coupled to the photonic structure. The new e�ective
quantum e�ciency of the 1→ 0 transition, ηeff , can be cast: [Bharadwaj 2009]

ηeff = Γ̃rad/
[
Γ̃tot + (1− η0)/η0

]
If the emitter is considered as perfect (η0 = 1) then the quantum e�ciency reduces
to the ratio Γ̃rad/Γ̃tot.
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1.2.2 Enhancing excitation intensities

In order to excite an emitter, one may use an incoming electromagnetic �eld (like a
plane wave, or a focused beam) at a carefully chosen wavelength. In our case, one
might want to excite the emitter, modeled here by a 3-level atom (see �gure 1.6)
from level 0 to 2, by using a laser beam of central frequency ν20 = E2−E0

h . In a weak
excitation regime (when the atom or molecule decays back to the ground state faster
than the available rate of excitation), the excitation rate of a molecule by means of
the laser beam is proportional to the square norm of the electric �eld component
parallel to the molecule's dipole orientation p [Novotny 2006]. Compared to the
incoming electromagnetic �eld Einc, the modi�cation of the excitation rate provided
by the antenna structure can thus be cast:

fenh,exc =
|Etot · p|2

|Einc · p|2

An increased local �eld intensity at the position of the emitter (more precisely,
a higher square norm of the electric �eld in the direction of the dipole moment of
the molecule) thus results in a faster excitation. This means that a lower incoming
beam power is required in order to excite the molecule at the same rate. As for the
decay rates, an easy and convenient way to achieve high �eld intensities consists in
using a gap antenna structure, such as a bow-tie antenna or a dimer antenna. Figure
1.7b shows the excitation enhancements for the same silver dimer than previously
considered.

1.2.3 Enhancing directivity

Emission directivity may be a concern for a number of applications, especially in
integrated photonic structures. If the supporting molecule is embedded in a homoge-
neous medium, most electronic transitions radiate as an electric dipole. Figure 1.8a
presents the classical dipole radiation pattern; the molecule radiates isotropically in
the plane perpendicular to the dipole transition moment. When using structures like
a Yagi-Uda antenna [Taminiau 2008, Curto 2010], a patch antenna [Esteban 2010]
or an appropriate dielectric sphere for instance [Devilez 2010, Rolly 2012c], the emis-
sion can be rendered more directive (see �gure 1.8b).
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Figure 1.8: Radiation diagrams (in logarithmic scale) at λ0 = 585 nm, (a) for an
isolated x̂-oriented electric dipole, emission directivity: 1.76 dBi; (b) for an electric
dipole coupled to a GaP sphere (refractive index n = 3.36) of radius 100 nm with
a 5 nm gap on the ẑ axis, emission directivity: 6 dBi. Inset: sketch of the emitter
and the induced electric (red) and magnetic (orange) induced dipoles in the sphere.
See section 1.3.4.4 for a de�nition of the directivity expressed in isotropic decibels
(dBi).
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1.3 Technical introduction

1.3.1 Mathematical and notational conventions

A summarized list of mathematical symbols used in this manuscript is presented on
page 105. Here, we will de�ne the basic mathematical notations that will be used
throughout the thesis.

1.3.1.1 General notational conventions

Number sets:

� N is the set of natural numbers : {0, 1, 2, 3, 4, . . . }.

� Z is the set of relative integers. Segments of Z will be written [a..b] where a
and b are the extrema.

� R is the set of real numbers, C is the set of complex numbers

� excluding 0 from a number set (e.g. N) will be written with an asterisk (e.g.
N∗ = {1, 2, 3, 4, 5, . . . }).

Basic complex operations:

� i is the imaginary number (i2 = eiπ = −1) pi

� the complex conjugate of z = a+ ib is noted z∗ = a− ib
Vectorial and tensorial operations:

� vectors and matrices are printed in bold : x,M

� tensors are hovered by the symbol �←→�:
←→
G0

� the identity matrix (respectively the identity dyad) will be written Id (respec-

tively
←→
Id)

� the additive identity will be written 0 regardless of its corresponding set

� the transposed conjugate of a vector or matrix M = (mi,j)i,j is noted
M† = (m∗j,i)i,j � the simple transposition will be indicated by a superscript t:
[mi,j ]

t = [mj,i]

� the scalar product is represented by a central dot: u · v =
∑

i u
∗
i vi

� a hat above a vector means that it is unitary : x̂ · x̂ = 1

� the vector product is represented by a cross : x̂× ŷ = ẑ.

A shorthand notation for multipole index sums is used:∑
n,m

→
∞∑
n=1

m=n∑
m=−n

.

Standard conventions are used for di�erential operators : the del operator is repre-
sented by ∇.
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1.3.1.2 Coordinate systems

There are two main coordinate systems used in this manuscript: the Cartesian
(O, x, y, z) and Spherical (O, r, θ, φ) systems. The cartesian base coordinates and
the spherical base coordinates are related using the standard convention in physics
(see �gure 1.9). We will also use the spherical base vectors, êr, êθ and êϕ:

êr = r̂ = sin θ cosϕx̂ + sin θ sinϕŷ + cos θẑ

êϕ = − sinϕx̂ + cosϕŷ

êθ = êϕ × êr

Figure 1.9: The two principal coordinate systems and how they are related : θ ∈
[0, π] is the polar angle from the (Oz) axis, φ ∈ [0, 2π] is the azimuth respectively
to the (Ox) axis.

1.3.1.3 Particle labels, positions and particle-centered radii

The reference spherical coordinate system is centered on origin O. N is the number
of scatterers of the considered system. In the equations, i ∈ [1..N ] is a label that
refers to the i-th sphere. The position vector of the i-th sphere is written ui, and
we de�ne a �particle-centered radius�, ri ≡ r− ui for each of the spheres.

1.3.1.4 Dimensionless quantities

We use normalized (dimensionless) quantities as often as possible. Normalized,
dimensionless quantities are generally indicated by a tilde:

� α̃qn = αq
n

4πa3
is the dimensionless polarizability of multipolar order n and elec-

tromagnetic type q

� Qscat, Qabs, Qabs are the scattering, absorption and extinction e�ciencies,
respectively. They are computed from the corresponding cross-sections σ:

Q = σ/
(
π

N∑
n=1

a2
n

)
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� Γ̃tot, Γ̃rad, Γ̃nr are the normalized total, radiative and non-radiative decay
rates respectively. The normalization factor is the reference decay rate, Γ0:
Γ̃ = Γ/Γ0

1.3.1.5 Harmonic �elds

The complex notation for both the electric �eld and magnetic �eld is used in order
to solve the Maxwell equations, meaning that the physical electric and magnetic
�elds correspond to the real part of their complex counterpart.

A time dependence of the electromagnetic �elds in exp(−iωt) is assumed, where
ω is the angular frequency. The wavelength in vacuum is written λ. The wavevector
in a homogeneous medium of refractive index n0 has a norm of k = 2π

λ n0. All
calculations are related to harmonic �elds and we do not consider nonlinear e�ects.

1.3.2 Multipole expansion of the �elds

The multipole expansion of the electromagnetic �elds is presented in detail in ap-
pendix A. Here we will only give the main equations, for future reference. Any
scattered �eld, Es (r), in a homogeneous medium and outside of a circumscribing
sphere surrounding the scattering system, can be developed in terms of outgoing
partial waves:

Es (r) =
∑
n,m

[
Mout

n,m (kr) fq=1,n,m + Nout
n,m (kr) fq=2,n,m

]
, (1.5)

where Mout
n,m, Nout

n,m, are the outgoing vector partial waves (VPWs) with outgoing
boundary conditions, and the fq,n,m are the complex coe�cients of the scattered
�eld in the VPW basis (see appendix A.2).

Any incoming �eld on a part of the totality of the system, can be expressed
in a very similar manner, using VPWs that satisfy incoming boundary conditions
instead of outgoing ones (see appendix A.2):

E0 (r) =
∑
n,m

[
Minc

n,m (kr) eq=1,n,m + Ninc
n,m (kr) eq=2,n,m

]
(1.6)

where the coe�cients fo the incoming �eld are the eq,n,m complex numbers. We
henceforth adopt a compact matrix notation where the �scalar product� is a short-
hand notation for the sums of VPWs in equations 1.5 and 1.6 (see appendix A.2.1):

Es(r) = [MN]out(r) · f
E0(r) = [MN]inc(r) · e

1.3.3 Mie-Foldy-Lax Multiple scattering theory

The system under study is an ensemble of spheres, and the incoming electromagnetic
�eld consists of a plane wave, a focused Gaussian beam, or an electric or magnetic
dipole placed in the vicinity of the spheres. The system is solved and any physical
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parameter (such as local �eld at a given point, cross sections, emitter's decay rates,
radiation diagrams, etc.) can be computed. We will �rst discuss the case of a
homogeneous sphere, then the case of an arbitrary, �xed ensemble of spheres.

1.3.3.1 Isolated spheres

Mie solved, in 1908, the scattering problem for a homogeneous sphere [Mie 1908].
We consider a homogeneous spherical particle of radius a, of permittivity εs, of
permeability µs, embedded in a homogeneous background characterized by εb and
µb. The wavevectors in the particle and background medium are ks = 2πns/λ and
kb = 2πnb/λ respectively. The electric (magnetic) coe�cient of order n, an (bn) can

be cast (see Appendix B.1 for the de�nition of jn, hn, ϕn and ϕ(3)
n ):

an =
jn(akb)

hn(akb)

εsϕn(akb)− εbϕn(aks)

εbϕn(aks)− εsϕ(3)
n (akb)

(1.7)

bn =
jn(akb)

hn(akb)

µsϕn(akb)− µbϕn(aks)

µbϕn(aks)− µsϕ(3)
n (akb)

(1.8)

Let e and f be the column matrices containing the incoming and scattered �elds'
coe�cients in the multipolar basis, respectively, expressed at the particle center. In
the GMT framework, the scattered �eld is then given by:

Es(r) =
∞∑
p=1

[
Mout

p (kr)fq=1,p + Nout
p (kr)fq=2,p

]
=

∞∑
p=1

[
Mout

p (kr)bneq=1,p + Nout
p (kr)aneq=2,p

]
because of the simple link between the incoming and scattered coe�cients, namely,
fq=1,p = bneq=1,p and fq=2,p = aneq=2,p respectively. This relation can be cast in a
matrix form:

f = Te (1.9)

where T is called the �T-matrix� (which is diagonal in this case). The scattered �eld
at a given point r outside the scatterer, Es(r), can eventually be cast: (see appendix
B.2)

Es(r) = [MN]out(r) · [T e] (1.10)

The physical parameters of the system can be computed from the value of the total
(incoming plus scattered) or scattered �elds. See Appendix B.3 for the case of
the computation of the �eld inside a scatterer. We shall now consider the case of
multiple spherical scatterers.

1.3.3.2 T-matrix of an ensemble of spheres

When the system under study consists of an ensemble of N scatterers, each scatterer
is assigned its own locally �incident� �eld, E0, decomposed into the multipole basis,
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and the equation system 1.9 becomes a system of 2Npmax lines which can still be
cast: (see appendix C.2)

f = T e ≡
N∑
j=1

T. (1.11)

where we point out that f is now a column matrix containing a set of incoming
�eld coe�cients for each scatterer. T is now the multiple-particle T-matrix, that
is no longer diagonal in the general case � even for homogeneous, identical scatter-
ers. With an appropriate de�nition of the multiple-particle row-matrix of outgoing
VPWs, [MN]out,N(r) (see appendix A.2.1), equation 1.10 is formally conserved as
well:

Es(r) = [MN]out,N(r) · [T e] (1.12)

1.3.4 Figures of merit

In order to compare the performance of di�erent designs, various �gures of merit
are commonly used throughout this thesis. Most of the time, as stated in section
1.3.1.4, those �gures will be dimensionless numbers. Each of them represents a
physical property of the designed nanoantenna, and we present them below (see
appendix D for full derivations of the cross-sections and decay rates expressions).

1.3.4.1 Scattering and extinction e�ciencies

The amount of scattering and absorption of an impeding plane wave by a particle
(or ensemble of particles) are traditionally represented by a �cross-section�, which
has the dimension of an area : it represents a surface, normal to the plane wave's
propagation direction, that intercepts the same amount of power as the power that
is scattered or absorbed, respectively, by the particle. Extinction is the sum of
scattering and absorption. In order to obtain a dimensionless parameter, we divide
the cross sections by the geometric cross-section of the system (the sum of the areas
of disks having the same diameters as the spheres in the system). We call these
quantities scattering and absorption e�ciencies.

With Iinc the radiance of the incoming plane wave, P, σ,Q the scatter-
ing/absorption/extinction power, cross section and e�ciency, and for an ensemble
of N spheres of radius (an)n, we have:

σ = P/Iinc

Q = σ/
(
π

N∑
n=1

a2
n

)
See appendix D.1 for a derivation of the scattering and absorption cross-sections

expressions in the GMT framework.
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1.3.4.2 Decay rates enhancements and quantum e�ciency

Appendix D.2 gives the derivation of the formulas that we use for the computation
of the decay rates. The quantum e�ciency of the emission is the fraction of power
that is radiated compared to the total power dissipated at this wavelength. When
calculating this energy balance, one should take into account the initial quantum
e�ciency η0 of the emitter [Bharadwaj 2007]. If the initial emitter is perfect, or if
the total decay rate enhancement is large compared to unity, the quantum e�ciency
reduces to the ratio of the radiated to the total decay rate enhancement, Γ̃rad/Γ̃tot.

Γ̃tot = Γ̃rad + Γ̃nr

ηeff = Γ̃rad/
[
Γ̃tot + (1− η0)/η0

]
ηeff = η ≡ Γ̃rad/Γ̃tot (η0 = 1 or Γ̃tot � 1)

1.3.4.3 (Normalized) Radiation diagrams

The shape of the radiation diagram is also modi�ed by the emitter's electromagnetic
environment. For more reliable radiation diagrams comparison, we always adopt the
same normalization: 1 corresponds to the maximum radiant intensity achieved in
the embedding dielectric matrix. In order to be able to perceive more details, some
of the radiation diagrams will be drawn with a logarithmic scale (1 on natural scale
equals 0 dB).

1.3.4.4 Directivity of the emission

In order to characterize the emission directivity, we use a �gure of merit that comes
from radio-wave antennas : the isotropic decibel (dBi). It represents the gain, in
dB, of the maximal radiant intensity over the intensity of an isotropic source with
the same total radiative power,

DdBi = 10 log(4πP/Γrad) (1.13)

where P is the power per steradian emitted in the direction of interest and Γrad is
the total radiative power of the antenna.

1.3.4.5 Fluorescence Enhancement

Fluorescence enhancement is a major topic of nanoantennas. We consider the simple
case of a three-level molecule, with one exciting wavelength and one (di�erent)
�uorescence emission wavelength, plus one non-radiative decay channel (see �gure
1.6). We assume that the �uorescence signal, produced by molecules in solution, is
collected by a microscope setup and reaches a photodiode. The photocurrent, Ifluo

is thus the measured signal, and we assume it can be expressed in a general form:

Ifluo = κ
∑
i∈M

Kcoll(i)Γeff(i)
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where:

� κ is the photon-to-current conversion e�ciency of the setup

� M is the ensemble of the excited �uorescent molecules

� Kcoll(i) is the collection e�ciency of the setup for the photons cast by the
molecule labeled i

� Γeff(i) is the photon emission rate of the molecule labeled i

The �uorescence enhancement factor is de�ned by the ratio:

Fenh = Ifluo/Iref

where Iref is a reference sample with the same experimental setup and excitation
characteristics as the studied sample, typically a sample where the nanoantenna
structure is absent. Fenh thus represents the signal enhancement provided by the
nanoantenna structure.

In this section we present the principal mechanics of �uorescence enhancement.
In order to introduce this concept in a simple way, we will consider a nondispersive

sample, which consists of identical emitters (in terms of decay rates, excitation cross-
sections and quantum e�ciencies) that allow ensemble averages, and a continuous

wave excitation. There are two main excitation regimes, the linear (low-power) and
saturation (high-power) regimes. In the low-power excitation regime, the �uorescent
molecule is able to release a photon, or deexcite non-radiatively, before another
incoming photon is avaiable to excite it again. The rate of the molecule's photon
emission is then proportionnal to the incoming power (i.e. incoming photons per
unit of time), hence the name of �linear excitation regime�. When the input power
increases, the emitted power gradually tends towards a saturation regime, where
the molecule is excited again as soon as it reaches the ground level. The maximal
emitted power is then limited by the rate at which the molecule deexcites to the
ground state once it is excited by an incoming photon.

Linear excitation regime : In the linear excitation regime, the photon emis-
sion rate is proportionnal to the excitation intensity, and the photocurrent can be
expressed [Aouani 2011]:

Ilin(t) = κ

∫
V eff

Iexc(r)Kcoll(r)C(r)ση d3r

where:

� V eff is the e�ective volume that is excited

� Iexc is the excitation intensity at the excitation wavelength

� C is the concentration of the �uorescent molecule in the solution



20 Chapter 1. Introduction

� σ is the absorption cross-section of the molecule

� η is the e�ective quantum e�ciency of the molecule

Thus we can cast, in the hypothesis that σ and C are the same between the
studied and the reference samples:

Fenh =

∫
V eff Iexc(r)Kcoll(r)η d3r∫

V eff Iexc,0(r)Kcoll,0(r)η0 d3r

Therefore, in this regime, the excitation intensity (which depends on both the
microscope setup, and on the nanoantenna structure, provided there is one in the
excited volume) is the main parameter which can increase the observed signal. This
regime is thus particularly adapted to probe the excitation intensity of a given setup,
and compare the excitation intensity enhancements of several setups, but it does not
provide the highest output photon count rates. The other important parameters are
the e�ective quantum e�ciency η, which can be greatly modi�ed by the antenna
structure, and the collection e�ciency Kcoll, which can be controlled as well via a
modi�cation of the radiation diagram of the molecules.

Saturation regime : In the saturation regime, the �uorescent molecule has
the highest possible output photon count rate, which is limited by its decay rate:
it cannot emit a photon faster than its decay time. The photocurrent is writ-
ten: [Aouani 2011]

Isat(t) = κ

∫
V eff

Kcoll(r)C(r)Γtotη d
3r

Thus with the same hypothesis as in the linear excitation regime, we can cast:

Fenh =

∫
V eff Kcoll(r)Γtotη d

3r∫
V eff Kcoll,0(r)Γtot,0η0 d3r

In this regime, the main parameter is thus the decay rate enhancement provided
by the nanoantenna structure. The collection e�ciency and quantum e�ciency still
play the same role as in the linear excitation regime. This regime is thus adapted
to probe the decay rate enhancements of di�erent structures, and it provides the
highest signal levels.
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From Light to Matter

(elastic scattering, absorption)

�Light thinks it travels faster than anything but it is wrong. No matter how fast

light travels, it �nds the darkness has always got there �rst, and is waiting for it.�

Terry Pratchett, English writer (1948�)
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In this chapter, we will consider the case of a far-�eld illumination of the an-
tenna structure. Even when the particle size is non negligible compared to the
wavelength, an electric dipole-dipole coupling model with full retardation e�ects
can give accurate results provided the multipole contribution in the structure are
not too strong. Such a model is presented in section 2.1. This electric dipole model
can easily be extended in order to take into account the magnetic induced dipole
resonances of dielectric particles and of metallic structures like split ring resonators
(SRRs); however, in this case the breaking of the central symmetry has a number
of consequences. Some of those consequences, in the case of a SRR-shaped metal-
lic resonator, are presented in section 2.2. Dipole coupling models help to better
understand the physics underlying the behavior of coupled and isolated resonators
alike, but some care must be taken when considering strongly coupled systems. The
one-dimensionnal array of particles is a canonical example of a strongly coupled
system, since multipoles can participate in the array coupling, even for separations
between particle surfaces the order of the radius, as shown in section 2.3.
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2.1 E�ective polarizability of a metallic dimer

2.1.1 Full dynamics electric dipole-dipole coupling model for far-

�eld illuminations

Figure 2.1: (a) De�nition of the spherical coordinates; dimer illumination schematics
for: (b) Transverse illuminations, and (c) Longitudinal illumination.

We consider the case of two electric dipole resonators coupled together and
arbitrarily labeled 1 and 2. The general case of oblique incidences, non-scalar polar-
izabilities and/or distinct resonators can be treated with equations quite similar to
those presented below, when adopting an adequate GMT formulation of the prob-
lem. We will consider the mathematically simpler case of two identical scatterers
(the structure is henceforth called a dimer) with scalar polarizabilities, and three
main cases of far-�eld illumination: incoming wavevector parallel to the dimer axis
(which we name k‖), and incoming wavevector perpendicular to the dimer axis, with
the electric �eld (E‖) or magnetic �eld (H‖) parallel to the dimer axis. The res-
onators are separated by a center-to-center distance d. The coupling between the
two resonators results in the multiple-scattering system of equations:

E(1)
exc = E

(1)
inc + E2→1

scat , (2.1)

E(2)
exc = E

(2)
inc + E1→2

scat , (2.2)

where Einc is the incoming �eld, Ei→j
scat is the �eld scattered by resonator i at the

position of resonator j, and E(j)
exc is the exciting electric �eld associated with the par-

ticle j. Due to the symmetries, when the illumination is (k‖), or (H‖), both induced
electric dipoles are transverse (T) to the dimer axis; and when the illumination is
(E‖), the induced dipoles are longitudinal (L) to the dimer axis. In both transverse
cases, the coupling is itself identical, but in the E‖ case the incoming �elds are
identical whereas in the k‖ case they are out of phase because of the propagation
on the distance d between the resonators. We thus place the two particles along
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either the x̂-axis or the ẑ-axis depending on the studied illumination conditions (see
�g. 2.1). The particle orientations were chosen so that the incident electric �eld can
be conveniently taken to lie along the ẑ axis throughout this study, i.e.:

Einc,E‖(x) = Einc,k‖(x) = E0ẑe
ikx,

Einc,H‖(y) = E0ẑe
iky,

(2.3)

where k = (ω/c)nb is the wavenumber of the incoming plane wave in the background
environment (refractive index nb). The induced dipole moments of each particle are
thus also aligned along the ẑ-axis, and can be expressed:

p(j)(ω) = ε0εbα(ω)E(j)
exc(ω)ẑ. (2.4)

We introduce an e�ective polarizability approach [Markel 1993, Gozhenko 2003,
Pinchuk 2005, Khlebtsov 2006] wherein the multiple scattering phenomena occur-
ring between the two spheres is assimilated into an �e�ective� polarizability (the term
�dressed polarizability� is also used [Albella 2013]). The electric �eld produced by
the electric dipole moment p(j) can be expressed (from equation ??):

E
(j)
scat(r) =

eikr

4πεbε0r3

{
k2r2(r̂×p(j))× r̂ + (1− ikr)

[
3(r̂ · p(j))r̂− p(j)

]}
. (2.5)

The excitation �elds for spheres 1 and 2 can thus be written: (see demonstration in
appendix E.1.1):

E(1)
exc = E

(1)
inc + γE(2)

exc, (2.6a)

E(2)
exc = E

(2)
inc + γE(1)

exc, (2.6b)

where γ is a coupling factor between the two induced dipoles:

γT = γk‖ = γH‖

≡ eikd α

4πd3
(k2d2 + ikd− 1),

(2.7a)

γL ≡ γE‖ ≡ eikd
α

2πd3
(1− ikd). (2.7b)

We remark in these expressions of the coupling factors, γ, that the propagation
term eikd, is only partly responsible for the phase of the coupling factor, and we
can readily surmise that the respective factors (k2d2 + ikd − 1) and (1 − ikd) play
non-negligible roles, particularly at distances that are small or comparable to the
wavelength.

The solution to the system of coupled equations (eqs. (2.6a) and (2.6b)), can be
expressed in terms of the following e�ective polarizabilities (see demonstration in
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appendix E.1.1): [Rolly 2011b]

α
(1)
eff,k‖ = α

1 + γTe
ikd

1− γ2
T

, (2.8a)

α
(2)
eff,k‖ = α

1 + γT e
−ikd

1− γ2
T

, (2.8b)

α
(1)
eff,H‖ = α

(2)
eff,H‖ =

α

1− γT

, (2.8c)

α
(1)
eff,E‖ = α

(2)
eff,E‖ =

α

1− γL

, (2.8d)

which express the induced dipole moment of each particle directly in terms of the
incident �eld on that particle, i.e.:

p(j)(ω) = ε0εbα
(j)
eff (ω)E

(j)
inc(ω)ẑ. (2.9)

The e�ective polarizabilities are thus proportional to the single particle polarizabil-
ity, and to a term involving the inter-particle coupling γ. We can cast the relative
phase, φ, between the two induced dipoles in the k‖ case:

φ = arg(p2/p1) = arg(eikd
1 + γTe

−ikd

1 + γTe
ikd

). (2.10)

Once the induced dipole moments are known, one can calculate the scattered
electromagnetic �elds and infer any physical parameter of the scattering process.
We consider below, the scattering cross-sections of a sub-wavelength metallic dimer
under the three di�erent illuminations presented here.

2.1.2 Results on large subwavelength metallic dimers

When considering the cross sections of a dimer of metallic particles with sizes and
gaps much smaller than the wavelength (i.e. total maximal size < λ/10), one
can easily apply the plasmon hybridization model [Nordlander 2004]. This model
predicts that the �brightest� mode (the one which scatters the most power) will
appear when the polarization of the incident beam is longitudinal to the dimer
and the induced dipoles are in phase ; on the other hand, when the dipoles are in
opposite-phase, applying a quasi-static model results in a reduction of the net dipole
moment, which leads to a �dark� mode (which scatters little light).

This model is very elegant, and, when we consider small particles (around 20
nm diameter in optics), quite accurate. But some authors tend to use the termi-
nology of �bright� or �dark� modes for much larger particles, when the quasi-static
approximation is no longer valid [Yang 2010]. In the following, we will demonstrate
that when the quasi-static approximation fails, under certain circumstances, the
brightest mode of a dimer may only occur, not when the incident polarization of
light is longitudinal to the dimer and the induced dipoles are in-phase, but rather
when the polarization is transverse and the induced dipoles out-of-phase (or even in
opposite-phase).
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Figure 2.2: Scattering properties of a dimer of silver particles, D = 110 nm in
diameter with respective nanogap sizes, (d − D), of (left) 25nm and (right) 100
nm. The dimer is embedded in a matrix of refractive index nb = 1.5. (full lines
and symbols, left scale) Scattering e�ciencies per particle, Qscat ≡ σscat/(2πa

2):
(full black circles) k‖, and (blue squares) H‖, (green triangles) E‖ illumination, (full
lines) values for the monomer (σscat/(πa

2)). (dashed black line, right scale) Relative
phase of the induced dipoles, for the k‖ illumination.

We consider a dimer of silver spherical particles (radius a = 55 nm, permit-
tivity extrapolated from experimental values of Palik and Ghosh [Palik 1998]) in a
polymer-like environment of refractive index nb = 1.5. The generalized Mie theory
is implemented in order to accurately calculate both the scattering cross-section and
the electric �eld at the center of each metallic particle. We plot the relative phase
of the two induced dipoles (for the k‖ illumination) as a function of the incident
wavelength together with the scattering cross-section of the dimer (�g. 2.2). We
focus attention on wavelengths between 500 nm and 750 nm, where all dipole phe-
nomena occur for the studied dimer. Hence the features of the cross-sections around
λ = 425 nm, that are of multipolar nature (quadrupolar for the most part), will not
be described here.

Symmetry dictates identical phases for the induced dipoles of a dimer in both
E‖ and H‖ illuminations, but phase di�erences are important for a k‖ illumination.
It is noteworthy to remark that for the latter illumination, and nanogaps much
smaller than the incident wavelength (like both 25 nm and 100 nm cases), the
maximum of the scattering cross-section does not correspond to in-phase dipoles,
but rather to strongly out-of-phase ones. In the case of a 100 nm nanogap, the
two induced dipoles are even in opposite relative phase at the scattering cross-
section maximum. Moreover, the nearly opposite phase mode observed for the 25
nm nanogap has a larger scattering e�ciency than the in-phase mode observed for
both other illuminations. Those counter-intuitive results can be explained with the
help of the dipole-dipole coupling model derived in the previous section.

Indeed, using this model, we can show that the scattering cross sections of such a
dimer of dipolar particles are closely linked to the square modulus of the e�ective po-



26 Chapter 2. From Light to Matter

larizabilities, in a manner similar to the scattering e�ciency of a monomer, which is
directly proportional to the square modulus of its polarizability: (see demonstration
in appendix E.1.2)

σscat,k‖ =
k4

6π

[ ∣∣∣α(1)
eff,k‖

∣∣∣2 +
∣∣∣α(2)

eff,k‖

∣∣∣2
+ 2<(α

(1)
eff,k‖(α

(2)
eff,k‖)

∗e−ikd)AT

]
,

(2.11a)

σscat,H‖ =
k4

3π
|αeff,H‖|2

(
1 + AT

)
, (2.11b)

σscat,E‖ =
k4

3π
|αeff,E‖|2

(
1 + AL

)
, (2.11c)

where the factors AT,L are respectively de�ned to contain the radiative interference
e�ects:

AT ≡ 3
(k2d2 − 1) sin(kd) + kd cos(kd)

2(kd)3
,

AL ≡ 3
sin(kd)− kd cos(kd)

(kd)3
.

(2.12)

The radiative interference terms, AT,L, can both be replaced by 1 in the limit of
kd → 0 (to the 3rd order in kd), and decrease only slowly with increasing kd.
Consequently, their kd dependence can be safely ignored during this study.

The normalized per sphere scattering e�ciencies, Qscat are plotted in �g. 2.3
for all three illuminations as functions of λ and d using both the above analytic
model and full electromagnetic calculations (generalized Mie theory with nmax = 20

maximum multipole order). The monomer resonance frequency is indicated in all
graphs by a dashed white line. One can see that the analytic dipole formalism
remarkably predicts that: (i) transverse couplings can produce larger scattering
cross-sections than longitudinal couplings and that, (ii) for in-phase dipoles modes
(E‖ and H‖ illuminations), the maxima are not obtained when the separation is
minimal (d − D → 0), but rather for separations of d = 450nm and d = 300nm
respectively.

If we neglect the in�uence of the numerator in eqs. (2.8a) and (2.8b), and de�ne
KT ≡ |γT|, KL ≡ |γL|, ΘT ≡ arg(γT) and ΘL ≡ arg(γL), we deduce from eqs. (2.8a)
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Figure 2.3: (top row) Scattering e�ciency calculated with the dipolar model, ver-
sus the center-to-center separation, d (abscissa), and the vacuum wavelength, λ
(ordinate), for a dimer of silver spherical particles 110 nm in diameter. (a) E‖ il-
lumination, (b) H‖ illumination and (c) k‖ illumination. Bottow row : same plots
using the generalized Mie theory.

to (2.8d):

∣∣αeff,k‖
∣∣2 ∼= |α|2∣∣∣1− (KT eiΘT)2

∣∣∣2
=

|α|2

1 + K4
T − 2K2

T cos(2ΘT)
,

(2.13a)

∣∣αeff,H‖
∣∣2 =

|α|2

|1−KT eiΘT |2

=
|α|2

1 + K2
T − 2KT cos ΘT

,

(2.13b)

∣∣αeff,E‖
∣∣2 =

|α|2

|1−KLeiΘL |2

=
|α|2

1 + K2
L − 2KL cos ΘL

.

(2.13c)

This set of equations can predict which nanogap separations and wavelengths pro-
duce scattering e�ciencies maxima. We cast the `resonant' values, ΘR, of the cou-
pling phase (i.e. that minimize the respective denominators in eqs. (2.13a) to (2.13c):
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ΘR,k‖ = 0[2π] or π[2π], (2.14a)

ΘR,H‖ = 0[2π], (2.14b)

ΘR,E‖ = 0[2π]. (2.14c)

The e�ect of the inter-particle scattering term in the coupling of two particle
resonators has been neglected in some previous works since the involved distances
are much smaller than the incident wavelength, but the terms k2d2 + ikd − 1 and
1− ikd in eqs. (2.7a) and (2.7b) are of fundamental importance in order to explain
the counter-intuitive results of �gure 2.3. From eqs. (2.7a) and (2.7b) the phase of
the polarizabilities of the isolated particles can be expressed:

arg(α) = ΘT − kd− arg(k2d2 + ikd− 1), (2.15a)

arg(α) = ΘL − kd− arg(1− ikd). (2.15b)

As we see in eq. (2.13), the e�ective polarizabilities, which are directly linked to
the scattering e�ciencies, are proportional to both the polarizability of the monomer
α, and to a denominator whose resonance conditions are given in eq. (2.14). For
a passive particle (the material is not a gain medium), the possible values of the
argument of the polarizability lies between 0 and π (α has a positive imaginary part).
The resonance of the polarizability of the monomer under study (see inset in �g. 2.4)
occurs at a vacuum wavelength λ0 = 575nm, and at this wavelength the argument
of the polarizability has a value ≈ 0.42π, close to the quasi-static predicted value
of π/2. For wavelengths blue-shifted from this resonance, the argument increases
toward π, and reciprocally it decreases to 0 for red-shifted wavelengths.

There is no direct link between the particle polarizability resonances and that of
the coupling. Hence, usually the resonance of the scattering e�ciencies will consist
in a compromise between the (monomer) polarizability resonance and the coupling
resonance factor. In order to illustrate this, let us plot (�g. 2.4) the evolution of
arg(α) as a function of kd (using eq. (2.15)) required so that Θ = ΘR as de�ned
in equation 2.14. This �gure is of fundamental importance for the understanding
of the aforementioned results: it represents the argument that the polarizability
should have in order to obtain a resonance of the coupling term, for a given distance
parameter kd.

We �rst look at in-phase modes using the quasi-static approximation, i.e.

kd → 0. We remark that the redshift of the (longitudinal) bonding mode and
the blueshift of the (transverse) anti-bonding modes (correctly predicted by the hy-
bridization model) are also described by the non quasi-static model presented in
this study. Maximizing the scattering couplings in the kd → 0 limit requires a
polarizability phase tending towards zero for the longitudinal (bonding) mode and
π for the transverse (anti-bonding) mode. While both those conditions cannot be
achieved simultaneously at a polarizability resonance (which requires arg(α) ≈ π/2),
a compromise between the coupling resonance and the polarizability of the monomer



2.1. E�ective polarizability of a metallic dimer 29

Figure 2.4: (left) Phase of the polarizability ful�lling the respective coupled reso-
nance conditions : k‖ illumination (red triangles), H‖ and k‖ illuminations (black
circles), and E‖ illumination (blue squares). (right inset) Scattering e�ciency (solid
black line, left scale) and phase of the polarizability (dashed blue line, right scale)
of a 2a = 110nm silver sphere embedded in a dielectric medium of refractive index
nm = 1.5. Vertical lines are plotted for a phase equal to that of point A (dashed
line) and points B and C (full line) in the left �gure.

results in a shift of the resonance toward red (bonding) or blue (anti-bonding) wave-
lengths respectively, compared to the resonance of the monomer.

For the more dephased excitations obtained with a k‖ illumination, a study of
point A in �g. 2.4 shows that the coupling term can be optimized near kd =

√
2 ≈

π/2, i.e. near the contact situation (contact being described at λ ∼= 615nm by kd ≈
1.68 ≈ π/2), if the polarizability phase is ≈ π/4 (which implies a redshift compared
to the monomer resonance). From the inset, we can see that the polarizability
amplitude at this phase remains non-negligible. As predicted, we do remark in
�g. 2.3 a red-shifted resonance under the k‖ illumination. In general, the scattering
e�ciency of the k‖ con�guration is expected to produce local maxima when either the
black or red curves in �g. 2.4 pass through the dotted line because the polarizability
and the coupling are thus simultaneously optimized. Counting the point A as
the �rst local maxima we can see that this condition is satis�ed with a period
of approximately π respectively to kd, which explains the λ/2 periodicity of the
scattering e�ciency maxima in �g. 2.3.

Similar considerations also predict that the H‖ and E‖ illuminations will be
brightest respectively around kd ≈ 3π/2, and kd ≈ 2π (points B and C). In these
respective cases, when kd increases, the required arg(α) for a resonant coupling will
vary from π to 0, inducing blue then redshifts of the scattering e�ciency maximum
when kd increases around its optimum value. Let us recall that the coupling term is
rapidly decreasing with respect to d (see eqs. (2.7a) and (2.7b)) so that its in�uence
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on the wavelength of the scattering e�ciency maximum will be small when compared
to the resonant polarizability of the particles. The values we obtained in �g. 2.3 (λ ∼=
569nm, d ∼= 290nm, i.e. kd ∼= 1.53π for the H‖ illumination, and λ ∼= 571nm, d ∼=
387nm, i.e. kd ∼= 2.03π for the E‖ illumination) agree with these predictions. The
dimer illuminated upon the H‖ and E‖ illuminations will be brightest when black
and blue lines respectively will cross the 0.42π ordinate, explaining the twice larger
periodicity of the scattering e�ciency observed in �g. 2.3.a-b than that observed in
�g. 2.3.c for the k‖ illumination.

The dipole coupling model we derived in this section is accurate and helps to
comprehend some complex coupling phenomena, but it needs to be extended if one
wants to treat dielectric particles, for instance, or specially designed metallic struc-
tures like split ring resonators, for which the magnetic induced dipoles must be
taken into account. The model can be extended to electric and magnetic dipoles
with ease [Rolly 2012c]. There is a supplemental degree of complexity of the equa-
tions, though, especially when considering scatterers that are non-centrosymmetric,
because in most cases their polarizability is not a scalar.

As a matter of fact, we will see in the next section that, even when the sizes
of the resonators are less than a tenth of the wavelength, the central symmetry
breaking in shapes like split ring resonators give rise to corrections that are required
in order to accurately compute the induced electric and magnetic dipole moments.

2.2 Geometry e�ects illustrated on a SRR geometry

In this section, we will treat the case of a metallic resonator that exhibits a sub-
stantial magnetic dipole resonance. This type of resonance is highly desirated for
a number of applications, in meta-materials [Sersic 2009] and in near-�eld spec-
troscopy [Noginova 2008] for instance. In order for metallic particles to exhibit such
resonances, they require to have non-spherical shapes. We consider in particular the
well-know split ring resonator (SRR) shape, and discuss the e�ects of �breaking� the
spherical geometry on the dipole polarizability tensor of the scatterer.

2.2.1 Some central symmetry breaking e�ects

Thanks to their central symmetry, the T-matrices of spherically-symmetric scatter-
ers are diagonal in p, which implies that the only way to excite the Nout

n0,m0
outgoing

Vector Partial Wave (see appendix A.2) from the particle, is to have a nonzero
fe,n0,m0 exciting �eld on the particle, for the same multipole expansion numbers n0

and m0. Subsequently, the coupling between electric and magnetic resonances of
the scatterer is not possible.

When the central symmetry is broken, however, the T-matrix of the scatterer is
no longer diagonal. One may then excite, for instance, an electric dipole moment
on the ẑ axis, pz 6= 0, even though the incident �eld is null on the same axis,
Einc · ẑ = 0. This dipole moment pz can be induced by a coupling with either the
incident electric �eld on the other Cartesian axes, or with the incident magnetic
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�eld, or even both at the same time. A simple example using a dielectric dimer of
nonzero electric and magnetic polarizability is illustrated in �gure 2.5.

Figure 2.5: A dielectric dimer is illuminated by a plane wave, with incident magnetic
�eld parallel to its axis. The plane wave excites induced dipoles of the same type
and on the same axes as the incident �elds in each of the spheres, and a third
induced dipole, of magnetic nature, appears as well in each sphere (in the same
direction as kinc): it is excited by the magnetic �eld coming from the transverse
electric induced dipoles (in red). As can be deduced from the symmetries of the
system, those induced dipoles are in opposite relative phase.

Consequently, the polarizability tensor ¯̄α of an (electric and magnetic) isolated
dipole resonator illuminated by an electromagnetic �eld (E0,H0) is generally cast
[Lindell 1994, Varault 2013]:[

p

m

]
=

[
¯̄αee ¯̄αem

¯̄αme ¯̄αmm

]
︸ ︷︷ ︸

¯̄α

[
E0

H0

]
(2.16)

where ¯̄αee and ¯̄αmm describe direct electric and magnetic e�ects while ¯̄αem and ¯̄αme

refer to the electro-magnetic and magneto-electric coupling polarizability tensors.

2.2.2 Model for the dipole moments induced by a plane wave

Equation (2.16) predicts a linear dependence on the local incident �eld components,
a property which is true when moments of a given angular momentum order are only
induced by excitation �elds of the same order. This situation is usually satis�ed for
highly symmetric particles, but proves questionable in full multipolar theory for
particles of arbitrary form, wherein spatial derivatives of the excitation �eld can
also contribute to the dipolar responses through [Mazur 1953, Raab 2005]:

pi = αeeijE
0
j + aijk∇kE0

j + αemij H
0
j + bijk∇kH0

j + · · ·

mi = αmeij E
0
j + cijk∇kE0

j + αmmij H0
j + dijk∇kH0

j + · · ·
(2.17)
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where each subscript i, j, and k corresponds to one space coordinate x, y , or z, and
where the dipolar (resp. quadrupolar) coupling terms are given by the tensors ¯̄αee,
¯̄αmm, ¯̄αem, and ¯̄αme (resp. ¯̄a, ¯̄b ,¯̄c, and ¯̄d). Equation (2.17) introduces a dependence
on the wavevector orientation appearing along any non-symmetric direction of the
particle or nano-cluster. In terms of the T-matrix coe�cients of the SRR, these
e�ects are traduced by nonzero non-diagonal terms, tp1,p2 6= 0 with p1 6= p2.

Figure 2.6: Schematic of the studied U-shaped resonator and de�nition of the
referential cartesian coordinate system. The U-shaped resonator is made of
gold[Johnson 1972] and is embedded in air. The resonator has equal lateral di-
mensions lx and lz of 200nm and a thickness ly of 25nm, while the gap width is set
to 60nm.

In [Varault 2013] we illustrated how multipolar couplings a�ect the induced
dipole moments for U-shaped resonators such as described in Fig. 2.6, even for
particle sizes as small as ≈ λ/10. Using an appropriate formulation of the Finite
Element Method (FEM), the induced electric and magnetic dipole moments, p and
m, can be calculated for each illumination con�guration. Symmetry considerations
as well as numerical values con�rm that one can approximate, for the studied metal-
lic magneto-electric scatterer and at the wavelength λ = 1375 nm, the polarizability
tensor of equation 2.16 by a tensor that depends on the projection cos(θ) of the
incoming wavevector on the ẑ axis, which bears the asymmetry of the structure (see
�gure 2.6): [Varault 2013]

¯̄αcor =



αeexx + axxz cos θ 0 0 0 αemxy + bxyz cos θ 0

0 0 0 0 0 0

0 0 αeezz 0 0 0

0 0 0 0 0 0

αmeyx + cyxz cos θ 0 0 0 αmmyy + dyyz cos θ 0

0 0 0 0 0 0


(2.18)
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In the latter expression, each component is constant for the considered wavelength:
all the modi�cations induced by the incidence angle are properly described by the
cos(θ) dependence. This cos(θ) dependence comes from the ∇k derivatives in equa-
tion 2.17, in other words, they are due to the �rst-order retardation e�ects of the
incident electromagnetic �elds on the scattered �elds, which are not symmetric re-
spectively to the ẑ axis.

This model, that is deduced from the computation of the induced dipole moments
when the incidence lies either in the (yOz) plane (with the electric �eld on the x̂

axis) or the (xOz) plane (with the magnetic �eld on the ŷ axis), is then con�rmed by
checking that it gives the correct predictions of dipole moments with some oblique
incidences. Those oblique incidences also reveal that the corrected form of equation
2.18 are mandatory in order to obtain the correct values of the dipole moments in
the studied structure. [Varault 2013]

2.3 Long range coupling e�ects in 1D periodic arrays

Since the discovery of (natural) di�raction gratings in the late 17th century by
James Gregory, the di�raction of light by periodic structures has been thoroughly
studied and a remarkable amount of applications were found, e.g. monochromators,
spectrometers, and chirped pulse ampli�cation systems. Today a number of methods
allow to calculate the di�raction and absorption of EMWs by periodic structures,
the choice of one technique over another being guided by the practical domain of
application of a given method, or by the user's preference.

In the following, we will present a method, detailed in [Rolly 2012b], that allows
one to readily calculate the �leaky modes� of 1-dimensional periodic arrangements of
sub-wavelength spheres (each sphere being homogeneous and identical to its neigh-
bors) in a homogeneous embedding medium. Since the method is based on the
resolution of a periodic Green's function, it can actually retrieve not only the leaky
modes, but also the eigenvectors, the near- or far-�elds, etc.

2.3.1 Electric dipole couplings in 1D arrays of resonators

The problem under study consist in an in�nite line of identical sub-wavelength sized
spherical resonators aligned along the z axis with center-to-center separation d.
The principal characteristic of the individual chain elements is that their material
properties produce a resonant electric dipole response in sub-wavelength particles
(e.g. noble metal particles in the visible spectrum). See �g. 2.7.

We want to compute what we shall henceforth call �leaky modes� of the array,
characterized by a complex-valued β(ω) parameter which, based on the assumptions
of equations 2.20 and 2.21 below, induces a resonant behavior of the excitation
�elds of the resonators. In section 2.3.2 we will discuss the physical meaning and
consequences of the equations cast below; here we derive the mathematical model
and the algorithms that allow us to �nd the adequate β(ω) complex values.
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Figure 2.7: Schematic of the studied one-dimensionnal array of spherical particles.
The chain lies along the z axis and is characterized by the material of the scatterers,
their radius a, and the center-to-center distance d between them.

We recall that the electric �eld radiated by a point dipole of moment p, immersed
in an embedding �matrix'' of permittivity εm, is given by equation 1.2:

Es (r, ω) =
eikr

4πεbε0r3

{
(1− ikr) [3r̂ (r̂ · p)− p] + k2r2 ((r̂× p)× r̂)

}
, (2.19)

where the spherical position vector r = rr̂ is centered on the dipole, and k ≡
(ω/c)

√
εb is the wavenumber of the background medium. In the equations below

we use the dimensionless polarizability α̃:

α̃(ω) ≡ α(ω)/(4πa3)

p (ω) = 4πa3ε0εbα̃(ω)Eexc(ω) (2.20)

The incident, excitation and total �elds are all assumed to satisfy the quasi-periodic
phase condition on the wavevector component along the z axis, henceforth denoted
β :

β ≡ k · ẑ,
Einc,exc,tot(z + d) = eiβdEinc,exc,tot(z). (2.21)

If the incident �eld is a plane wave, then β is the projection of its wavevector, kinc,
along the z axis, which constrains |β| ≤ k, but in general, propagating modes only
need to satisfy the condition Re (β) ≤ 2π/d, imposed by the lattice spacing.

The Foldy-Lax excitation �eld for an arbitrary particle is the superposition of the
incident �eld and the �eld scattered by all the other particles in the line. Using eq.
2.20 for the dipole moments of the particles, and eq.(2.19) for their scattered �elds,
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the transverse and longitudinal excitation �elds (i.e. �transverse� and �parallel� with
respect to the line) are respectively:

Ee,⊥ =Ei,⊥ −
(a
d

)3
α̃
∑
j∈Z∗

ei(|j|kd+jβd)

|j|3
(

1− i |j| kd− (jkd)2
)
Ee,⊥

Ee,‖ = Ei,‖ +
(a
d

)3
α̃
∑
j∈Z∗

2ei(|j|kd+jβd)

|j|3
(1− i |j| kd)Ee,‖.

The above relations can both be generically written:

Ee = Ei + Σ (ω, β) α̃Ee . (2.22)

where Σ is a �self� employed by some authors [Koenderink 2006, Conforti 2010],
that represents the sum of the array couplings (henceforth called �lattice sum�)
ζ(j, kd, βd) between two particles separated by jd:

ζ⊥ (j, kd, βd) ≡ − 1

(kd)3

(
1

|j|3
− ikd 1

j2
− (kd)2 1

|j|

)
ei(|j|kd+jβd)

ζ‖ (j, kd, βd) ≡ 2

(kd)3

(
1

|j|3
− ikd 1

j2

)
ei(|j|kd+jβd) .

(2.23)

Σ (ω, β) ≡ (ka)3
∑
j∈Z∗

ζ (j, kd, βd) , (2.24)

The solution for the excitation �eld for either polarization is then:

Ee =
Ei

1− α̃Σ (ω, β)
, (2.25)

and the dispersion relations of the quasi-modes are obtained by solving:

1− α̃Σ (ω, β) = 0 , (2.26)

which is the required condition for a non-zero excitation �eld to exist in the absence
of an incident �eld.

Inspection of eqs.(2.23)-(2.24) shows that all terms in the lattice sum of
Σ can be expressed in terms of polylogarithm functions which are de�ned
by [Abramowitz 1972]:

Lin (z) =
∞∑
j=1

zj

jn
,

whereby the selfs of eq.(2.24) can be expressed using polylogarithm functions (see
also [Koenderink 2006, Linton 2009, Conforti 2010, Campione 2011] and references
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there-within):

Σ⊥(ω, β, d) =−
(a
d

)3{
[Li3(ei(k−β)d) + Li3(ei(k+β)d)]

− ikd[Li2(ei(k−β)d) + Li2(ei(k+β)d)]

− (kd)2[Li1(ei(k−β)d) + Li1(ei(k+β)d)]
}

Σ‖(ω, β, d) =2(
a

d
)3
{

[Li3(ei(k−β)d) + Li3(ei(k+β)d)]

− ikd[Li2(ei(k−β)d) + Li2(ei(k+β)d)]
}

(2.27)

Strictly speaking, the polylogarithm series Lin(z) of positive order n that appear
in equation 2.27 only converge for |z| < 1, but they can be analytically continued
onto the complex plane with a branch cut on the real line, for x ∈]1,∞[; for a real
argument strictly greater than 1, the series grossly diverge. A recursive numerical
algorithm allows to compute the polylogarithms in a fast and accurate manner
(worst-case scenario of 1 precision bit per loop) [Crandall 2006].

2.3.2 Discussion on the physical meaning of �leaky modes�

Upon injecting equation 2.26 into 2.22, one obtains:

Einc = 0. (2.28)

It ensues that this model does not seem to be able to provide a concrete way of
exciting the so-called leaky modes. We discuss this assumption below after some
further developments of the model. To the best of our knowledge, there is no known
analytical solution to equation 2.26, and thus a numerical resolution is required.
Equation 2.26 is scalar, because a coupling type (transverse or longitudinal) has
been chosen, but in a general form it can be cast: [Rolly 2012b]

Id− tΣ(ω, β) = 0 (2.29)

where t is the T-matrix of an isolated resonator, and Σ(ω, β) can be cast with
the same polylogarithm functions as in equation 2.27 (see next section). With the
appropriate algorithms (in the multipole formulation case, a commercially available
Singular Value Decomposition algorithm, followed by a dichotomy method based on
the analytical properties of the functions used in equation 2.29 relatively to β; in
the electric dipole case, only the dichotomy algorithm is used) we can compute both
the eigenvector and eigenvalue of the matrix on the left hand side of equation 2.29
(henceforth named B(ω, α, β)). The inverse of B(ω, α, β) can be cast:

A(ω, α̃, β) = [Id− α̃Σ(ω, β)]−1. (2.30)

From equation 2.25, we can see that A veri�es:

eexc = A(ω, α̃, β)einc, (2.31)
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with eexc and einc respectively the vector of the exciting, and incoming �elds. When
solving equation 2.26 at a �xed frequency ω0, we equivalently solve |A| → ∞. Since
the resolution is numerical, we do not get the exact solutions in the general case.
We thus check that the corresponding complex eigenvalue λ(ω0, α̃, β) of B(ω, α̃, β)

veri�es:

|B(ω, α, β).Eλ| ≤ |λ(ω0, α̃, β)||Eλ| (2.32)

for the eigenvector Eλ of each eigenvalue λ(ω0, α̃, β), with 0 < |λ(ω0, β)| < εmax

whose modulus is lower than εmax = 10−15, typically as low as 10−17.
Accordingly, if we consider incoming �elds described by the corresponding eigen-

vectors of the inverse matrix A(ω0, α̃, β), the resulting exaltation of the modulus of
the excitation �elds (compared to the incoming �elds) would be as high as 1015 and
over. Because such exaltations seem rather unphysical at �rst glance, it should be
noted that the corresponding incoming �elds described by the quasi-periodic relation
of equation 2.21 are certainly unphysical themselves, since they grow exponentially
in the ±z direction (according to sign[<(β)]) and thus their modulus diverges in
this direction. A more realistic way of excitation of the leaky modes is to use an
incident beam that has the required shape as dictated by equation 2.21, but with a
�nite extension in the spatial and/or in the time domain.

2.3.3 Multipole formulation of the chain coupling

In [Rolly 2012b] we further develop the model in order to take into account the e�ect
of multipole contributions to the values β(ω0) of the leaky modes' incident wavevec-
tor values at a given frequency ω0. The selfs of equation 2.24 become coupling
matrices Ω(ω, β) whose coe�cients have the following expression:

[Ω]q,p;q′p′ =
∑
l

Cl
(
p, q; p′, q′

)
ll (ω, β) , (2.33)

where the sum over the l index is �nite and analytic expressions exist for the
Cl (p, q; p

′, q′) coe�cients [Tsang 1985, Chew 1990, Stout 2002]. The line sums ln,
of the spherical Hankel functions along the z axis are de�ned by [Linton 2009]:

ln (ω, β) ≡
∑
j∈Z∗
Hn,0 (jkdẑ) eijβd =

√
2n+ 1

4π

∞∑
j=1

hn (jkd)
[
eijβd + (−1)n e−ijβd

]
,

(2.34)
with H (x) denoting the irregular translation-addition matrix corresponding to a
displacement vector x.

One can then de�ne a modi�ed (array-equivalent) multiple-scattering T-matrix,
denoted here by T, which takes into account all multiple-scattering e�ects. For an
in�nite periodic system of identical particles, T is de�ned to yield the scattered �eld
coe�cients f (j) directly in terms of the incident �eld coe�cients on that particle,
i.e.:

f (j) ≡ Ta(j) ,



38 Chapter 2. From Light to Matter

where a(j) is the vector containing the coe�cients of the incoming �eld, expressed
at the position of the jth scatterer. The Foldy-Lax multiple-scattering formalism
yields a matrix equation for the multiple-scattering T matrix: [Rolly 2012b]

T = t + tΩ (ω, β) T , (2.35)

where the multiple-scattering multipole expression of Ω(ω, β) has been de�ned above
in equation 2.33. The solution to eq.(2.35) for the multiple-scattering T matrix is:

T =
[
t−1 −Ω

]−1
, (2.36)

while the wavenumbers of propagating leaky modes of the chain correspond to values
of β, for which the matrix inside the brackets has a zero eigenvector ν :[

t−1 − Ω
]
ν = 0 . (2.37)

A direct calculation of matrix inversion of eq.(2.36) is delicate since the matrix
is generally ill-conditioned. This di�culty can be generally overcome by analytical
matrix balancing as described in [Rolly 2012b].

2.3.4 Multipole e�ects on the leaky modes

For the illustration of our multipole resolution of the leaky modes computa-
tion, we adopt the same parameters for a plasmonic chain as Conforti and
Guasoni.[Conforti 2010] Namely, we consider an in�nite chain of identical 50nm
diameter silver particles separated by a center-to-center distance d = 75 nm. The
system is immersed in a non-magnetic medium with relative permittivity ε = 2.25

(nm = 1.5). There is no universally accepted permittivity function for silver, we
thus adopted here an experimental �t for the permittivity of silver proposed by
Tanabe [Tanabe 2008], given in [Rolly 2012b], which provides at least 6 signi�cant
digits.

The �gures are plotted with normalized frequencies and wave-vectors:

ω̃ ≡ ωd

2πc
=

d

λv
β̃ ≡ βd

2π

where λv is the vacuum wavelength. The light line for these parameters is given by

ω̃ = β̃
nmed

. The dispersion relations of the principal propagating modes are calculated
in the electric dipole approximation by numerically solving equation (2.26) and are
plotted in �gure 2.8 (dashed curves). They are then compared with fully converged
nmax = 10 calculations of these dispersion relations (solid line) in this same �gure
by solving eq.(2.37). The imaginary part of the dispersion relations for dipolar and
converged multipole calculations are given in �gure 2.9.

It is immediately clear that the dipole approximation provides an accurate pre-
diction of dispersion relations only over a narrow range of frequencies for which the
imaginary part of the propagating wavevector is rather small, and the real part is
near the light line. One should also remind that symmetry dictates that if a given
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Figure 2.8: Real part of the dispersion relations in the dipole approximation (dashed
curves), and fully converged multipole calculations with nmax = 10 (full lines).
(green) Longitudinal mode with positive imaginary part; (red) �T1� mode with
positive imaginary part; (orange) �T2� transverse mode with negative imaginary
part; (blue) light line.

Figure 2.9: Imaginary part (b) of the dispersion relations with the dipole approxi-
mation (dashed curves), and with fully converged multipole calculations nmax = 10

(full lines). (green) Longitudinal mode with positive imaginary part; (red) �T1�
mode with positive imaginary part; (orange) �T2� transverse mode with negative
imaginary part.
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value of β corresponds to a mode at a given frequency, then by symmetry, −β is
also a solution to these equations. For the sake of clarity, these symmetric modes
are not presented in these �gures.

Like Conforti and Guasoni [Conforti 2010], we found a transverse mode, labeled
�T2� whose imaginary part of β is opposite in sign with its real part. It is interesting
to remark that this T2 mode tends toward the edge of the Brillouin zone at low
frequencies. Our dipole predictions for the longitudinal mode are quite similar to
that of [Conforti 2010] wherein the dipole prediction is that the mode �folds back�
before reaching the edge of the Brillouin zone. The full multipole calculations on
the other hand predict that the longitudinal mode goes to the edge of the Brillouin
zone, and that the �fold back� only occurs after it has gone �beyond� the edge of the
Brillouin zone. Our dipole calculations of the �T1� mode with positive imaginary
part give quite similar results in the dipole and multipole cases, except that we only
found that the full multipole solution predicted both extremities of the T1 mode to
lie on the light line. We point out some strange behavior of the modes in the electric
dipole approximation at high frequencies. For instance, at around ω̃ = 0.225 a �kink�
appears in the longitudinal mode, and a spurious T2 solution emerges from the light
line. We carried out mode calculations with various multipole cuto�s and found
that such kinks and spurious solutions were relatively commonplace (at high or low
frequencies) when low numbers of multipoles are used in the simulations; and such
behavior disappears when higher multipole orders are used (the computation times
are much higher though, in the multipole formulation). It is also worth remarking
that for high order simulations, the Re[β] of the modes terminate at either the light
line, or the edge of the Brillouin zone; but when the calculations are carried out at
lower multipolar orders, some modes seem to terminate at arbitrary points in the
(ω, β) space.
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From Matter to light

(local excitation)

�I regard consciousness as fundamental. I regard matter as derivative from

consciousness. We cannot get behind consciousness. Everything that we talk about,

everything that we regard as existing, postulates consciousness.�

Max Planck, German physicist (1858-1918)
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In this chapter, we will discuss the case of a local excitation of a photonic struc-
ture, and show the decay rates and directivity enhancements of a few structures.
We assume that the emitter, placed in the optical antenna structure, can be treated
as an (electric or magnetic) point-dipole. In section 3.1, we will introduce fast al-
gorithms for the decay rate computations; we will also study a dimer gap antenna
design of (metallic or dielectric) particles, that allows orders of magnitude enhance-
ments of the decay rates, and present the results of our collaboration with Sébastien
Bidault and Michaël Busson from Institut Langevin, Paris. In section 3.2, we will
discuss the use of both electric and magnetic induced dipoles in dielectric spheres
for increasing the directivity of the radiation pattern. We will then present some
hybrid, metallo-dielectric structures that are able to greatly enhance both the decay
rates and directivity of an electric dipole emitters (section 3.3).
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3.1 Enhancing the decay rates

3.1.1 Decay rates formulas in the GMT framework

Stout et al. gave in 2011 fast GMT based algorithms for the computation of the
decay rates [Stout 2011]. For an extended derivation, see appendix D.2. The nor-
malized decay rates can be cast:

Γ̃t ≡ Γt
Γt,0

= 1 +
Re
{

6πkb
∑N

j,l=1 f †H(e,j) T(j,l) H(l,e) f
}

Re {kb}
(3.1)

Γ̃r ≡ Γr
Γ0

= 1 + 6π
N∑

i,j,k,l=1

f †
[
T(j,i)H(i,e)

]†
J(j,k) T(k,l) H(l,e) f

+ 12πRe

 N∑
j,l=1

f † J(e,j) T(j,l) H(l,e) f

 (3.2)

where J and H are regular and irregular translation matrices, respectively (see
appendix C.1). The multiple-scattering results of eqs.(3.1) and (3.2) simplify con-
siderably when a single antenna particle is present:

Γ̃t = 1 +
Re{6πkbf†H(e,j) tH(j,e) f}

Re{kb} (3.3)

Γ̃r = 1 + 6π
[
H(j,e) f

]†
t† tH(j,e) f + 12πRe

[
f † J (e,j) tH(j,e) f

]
(3.4)

where t is the single-particle T-matrix. If the T-matrix is that of a spherical (Mie)
scatterer, then eqs.(3.3) and (3.4) are equivalent to expressions that were derived pre-
viously for Mie scatterers.[Kerker 1980, Ruppin 1982, Kim 1988, Carminati 2006,
Colas des Francs 2008]

Similarly, equations 3.1 and 3.2 also take a simpler form when one considers
multiple scatterers, but neglects multipole e�ects. The rather simple induced dipole
formalism can give fast approximations of the decay rates variations of systems
where the multipole e�ects are present, but not predominant. In practice, one can
use the formulas of equations 3.1 and 3.2 in an induced dipole approximation that
consists in choosing a maximal multipole expansion number nmax = 1, which gives
simple, dipolar formulas (see [Stout 2011] for the case of a Yagi-Uda design, for
instance).

3.1.2 Metallic gap antennas for electric dipoles

As seen in the introduction chapter (in section 1.2.1), an e�cient way of enhancing
the decay rates of an electric dipole is to use a nanogap dimer structure, that we call
a �super-emitter� (see section 1.2.1). The orientation of the dipole moment relatively
to the dimer axis in�uence the decay rates and the quantum e�ciency. The longitu-
dinal coupling (orientation along the dimer axis) generally yields the highest decay
rates enhancements, as well as the best possible quantum e�ciencies. [Liaw 2010]
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Figure 3.1: Sketch of the analysed samples: from left to right, the �isolated�
ATTO647N �uorophore linked to a DNA strand; the �uorophore linked to a gold
monomer; the �uorophore placed at the centre of a gold dimer.

Michaël Busson and Sébastien Bidault from Institut Langevin, Paris, and
coworkers successfully synthesized DNA-templated gold dimers, 36 nm in diameter,
a size which is su�cient to observe signi�cant scattering. They used a bottom-up
technique that consists in grafting complementary DNA strands to two separate
monomer suspensions before mixing them in order to obtain the DNA hybridization
that links two monomers together. This method is highly reproducible, and adapted
to large-scale production. We calculated theoretical scattering cross-sections that
helped characterize the geometrical properties of the dimers, in terms of size and
inter-particle distance, which can be tuned in the ≈ 6− 20 nm range using di�erent
lengths of the DNA linker between the particles (30 or 50 base pairs � bp). In partic-
ular, the nanogap lengths were independently measured, via the agreement between
our theoretical scattering cross-section computations, and the spectra obtained from
dark-�eld spectroscopy on the one hand; and direct observation via TEM images,
on the other hand. Both of the experiments were realized on extended samples, and
were rendered feasible thanks to an automatization of the measures. [Busson 2011]

In a second step, M. Busson and S. Bidault reproduced the same synthesizing
protocol, but they used DNA linkers on which a single ATTO647N emitter was
grafted per linker. In order to provide theoretical support, we calculated the theo-
retical decay rate enhancements of the 3 di�erent sample types, see �gure 3.1, with
two di�erent emitter-particle distance for monomers and dimers (d = 6 or 8 nm, that
correspond to the nanogaps of the 30 bp and 50 bp linkers respectively, as estimated
in [Busson 2011]), a total of 5 di�erent con�gurations. Those decay rate enhance-
ments are displayed in �gure 3.2a-b as a function of the orientation of the emitting
dipole moment with respect to the dimer axis. We remark that both the total and
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Figure 3.2: Theoretical decay rates and antenna e�ciencies provided by 36 nm
diameter gold (green solid lines) monomers and (red solid lines) dimers.(a) Total,
(b) radiative decay rate enhancements, (c) antenna e�ciency, as a function of the
emission dipole orientation, θ, for a �xed emitter-particle distance, d. (open squares)
d = 6 nm, (open circles) d=8 nm. The markers correspond to Mie theory calculations
and the solid lines to aA+B cos2 θ �t of the decay rates. (d) Evolution of the antenna
e�ciency η = Γrad/Γtot, as a function of Γtot for (green lines) monomers and (red
lines) dimers, obtained by combining sub-�gures a-c. The dashed lines correspond
to d = 6 nm and the solid lines to d = 8 nm. (e) Same as sub-�gure a, but for a
�xed orientation θ = π/4 and a varying emitter-particle distance d.

radiative decay rate enhancements can be well approximated by a A+ B cos2 θ �t,
where θ is the angle between the dipole moment and the dimer axis. To a given value
of Γ̃tot, one can thus assign a unique value of Γ̃rad obtained at the same emitter ori-
entation θ, and thus a unique value of η = Γ̃rad/Γ̃tot; this allows to cast the quantum
e�ciency η as a function of Γ̃tot in �gure 3.2d. We can see that orientations parallel
to the dimer have substantially higher e�ciency: they correspond to the rightmost
and uppermost part of the curves in this �gure. As a matter of fact, longitudinal
couplings are known to provide both the highest radiative decay rates and quantum
e�ciencies in monomer[Carminati 2006] and dimer [Liaw 2010] con�gurations. We
also computed the theoretical decay rates for an emitter orientation of θ = π/4 with
a varying emitter-sphere distance, �gure 3.2e. [Busson 2012a]

The �uorescence lifetime are measured in a pulsed excitation regime, using time-
correlated single photon counting, 420 samples were measured. The instrument
response is 75± 5 ps, and allowed to estimate lifetimes as low as 35± 5 ps in a par-
ticular dimer sample, a 90-fold enhancement of the initial decay rate (3200±150ps).
Figure 3.3 shows a comparison between the experimentally measured decay rates
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Figure 3.3: Distributions of decay rate enhancements Γ/ < Γ0 >. (a) Isolated
ATTO647N molecules, monomers with (b) 50 and (c) 30 DNA base pair linkers,
dimers with (d) 50 and (e) 30 base pair linkers. The solid black line in (a) is a
Gaussian �t of the experimental Γ0/ < Γ0 > distribution. Solid and dashed lines in
(b-e) : see text.

and the theoretical predictions using two separate sets of assumptions, that are re-
lated to both of the previously shown calculations (�gure 3.2d-e) and considers the
5 con�gurations : single emitter, and 30 bp and 50 bp DNA linker monomer and
dimer. The �rst set of assumptions is: for each of the 4 samples, a �xed distance d
(as estimated from [Busson 2011]) and an isotropic distribution of the orientation of
the emitter, θ, relatively to the dimer axis. The second set of assumptions is: a �xed
emitter orientation θ = π/4 and a Gaussian distribution of distances with a ±1 nm
standard deviation (±0.5 nm for monomers). The theoretical values of decay rates
are then convoluted to the distribution of the decay rates observed within the iso-
lated �uorophores sample, in order to obtain the theoretical values in �gures 3.3b-e:
solid black lines are the results using the �rst set of assumptions, and dashed black
lines are the results using the second set. We can see that both sets of assump-
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tions (�xed distance, isotropic orientation; �xed orientation, Gaussian distribution
of the distance) agree quite well with the experimental data. In practice, there is a
distribution of both the distance and the emitter orientation, and the highly satis-
factory agreement between the theoretical calculations and the experimental values
indicates that the actual positioning uncertainty of the dye molecule inside the gap
of the dimers is probably the order of ≈ 1 nm, a scale unreachable with top-down
lithography techniques. [Busson 2012a]

The dye-grafted dimer antennas can be considered as arti�cial, hybrid metal-
organic antennas. They can be put in solution and characterized like classical organic
molecules, using FCS techniques. The 30 bp DNA linker dimer is able to enhance
the �uorescence signal by 35% in the linear regime, compared to the isolated DNA-
grafted ATTO647N emitter; and to reduce the mean excited state lifetime by a
factor 66, in excellent agreement with our theoretical predictions. [Busson 2012b]

There are two main perspectives for those �hybrid metal-organic chromophores�.
Firstly, they can be further engineered in order to better tune the dimer plasmonic
resonance to the �uorophore emission wavelength, by carefully choosing the ra-
dius of the particles and the nanogap size, and/or by selecting another �uorophore.
Secondly, in order to have bright, identical chromophores, the orientation of the �u-
orophore's electric dipole moment needs to be controlled somehow, and preferably
�xed to lie along the dimer axis, in order to obtain the highest values of both the
radiative decay rate and quantum e�ciency of the emission.

3.1.3 Dielectric particle and gap antennas for electric and magnetic

dipoles

3.1.3.1 General formulas from the GMT

Single-particle and dimer gap antennas can also be made of a dielectric materials,
and these can be used to enhance the decay rates of both electric and magnetic
dipoles. They can also be used to promote the magnetic dipole transition rates
compared to those of the electric dipole. [Rolly 2012a] Magnetic dipole transitions
occur naturally, e.g. in some lanthanide ions [Weber 1973, Karaveli 2011], when
allowed by quantum selection rules; most of the time, though, those magnetic dipole
transitions compete with dominant electric dipole transitions, e.g. because they
share the same initial excited state. The typical prevalence of the magnetic dipole
transition rates versus those of the electric dipole varies with the embedding medium
or surrounding crystalline structure, with values around 10 to 40%. [Karaveli 2011].
The enhancement of magnetic dipole transitions has many possible applications,
such as the tuning of the spectral emission of lanthanide ions [Karaveli 2011], left-
handedness in erbium-doped crystals [Thommen 2006], and magnetic �eld-enhanced
spectroscopy [Albella 2013], for instance.

We consider a dielectric sphere characterized by its electric dipole, magnetic
dipole, electric quadrupole and magnetic quadrupole Mie coe�cients written re-
spectively ce1, c

m
1 , c

e
2 and cm2 . The quadrupole resonances are considered, since,
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Figure 3.4: Sketch of the (left) Transverse and (right) Longitudinal couplings

on the one hand, they do not dissipate the emitter's power in the case they are
lossless dielectrics (as opposed to metals that can strongly quench the emission
[Thomas 2004, Carminati 2006, Liaw 2010]); on the other hand, their moderate
quality factor are compatible with broadened emission lines, as opposed to mul-
tipoles of higher order, see section 1.1.2. An electric or magnetic dipole emitter is
placed at a center-to-center distance d from the resonator. Using equation 3.1, the
total decay rate enhancements can be cast: (see demonstration in appendix E.2)

Γ̃L,utot = 1 + Re
[
−9 e2ikd

(kd)6
(1− ikd)2cu1 + 45 e2ikd

(kd)8
(ik2d2 − 3kd− 3i)2cu2

]
(3.5)

Γ̃T,utot = 1 + Re
[
− 9e2ikd

4(kd)6
(1− ikd− k2d2)2cu1 + 15e2ikd

4(kd)8
(−k3d3 − 3ik2d2 + 6kd+ 6i)2cu2

+ 9e2ikd

4(kd)4
(kd+ i)2cv1 − 15e2ikd

(kd)6
(−k2d2 − 3ikd+ 3)2cv2

]
, (3.6)

where T and L refer to transverse (emitter perpendicular to the emitter-sphere
axis) or longitudinal (emitter directed towards the sphere) couplings respectively
(see �gure 3.4), and (u = e, v = m) for an electric, (u = m, v = e) for a magnetic
dipole emitter.

We can see in the above formulas that for a longitudinal coupling, only the reso-
nances of the same type as the emitter are excited (owing to the fact that there is no
longitudinal magnetic �eld for an electric dipole, and vice versa). Since the longitu-
dinal couplings give the highest decay rates, it is thus possible to promote magnetic
transition rates over electric ones, by using a longitudinal coupling of the emitter
to the sphere. Nevertheless, in the case of an uncontrolled emitter orientation, the
isotropically averaged values can favor the magnetic dipole transitions (see below).
We illustrate below in sections 3.1.3.2 and 3.1.3.3 the use of high refractive index
dielectric resonators, that support magnetic dipoles and multipoles, in order to en-
hance the electric or magnetic LDOS. We chose to consider Si spheres, a common
material with negligible losses inthe near infrared (IR), and we aim at enhancing
e.g. the 4I13/2 →4 I15/2 MD transition of Er3+ that occurs around λ0 = 1540

nm [Weber 1973]. Because of the negligible losses of Si in the near IR, the radiative
and total decay rates are assumed to be equal.
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Figure 3.5: (Left scale, thick blue line) Decay rates for a magnetic dipole trans-
versely coupled to a 2a = 615 nm diameter sphere as a function of the wavelength.
(Right scale) Modulus of the Mie coe�cients of the sphere: (full circles) magnetic
dipole, b1; (full triangles) electric dipole, a1; (open circles) magnetic quadrupole,
b2; (open triangles) electric quadrupole, a2.

3.1.3.2 Single Si resonator

We �rst consider a surrounding medium made of air, and a single Si sphere. The
diameter of the sphere, 2a = 615 nm, is chosen in order to optimize the decay rates
of the magnetic dipole transition near λ = 1540 nm using a quadrupolar magnetic
Mie resonance (see �gure 3.5: the resonances of both the transverse coupling decay
rate and the magnetic quadrupole are simultaneous, at λ0 = 1544 nm). The results,
displayed in Fig.3.6, show that a single dielectric sphere signi�cantly enhances the
normalized decay rates Γ̃ = Γ/Γ0 of a magnetic dipole emitter. The maximum decay
rate enhancements occur with longitudinal couplings, and it can reach two orders of
magnitude (e.g. at λ = 1546 nm) for a magnetic dipole emitter whereas it is limited
to 25 for an electric dipole transition. As expected, for a longitudinal coupling, the
magnetic and electric transitions have decay rate enhancement factors that are spec-
trally well separated (because each emitter type is only favored by the resonances
of the same type in the sphere), whereas for a transverse coupling, both electric and
magnetic emitters exhibit common maxima (because each resonance can enhance
both emitter types). The isotropic average over the orientation of the dipolar mo-
ment (Γ̃iso = 1/3Γ̃//+2/3Γ̃⊥) is plotted in Fig.3.6c in the same wavelength window
and con�rms that the MD transitions are favored over ED transitions, on average,
by coupling the emitter to the quadrupolar resonance of the dielectric resonator.
The magnetic decay rates reaches 40 near λ = 1540 nm and is 4 times higher than
the electric decay rates.

Multipolar resonances have not been considered for the enhancement of radia-
tive decay rates using metallic nanoantennas because they have high losses, and thus
do not radiate e�ciently in the far-�eld. However, the situation is di�erent with
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dielectrics: negligible ohmic losses mean that the electromagnetic energy emitted by
the dipole source can be stored in multipole Mie resonances with higher quality fac-
tors before being fully radiated in the far-�eld. The drawback is a selective spectral
window (e.g. approx. 30 nm full-width half-maximum (FWHM) for the magnetic
quadrupole resonance in the longitudinal case here) which would be inadequate for
the homogeneously broadened �uorescence spectra of organic dyes at room temper-
ature, but matches the narrow emission bands of lanthanide ions such as trivalent
erbium at 1540 nm.

Figure 3.6: Normalized decay rates Γ/Γ0, as a function of the wavelength, for an
emitter placed 15 nm away from the surface of a 615 nm diameter Si sphere. (a)
Transverse coupling, (b) longitudinal coupling, (c) isotropic averaged values over
dipole orientations.

3.1.3.3 Si dimer embedded in a glass matrix

Mie magnetic resonances require a high index contrast that is not always compat-
ible with experimental requirements. If the lanthanide ions must be hosted in a
solid environment, e.g. silica, the decrease of the refractive index contrast will spoil
the magnetic response of the dielectric antenna. In low refractive index contrasts,
magnetic emission can still be promoted for most dipole orientations by using a di-
electric nanogap antenna, i.e. a dimer of spheres made of silicon, and by considering
higher order multipolar resonances with higher quality factors. Figure 3.7 shows
the radiative decay rates calculated using the GMT when a magnetic dipole emitter
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Figure 3.7: Normalized decay rates for a dimer of Si spheres, diameter 760 nm,
nanogap length 30 nm, embedded in a dielectric background of refractive index n =
1.45. (a) Longitudinal coupling: (full black line) magnetic dipole, (dashed red line)
electric dipole. Transverse coupling: (full black squares) magnetic dipole, (open
red circles) electric dipole. Inset: sketch of the dimer con�guration. The red and
green arrows indicate the dipole orientation in longitudinal and transverse coupling,
respectively. (b) Isotropic averages: (full black line) magnetic dipole, (dashed red
line) electric dipole.

is located in the centre of a 30 nm nanogap separating two 760 nm diameter sili-
con spheres placed in a silica host (n=1.45). In this con�guration, the longitudinal
magnetic dipole is resonant with the octupoles of the particles (n = 3 in the GMM
formalism) at λ = 1.538 µm. The normalized decay rate reaches a peak of 64.5 with
a 24 nm FWHM for the magnetic emitter, while the electric emitter decay rate is
enhanced by 14.6 (both values are taken in longitudinal coupling at λ = 1.538 µm).
For transverse coupling con�guration, both electric and magnetic decay rates are
weakly enhanced (4.19 for an electric dipole emitter and 1.91 for a magnetic dipole
emitter at λ = 1.538 µm). The isotropic averaged values at this wavelength are 22.7
and 7.18 for the magnetic and electric dipolar emitters, respectively.

In conclusion, subwavelength-sized particles made of lossless, high-index mate-
rials (typically semiconductors for a photon energy below their band gap) can be
used to redistribute the transition rate probabilities of nearby quantum emitters that
present both ED and MD type transitions, such as lanthanide ions in the visible and
near infra-red bands. The process relies on the magnetic dipoles and multipoles cre-
ated within the particles, albeit they are made of non-magnetic (µr = 1) materials.
In longitudinal coupling, the modi�cation of the LDOS can promote one type of
electromagnetic transition by around two orders of magnitude, while keeping the
other nearly unchanged.
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3.2 Using induced dipoles for enhancing emission direc-

tivity

The aim of this section is to study how a nearby spherical nanoparticle modi�es the
angular distribution of light emitted by an ED emitter. In particular, we provide a
thorough study of the relative phase between the source dipole and the dipole that
is induced in the particle. We emphasize that this relative phase must take into
account the optical path between the emitter and the particle in addition to the
polarizability of the particle. We show that when the phase di�erence between the
exciting and induced dipoles is strictly equal to π, an equal part of the energy is
radiated into each of the half spaces surrounding the emitter (the separation plane
being perpendicular to the axis containing the dipoles). We then explain why a
dipolar metallic particle placed nearby an electric dipole emitter cannot e�ciently
collect the radiation of the emitter.

We then study how dielectric particles of moderate- to high-refractive index
in�uence the radiation pattern of an electric dipole. We show that, contrary to
metallic particles, and thanks to the induced magnetic dipoles of such particles
(introduced in section 1.1.2), they are not limitated to the role of re�ectors when
placed nearby the emitter. Finally we cast the near-�eld �Kerker conditions� that
allow such particles to behave as either good collectors, or good re�ectors, when
coupled with an electric dipole, within a dipole approximation. We will then show
that spheres made of a moderately high refractive index (n = 2.45) allow to reach
even higher directivity gains, because they simultaneously support simultaneously
signi�cant induced electric and magnetic dipoles and quadripoles.

3.2.1 A Canonical case: single particle metallic antenna

In this section we study the e�ect of a nearby metallic resonator on the radiation
diagram of an electric dipole. In order to illustrate our reasoning, we use a silver
sphere. We thus consider an electric dipole emitter transversely coupled to a silver
sphere 80 nm in diameter. The radiation patterns in �gure 3.8 b and d, which
are reconstructed with the rigorous GMT (multipole order nmax = 30), show the
drastic modi�cation of the radiation directionality with a minute modi�cation of
only 10 nm in the distance between the emitter and the metallic surface of a 80
nm diameter silver sphere. When the emitter is placed at 9 nm from the surface of
the sphere, we observe that the emission is strongly re�ected by the sphere towards
the −x direction; if the emitter is displaced 10 nm away from the particle, the
radiation diagram appears to be symmetric with respect to the origin, even though
the electromagnetic environment of the emitter is highly asymmetric.

These results are of crucial importance for optical antenna applications and we
now aim to explain, with an analytical model, the physical mechanisms involved in
this high sensitivity of the emission directivity on the position of the emitter. There-
fore, we focus on the interaction between a single metallic particle and an electric
dipole emitter, and we only consider the transverse coupling geometry, which pro-
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Figure 3.8: (a) An electric dipole emitter oriented along the z-axis is coupled to a
silver sphere (radius a = 40 nm) whose center is at a distance d = dgap + a along
the x-axis. (b-d) Radiation diagrams at λ0 = 600 nm when the nanogap dgap is (b)
19 nm, (c) 38 nm, (d) 9 nm.

vides signi�cant emission directionality. We make the assumption that the response
of the metallic sphere can be characterized by its induced dipole; the qualitative
re�ecting/collecting properties of the resonator are well described within this dipole
approximation [Rolly 2011a]. In order to accurately compute the �uorescence decay
rates, for instance, one generally requires to take into account higher order mul-
tipole terms; but for lossy metals (which is always the case in optics), multipoles
mainly dissipate energy by Joule e�ect and do not radiate signi�cantly into the far-
�eld [Mertens 2007], hence they only have a minor e�ect on the radiation diagram
of the antenna.

We orient the emitter along the z-axis (pem = ẑ) and place the center of the
metallic sphere at a distance d along the x-axis (see �gure 3.8a). The antenna
is embedded in a surrounding dielectric matrix with refractive index nb = 1.5. We
recall that the excitation �eld produced by the electric dipole emitter at the position
of the metallic sphere can be cast 1.2:

Einc(dx̂) =
eikd

4πεmε0d3

[
k2d2(x̂×pem)× x̂ + (1− ikd)(3(x̂ · pem)x̂− pem)

]
= − eikd

4πεmε0d3
(1− ikd− k2d2)ẑ (3.7)
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and the induced dipolar moment in the sphere is thus:

pin = −α eikd

4πd3
(1− ikd− k2d2)ẑ,

where the electric dipole polarizability α of the metallic sphere is computed using
the Mie theory.

In order to determine the in�uence of the induced dipole moment of the metallic
nanoparticle on the emission pattern of the emitter, we cast for cosϕ > 0 and r � d,
the Poynting vector P of the �eld emitted by two transversally-coupled dipoles
(denoted p1 = p1ẑ and p2 = p2ẑ), and then add the Poynting vector symmetric
with respect to the origin [Bonod 2010]:

P(r, θ, ϕ) =
ω3k

32π2ε0c2r2

[
|p1|+ |p2|+ 2<(p1p

∗
2eikd sin θ cosϕ)

]
∆P(r, θ, ϕ) = P(r, θ, ϕ) + P(r, π − θ, π + ϕ)

=
ω3k|p1||p2|
8π2ε0c2r2

{sinφ sin[kd sin θ cosϕ]} sin2 θ er

where φ = arg(p1/p2) is the relative phase between the two dipoles. This expression
con�rms that for small kd, the directivity is directly linked to the sign of sin(φ), i.e.
to the capacitive or inductive behavior of the dipolar metallic particle [Li 2007]. For
emissions along the x-axis, sin θ = cosϕ = 1, and the last expression simpli�es to:

∆P(x, d) =
ω3k|p1||p2|
8π2ε0c2x2

sinφ sin(kd)x̂

If the relative phase, φ, between the two dipoles was simply equal to kd as
far-�eld reasoning would suggest, this last expression would predict that the col-
lector/re�ector behavior of the nanoparticle oscillates with separation distance as
sin2(kd). In this case, the strong changes in emission directivity for minute dis-
tance variations observed in Fig. (3.8) would remain unexplained. However, the
phase di�erence, φ, between the emitter (pem · ẑ = 1) and the induced dipole
(pin · ẑ = −α eikd

4πd3
(1− ikd− k2d2)) is a non-linear function of kd:

φ (kd) ≡ arg

(
pin · ẑ
pem · ẑ

)
= arg

[
−αeikd(1− ikd− k2d2)

]
The phase due to the distance between the dipoles is:

φd ≡ φ− arg(α) = arg
[
−eikd(1− ikd− k2d2)

]
(3.8)

Two di�erent terms determine φd: the well known propagative or `far-�eld' phase
term, kd, in the exponential, and the phase of the dipolar �eld term (i.e. the argu-
ment of k2d2 + ikd−1). For small distances, i.e. kd ≤ π /4, the distance dependent
phase shift is dominated by the dipolar contribution (see �gure 3.9). When kd→ 0,
φd → π; this is the expected phase di�erence for a near-�eld electrostatic interaction
dominated by the 1/d3 term in Eq.(E.7). Consequently, sinφ→ − sin [arg(α)] which
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is negative since 0 ≤ arg(α) ≤ π for passive materials, and thus 4P < 0, meaning
that the particle behaves as a re�ector. In other words, the directivity property of
an electric dipolar particle cannot be reversed by modifying its size or shape when
kd→ 0: it can only act as a re�ector.

Figure 3.9: (a) (blue triangles) φd for an emitter transversely coupled to a spherical
scatterer as a function of kd, (black circles) far-�eld term contribution, (blue dashed
line) �dipolar� contribution. Vertical line marks the kd = 0.565 abscissa. (b) (Cir-
cles, left scale) Polarizability phase, Arg(α), and (Squares, right scale) scattering
e�ciency, Qscat = σs/πa

2, of a 50 nm diameter silver sphere, both as a function of
the vacuum wavelength.

Let us now discuss the situation where kd is small but not vanishing. The
phase contribution from the dipolar �eld term decreases rapidly with respect to
kd while the far-�eld term increases linearly. Consequently, for small distances,
φd decreases with respect to kd. One can see in Fig. (3.9) that a minimum of
φd ' 3π/4 occurs at kd =

√
2. This means that the particle can behave as a

collector, ∆P > 0, provided that φα ≡ arg(α) < π/4. This condition is generally
ful�lled for wavelengths signi�cantly larger than the particle plasmon resonance
frequency (see �gure 3.9b).

This combination (kd '
√

2, φα < π/4) is the only possibility for a transversally-
coupled metallic particle to act as a collector at �small� distances (kd < 3π/4). In
other words, for a `large' metallic particle (arg(α) > π/4) at small distances (kd <
3π/4), the condition ∆P = 0 cannot be achieved and thus the directional property
cannot be reversed by varying the phase of the dipolar term (the particle can only be
a re�ector). In such a case, using the separation distance to tune from a re�ecting to
a collecting behavior of the nanoparticle requires working with larger separations,
for which the far-�eld term kd of Eq.(3.8) dominates. In practice, Fig. (3.9.a)
demonstrates a clear transition between the electrostatic approximation (kd → 0,
φd = π) and the far-�eld approximation (circles in Fig. (3.9)). In this transition
region, the dipolar �eld phase term strongly in�uences the antenna behavior around
kd = π/4 where its slope versus kd is highest (dashed blue line on Fig. 3.9).

Using this dipolar model, we are able to explain the surprising phenomena shown
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in Fig. (3.8) using rigorous generalized Mie theory. With λem = 600 nm and d = 36

nm, we have kd ∼= 0.565, which gives φd = 3.01rad (see the vertical line in Fig.3.9).
The phase of the polarizability of the silver particle at this wavelength is 0.13rad
(see inset). The total relative phase between the exciting and induced dipoles is then
φ = 3.14 rad ∼= π rad which results in sinφ ∼= 0, i.e. a symmetric emission pattern
(∆P = 0). For d < 36 nm, φd increases resulting in sinφ < 0, thus explaining
the re�ective behavior of the sphere placed at a center-to center distance of 30 nm.
Respectively, a slight increase of d results in sinφ > 0 and a collector behavior for
the sphere.

3.2.2 Using both electric and magnetic Mie resonances of dielectric

particles

We have seen in the last section why electric dipole resonators are not the best
candidates for acting as light collectors. In the visible spectrum, metals present
losses that prevent their electric quadrupoles to scatter ligni�cant light; and they
do not present any signi�cant magnetic resonances for spherical shapes. In order
to reach high directivity gains using spherical particles, one thus requires to use an
array of collectors, thus increasing the antenna size. Lossless dielectrics, on the other
hand, present signi�cant magnetic resonances when their size and refractive index
are high enough. In this section, we will show that using the combined electric and
magnetic dipole resonances of a sub-wavelength sphere made of a lossless dielectric
of high refractive index (ns ≈ 3.5), allows one to design a compact collector. We
will also cast the conditions for the scatterer to be a good collector, or re�ector, of
an electric dipole radiation.

Figure 3.10: (a) Sketch of the con�guration. (b,c) Radiation diagrams for a 85
nm radius GaP sphere behaving as (b) a collector, distance to the emitter 10 nm
and (c) a re�ector, distance to the emitter 100 nm. The electric dipole emitter is
oriented along the x axis, the sphere is placed in the +z direction. The refractive
index of the embedding medium is n = 1.45 and the emission wavelength in vacuum
is λ = 550 nm

We thus study the coupling of an electric dipole to a sub-wavelength dielectric
resonator, wherein we can make use of both the induced electric and magnetic
dipoles. We will show that the coherent scattering of both induced dipoles can
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increase the directivity of the emission as compared to the case of a single induced
electric dipole. In the induced (electric and magnetic) dipole approximation, the
Poynting vector resulting from the coupling of an x-oriented electric dipole, to a
dielectric sphere placed at a center-to-center distance d on the z axis (see �gure
3.10a), can be cast: (see demonstration in appendix E.3)

γe ≡ −eikda
3

d3
(1− ikd− k2d2)

γm ≡ eikd
a3

d3
(ikd+ k2d2)

P(x, y, z) =
ωk3

32π2r2ε0εm

{
(1− x2)|1 + γeα̃e

−ikdz|2 + (1− y2)|γmβ̃|2 (3.9)

+2z<[γ∗mβ̃
∗eikdz(1 + γeα̃e

−ikdz)]

}
r̂,

with α̃ and β̃ the electric and magnetic dimensionless polarizabilities, and (x, y, z)

the Cartesian coordinates of the unit radial vector r̂. γe and γm are the coupling
factors of the emitter with the induced electric and magnetic dipoles of the sphere,
respectively.

In equation 3.9, the �rst term in the brackets on the right-hand side results from
the emission and interference in the far �eld region between the two electric dipoles,
both being oriented along the x axis (see �gure 3.10a). The second term originates
from the emission of the magnetic induced dipole (oriented on the y axis), while the
last term corresponds to the interference between the induced magnetic dipole and
the two electric dipoles. This latter term is null in the z = 0 plane since the electric
and magnetic �elds produced by the magnetic dipole on the one hand, and the two
electric dipoles on the other hand, are orthogonal in this plane.

The collector behavior of the dielectric antenna will usually be optimized when
the Poynting vector P(0, 0,−r) directed towards the −z direction is minimized :

P(0, 0,−r) ∼=
ω

32π2εmε0r2
k3(|γmβ̃|2 + |1 + γeα̃e

ikd|2

−2|γmβ̃||1 + γeα̃e
ikd|)r̂

which occurs when the following condition is satis�ed:

e−ikd + γeα̃ = γmβ̃ → P(0, 0,−r) = 0 (3.10)

This explains why a maximum of the collecting e�ciency can be observed when
the 170 nm diameter GaP dielectric antenna is placed at 10 nm from the emitter :
arg(γmβ̃) = −0.65π, arg(e−ikd+γeα̃) = −0.66π, |γmβ̃| = 0.972, |1+γeα̃e

ikd| = 1.42.
While the condition of equation 3.10 on the modulus of the quantities is not fully
veri�ed, the condition on the phases is well satis�ed, and the radiation pattern in
Fig.3.10(a) shows a sharp minimum in the backward direction, which disappears
if the induced magnetic dipole is not radiating [Rolly 2012c]. The condition in
Eq.3.10 is that of a total destructive interference of the �elds radiated by the two
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electric dipoles and the magnetic dipole in the −z direction. In the case of plane
wave scattering, the zero backscattering condition is called the �rst Kerker condi-
tion [Kerker 1983, Gomez-Medina 2011]. In the present caseof a local excitation
of the sphere, the backward emission originating from the emitter must be can-
celled, which is not the case when considering plane wave excitations. Canceling
the forward scattering would require the ful�llment of the condition:

eikd + γeα̃ ∼= −γmβ̃ → P(0, 0,+r) = 0, (3.11)

This condition is the analogue, for the case of a localized excitation, of the general-
ized second Kerker condition (the condition of minimal forward-scattered power �
compared to the total scattered power � when the sphere is illuminated by a plane
wave)[Gomez-Medina 2011]. This condition (Eq. 3.11) is not satis�ed here, indeed,
we see in Fig.3.10(b) that the forward scattering is not eliminated. Nevertheless, the
GaP spherical antenna does move from a collector behavior to a re�ector behavior,
when the distance to the emitter is increased from 10 to 100 nm.

3.2.3 Using combined dipole and quadripole resonances of di-

electrics

In this section, we show that the use of moderately high refractive index, lossless
dielectric materials, as collectors or re�ectors of the radiation coming from an electric
dipole, is a promising alternative to the use of metals and high refractive index
dielectrics. We consider a moderate refractive index (ns = 2.45) of the sphere, in
order to obtain a regime where the Mie coe�cients of the sphere (and therefore the
polarizabilities) corresponding to the electric and magnetic dipoles and quadripoles,
are simultaneously non-negligible in a given range of frequencies, i.e. approximately
between the smallest and largest frequencies of those resonances (see below, �gure
3.11e). If the refractive index of the sphere is too high, then those resonances
become narrower, and they end up being well separated for a refractive index of
4 and a radius of 200 nm, as shown in �gure 1.5 in introduction. In addition, for
fabrication purposes, moderate refractive index materials are much more common
than materials with ns ≥ 3 (as in the last section) for instance.

This theoretical study is backed with experimental data, the experiment was
carried out in the GHz frequency regime, in an anechoic chamber at the CCRM,
Marseille (see �gure 3.11a), by our colleagues Redha Abdeddaim and Jean-Michel
Ge�rin. We couple an electric dipole emitter with a single dielectric sphere, made
of an Eccostock HIK (Emmerson & Cumming) material of permittivity 6 (refrac-
tive index n ≈ 2.45), presenting low losses (tan δ ≤ 0.02). The diameter of the
sphere is 2a = 19 mm and we see, (�gure 3.11e) that its �rst four Mie coe�cients
simultaneously have signi�cant values in the frequency band ≈ 8 − 10 GHz. As in
the two last sections, we consider a transverse coupling in order to be able to ob-
serve signi�cant enhancements of the directivity of the emission. The experimental
emitter is a two-arm electric dipole emitter (see the photography, �gure 3.11b). By
controling the emitter-to-particle distance, d, at a subwavelength scale, we report
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Figure 3.11: (a) Photography of the experiment in the anechoic chamber: the
dipole-sphere antenna is placed on a polystyrene mast at the center of an anechoic
chamber. The receiver antenna (ARA DRG 118) can rotate around the Oy axis
(see Fig 1.d) except in an exclusion zone in the angle range [−130, 130] due to the
presence of the vertical arch. (b) Close-up of the dipole-sphere antenna and of the
polystyrene holders. (c) Norm of the electric �eld emitted by the isolated dipole
antenna as a function of the frequency and angle φ in the E-plane (Oxz plane) in
dB. At each frequency, the �eld is normalized by its maximum in the E-plane. (d)
Sketch of the experiment with spherical coordinate axes and angles. (e) Norm of

the Mie coe�cients |ce(m)
j | with respect to frequency in GHz. Black line: magnetic

dipole |cm
1 |; red line: electric dipole |ce

1|; green line: magnetic quadrupole |cm
2 |; blue

line: electric quadrupole |ce
2|.
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on the possibility to choose the emission direction by tuning the frequency from 8.7
GHz to 9.74 GHz.

The anechoic chamber of CCRM, Marseille, is dedicated to amplitude and phase
measurements of the electric �elds with a receiver antenna rotating along a circular
arm 4 m in diameter, centered on the feed [Ge�rin 2012]. Each arm of the emitter is
9 mm long, which results in a total length smaller than the wavelength, even at the
highest operating frequency. The characterization of the dipole in its E-plane (Fig.
3.11c) shows a classical dipole-like radiation pattern, with comparable front and
backward radiated amplitude (respectively 0◦ and 180◦), and negligible emission
in the 90◦ direction. The distance between the dipole and the sphere is controled
at a submillimeter scale, via an expanded polystyrene holder (which is equivalent
to air at the operating frequencies � see Fig.3.11a-b). Measurements have been
performed with emitter-to-sphere distances of 5, 10 and 20 mm and frequencies
ranging from 8 to 10 GHz with a step of 20 MHz, which corresponds to a total of
300 emission pattern measurements. The squared modulus of the electric �eld in
the E-plane (θ = 0) is displayed in Fig. 3.12 with respect to the frequency and
angle φ ranging from to 0 to 180◦, i.e. in a half plane containing one emitter arm.
At every frequency, the intensity is normalized by the maximum measured in the
[0;180◦] range, and the results are displayed in dB. It can be observed that the
radiation pattern is highly sensitive to a modi�cation of the emitter-to-particle
distance, at a scale much smaller than the emission wavelength. Importantly, we
observe that this Mie antenna can either emit in forward (around 8.75 GHz) or
backward (around 9.5 GHz) direction for a 10 mm distance.

In order to demonstrate the essential contribution of the �rst four Mie coe�-
cients of the sphere, in this tunability of the emission directivity, we now derive the
theoretical formula of the far-�eld of the antenna. For this purpose, the �elds are
derived in the spherical vector basis, [êr, êθ, êφ]. The dipole emitter is considered
to lie on the ẑ axis and placed at the origin of the coordinate system; the particle
is placed at a distance d on the x̂ axis, u1 = dx̂ (see �gure 3.11d) The normalized
far-�eld irradiance can be cast (see appendix E.4):

I(θ, φ) =

∣∣∣∣ sin(θ)êθ (3.12)

+eiΦγe1α̃
e
1 sin(θ)êθ

+eiΦγm1 α̃
m
1 (cos(φ)êθ − sin(φ) cos(θ)êφ)

+eiΦγe2α̃
e
2(cos(φ) cos(2θ)êθ − sin(φ) cos(θ)êφ)

+eiΦγm2 α̃
m
2 (cos(2φ) sin(θ)êθ −

sin(2φ) sin(2θ)

2
êφ)

∣∣∣∣2
where eiΦ ≡ exp(−ikd sin(θ) cos(ϕ)) is a far-�eld phase shift, and each subsequent
line stands for the �eld produced by the emitter, and the induced electric dipole,
magnetic dipole, electric quadrupole, and magnetic quadrupole respectively. The
coupling coe�cients between the emitter and the �rst 2 electric and magnetic modes
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of the sphere are written:

γe1 ≡ eikd(1− ikd− k2d2)/d3

γm1 ≡ eikd(ikd+ k2d2)/d3

γe2 ≡ eikd(k3d3 + 3ik2d2 − 6kd− 6i)
5

3kd4

γm2 ≡ eikd(k2d2 + 3ikd− 3)
5

3d3
.

We readily verify that the induced dipoles and quadripoles assumption is veri�ed,
by plotting the electric �eld in the E-plane when using both equation 3.12, or a more
accurate calculation based on the GMT with maximal multipolarity index nmax = 20

(�gure 3.12, middle and bottom rows). While the actual values somewhat di�er at
some points, one can see that all of the features of the bottom row (GMT, nmax = 20)
are reproduced in the quadripole assumption, in the middle row (obtained from
equation 3.12).

The measured intensities are also displayed in �gure 3.12 (top row) and a good
agreement between theory and experiments can be observed for the three emitter-
to-particle distances, apart from a small frequency shift, that is likely due to an
imperfect knowledge of the permittivity of the sphere (the real part is given at +/-
5% and the imaginary part is set to 0 in the model) and to the spatial extension of the
source � the theoretical expression considering a point dipole. Both the model and
the experiments indicate that, for a 10 mm gap, the privileged direction of emission
of the antenna can be controlled e�ciently by tuning the emission frequency. This
feature is highlighted in �gures 3.13ab, where the data at the selected frequencies
of 8.7 GHz and 9.74 GHz are plotted in polar coordinates. Moreover, the theory
predicts directivity values of 7.01 dBi at 8.66 GHz and 5.17 dBi at 9.58 GHz in the
front- and backward directions respectively. We also point out that the electric �eld
measured in the privileged direction is 3.4 and 2.4 times stronger than without the
sphere, respectively, at 8.7 GHz and 9.74 GHz.

The theoretical emission patterns are plotted in �gure 3.13c at f=8.7 GHz, when
considering dipoles or quadrupoles only (full black and red lines respectively). We
observe that neither dipole nor quadrupole excitations taken alone su�ce to explain
the directivity. When the sphere behaves as induced dipoles only, light is emitted
towards the backward direction while it is emitted in the forward direction with a
low gain in directivity when the sphere behaves as induced quadrupoles. A similar
�ltering method in �gure 3.13d shows that neither electric nor magnetic multipoles,
taken separately, allow to obtain a forward directivity and gain as high as obtained
with the full equation 3.12. Comparison with GMT with nmax = 20 reveals the high
accuracy of the quadrupolar model in this case.

The emission pattern thus results from an e�cient coupling between the electric
and magnetic modes, of dipole and quadrupole orders, allowed by the broad Mie
resonances displayed in �gure 3.11e. The high sensitivity of the emission pattern
with respect to the emission frequency is thus explained by a strong modulation of
3 of those modes between 8− 10 GHz.
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Figure 3.12: Square norm of the electric �eld in the E-plane, measured (top row)
and simulated (middle and bottom row), as functions of the antenna receiver angle
φ in degrees (in abscissa) and emitting frequency in GHz (in ordinate). At each
frequency, the intensity is normalized by its maximum in the E-plane. The emitter-
to-sphere gaps, d− a, are (a) 5 mm, (b) 10 mm and (c) 20 mm. The middle row is
obtained from equation 3.12 while the bottom row uses Mie theory with nmax = 20
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Figure 3.13: (a,b) Square norm of the total electric far-�eld, in the E-plane and as
a function of φ in ◦, for an emitter-to-particle gap of 10 mm, (red line) simulations
with maximal multipolarity order nmax = 20 and (blue) measurements. (a) Strong
back-scattering observed at 9.74 GHz, (b) strong forward-scattering observed at 8.7
GHz. (c) Emission pattern given by equation 3.12 when considering the induced
dipoles (red line) or quadrupoles (blue line) only. (d) Emission pattern obtained
with: the Mie theory, nmax = 20 (dashed black line); or by using equation 3.12 and
considering: the full equation (green line), electric (red line) or magnetic (blue line)
dipoles and quadrupoles.
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3.3 Hybrid designs: bright and directive

From a theoretical viewpoint, probably the best way to build a nanoantenna that
is compact (maximal size ≈ λnb/2), bright (radiative decay rates Γrad/Γ0 ≥ 100),
e�cient (quantum e�ciency η ≥ 50%) and directive (directivity DdBi ≥ 6 dBi),
all at the same time, and with a bandwidth compatible with the broadened spec-
tral emissions at room temperature (a few tens of nm wavelength linewidth), is to
assemble hybrid, metallo-dielectric antennas. Such antennas can take advantage
of the high decay rate enhancements o�ered by relatively small metallic particles
(e.g. using a nanogap dimer) as well as the low-losses and collection properties of
moderate- or high-index dielectrics. Such �optoplasmonic� structures have a number
of applications; they were theoretically studied in 2006 as Surface-Enhanced Raman
scattering structures[Zou 2006], owing to the very large excitation enhancement that
they can provide (theoretically, around 106). The studies of hybrid structures, such
as the one presented below, for the decay rate enhancement and directivity increase
of single emitters, dates a few years back [Devilez 2010].

We now present such a compact, bright, e�cient, and directive antenna design.
The antenna is composed of a GaP collector sphere, 150 nm in diameter, coupled
with a quantum emitter located in the 8 nm nanogap of a silver dimer with radii 30
nm. The emission pattern of the emitter coupled to the sole dimer remains similar to
that of the isolated emitter, only with increased intensity. The emitter is separated
by 30 nm from the surface of the dielectric particle, and the embedding medium
has a refractive index of 1.45 (Fig. 3.14(a)). Figure 3.14(b) displays the emission
pattern and con�rms the high directivity o�ered by this hybrid metallo-dielectric
antenna. Figure 3.14(c) shows that the lossless magneto-electric collector permits
to further enhance the radiative decay rates over a wide range of wavelengths (as
compared to the isolated metallic dimer antenna, see Fig. 3.14(c)). This compact
hybrid antenna exhibits a gain in directivity higher than 6 dBi, a radiative decay
rate enhancement factor larger than 103, and a quantum e�ciency above 55% over
a wide range of wavelengths, with all three properties being satis�ed for a 30 nm
range, centered around 530 nm.
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Figure 3.14: (a) Schematic of a hybrid antenna with an electric dipolar emitter
longitudinally coupled to a silver dimer (particles 30 nm in radius and nanogap
length of 8 nm), and transversely coupled to a GaP sphere (75 nm in radius, surface
30 nm away from the emitter). (b) Radiation diagram at the vacuum wavelength
λ0 = 526 nm, at which the decay rate enhancement is maximal. (c) (left scale)
Radiative decay rate enhancement (full black line) of the hybrid nanoantenna and
(dashed line) of the metallic dimer antenna alone. (Right scale, full blue circles)
Quantum e�ciency of the hybrid nanoantenna. (Inset) Gain in directivity of the
hybrid antenna.



Chapter 4

Conclusion

�The art of concluding from experience and observation consists in evaluating

probabilities, in estimating if they are high or numerous enough to constitute proof.

This type of calculation is more complicated and more di�cult than one might

think. It demands a great sagacity generally above the power of common people.

The success of charlatans, sorcerers, and alchemists � and all those who abuse

public credulity � is founded on errors in this type of calculation.�

Benjamin Franklin, U.S.A. polymath (1706-1790)
and Antoine Lavoisier, French chemist (1743-1794)

This thesis was aimed at �nding e�cient ways to enhance light-matter interac-
tions using sub-wavelength resonators. The emission properties (decay rates, far-
�eld radiation diagram) of emitters (atoms, molecules, dyes, quantum dots, color
centres, . . . ) depend on their electromagnetic environment; using carefully designed
sub-wavelength resonators allows to enhance those properties by orders of magni-
tudes, while not being restricted to the narrower resonances of larger structures.

The excitation of a �uorescent atom or molecule is often realized using a far-�eld
illumination. In order to design adapted structures, one thus requires to have a good
understanding of the individual response, and of the couplings, of the resonators
when they are illuminated from the far-�eld. When the multipole e�ects are not
signi�cant in the system, induced dipole models are intuitive and convenient tools
that allow to describe the structure. In chapter 2, we considered the response of
optical antennas when illuminated from the far-�eld. We shown that an induced
dipole model can successfully predict the scattering response of a simple dimer
structure, well beyond the quasi-static approximation that is often associated with
those models: the scattering cross-sections of a gold dimer of spheres 110 nm in
diameter can be accurately calculated with such a model. The key point is to exclude
quasi-static approximations of the individual polarizabilities in the one hand, and
of the near-�eld coupling between the two scatterers on the other hand. The model
yields accurate results as long as the inter-particle distance as well as the wavelength
are not too small (in this case, nanogaps ≥ 10 nm and wavelengths ≥ 450 nm ≈ 4
times the particle diameter). Dipolar models that take into account both electric and
magnetic resonances, can also be used to predict the far-�eld illumination response of
particles more complex than spheres, like split-ring resonators; however, in this case,
the polarizability tensor is not a scalar quantity, and we showed that one might have
to include corrections that arise from the lack of central symmetry of the structure,
even when the maximal size of the resonator is small compared to the wavelength.
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However, they rely on rather strong assumptions that must be carefully veri�ed; in
the case of one-dimensional arrays of particles, we showed that they fail to predict
the �leaky modes� dispersion relations, even when the inter-particle distance is equal
to the radius of the scatterers.

In chapter 3, we studied the response of the antenna when it is excited by an
electric of magnetic point dipole placed nearby. When the emitter is in an excited
state, from which it will spontaneously decay, the rate at which it decays can be
modi�ed by its coupling to nearby structures, and this modi�cation should, in prin-
ciple, be calculated with rigorous quantum mechanical computations; but in a weak
atom-�eld coupling regime, the decay rate can easily be calculated with a Green
function formulation or a related method. Formulas of the decay rates in the GMT
framework allow to compute in a fast manner the decay rates of ensembles of res-
onators, at the condition of knowing the individual T -matrices of the scatterers. We
applied those formulas in order to cast the explicit analytical decay rate enhance-
ments provided by single spherical resonators in an induced dipole and quadrupole
assumption, in the case of an excitation consisting in either an electric or a magnetic
dipole. The di�erent couplings and resonances can be used to selectively promote
either electric or magnetic dipoles placed in their neighborhood. We also proposed
to use lossless dielectric particle dimers of high refractive index material in order to
enhance the electric or magnetic dipole decay rates, even when the system is embed-
ded in a polymer environment. The radiation diagram of the emitter also depends
on its coupling with nearby structures. We showed that for transverse couplings
and for short emitter-particle separations, the collector or re�ector behavior of a
single metallic resonator can be strongly dependent on the separation on a ≈ 10 nm
scale. An induced dipole model allows to explain the reasons of such a sensitivity;
it also explains why electric dipole resonators generally are ine�cient collectors. In
the case of lossless, moderate- to high- refractive index dielectrics, the situation is
di�erent; we showed that the collective electric and magnetic dipole and quadrupole
resonances allowed sub-wavelength dielectric spheres to collect the radiation from
an electric dipole e�ciently. We also proposed a compact, bright, e�cient, and di-
rective hybrid design, the idea based on an earlier concept of combining a metallic
dimer gap antenna with a dielectric particle [Devilez 2010], but the use of a high
refractive material (like GaP or Si) allows a more compact design.

We collaborated with the group of Sébastien Bidault at Institut Langevin, Paris,
who succeeded in fabricating DNA-templated gold nanoparticle dimers of diameter
≈ 36 nm by chemical synthesis, a bottom-up technique that is both reproducible
and adapted to large production scales. Our numerical simulations of the scat-
tering cross-sections were in well satisfactory agreement with the characterization
experiments. They subsequently grafted dye molecules inside the dimer nanogap of
≈ 6 − 20 nm, and our numerical simulations allowed to infer that the emitter can
be placed at the centre of the (tunable) gap with a precision of ≈ 1 nm, a scale
impossible to reach using state-of-the-art top-down fabrication techniques.
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In order to make models that can better compare with experiments, substrate
e�ects should be taken into account: free-standing systems are easier to consider
theoretically, but the vast majority of the actual experiments, and potential ap-
plications, include a substrate, which e�ect is not always negligible. Analytical
models like that of [Gozhenko 2003], but that takes into account retardation ef-
fects, would allow an accurate analytical treatment of the substrate e�ects. A way
of including non-spherical scatterers into the GMT would also be a critical step
for the domain of applicability of the formalism, and this appears to be possi-
ble [Evlyukhin 2011, Khlebtsov 2013]. Concerning the experimental prospects, the
compact, hybrid designs are promising; a French Agence Nationale de la Recherche
project entitled �TWINS� aiming at an experimental realization is underway, in
collaboration between Institut Fresnel, Institut Langevin, and the Université de
Technologie de Troyes. The monomer and dimer of high refractive index parti-
cles aimed at enhancing electric and/or magnetic dipoles, is also promised to a
bright future, with potential applications in �eld-enhanced spectroscopy for instance
[Albella 2013].





Appendix A

Multipole expansion of the �elds

A.1 Multipole expansion numbers, and coe�cients or-

dering

The multipolar basis is an in�nite set of base vectors in which any arbitrary 3-
dimensional vector electromagnetic �eld, that satis�es the Maxwell equations in a
homogeneous medium, can be expressed. The basis is indexed by the multipole
expansion numbers, n and m, or by a combined p index [Stout 2008, Tsang 1980]:

p ≡ n(n+ 1) +m

n ≡ floor(
√
p)

m ≡ p− n(n+ 1)

The n index is called �moltipolarity order� and corresponds to the order of the
expanded �eld in the following fashion: n = 1 corresponds to a dipole �eld, n = 2

to a quadrupole �eld, n = j to a 2j-pole. n can take any positive integer value,
n ∈ N∗, hence the in�nite rank of the multipolar basis. In order to carry out the
numerical computations, the multipolar basis is truncated at the order n = nmax;
the accuracy of the result generally increases with nmax. The m index characterizes
the orientation of the (n-th order) �eld. It can take integer values m ∈ [−n, n]. The
p index thus ranges from 1 to nmax(nmax +2). Finally, the q index is used in order to
di�erentiate multipoles of magnetic (q = 1 or ′m′) and electric (q = 2 or ′e′) nature.

In order to produce compact matrix forms of the equations of the scattering
problem, we need to adopt a convention on the way we arrange the (incoming or
scattered) �eld coe�cients, each of which is to be assigned its corresponding Vector
Partial Wave. Throughout this thesis, the following order is used: when a particular
maximal multipolar order nmax is chosen, the �rst pmax = nmax(nmax+2) coe�cients
will be the uq=1,n,m coe�cients of the �magnetic� part of the �eld, the following pmax

will be the uq=2,n,m � each half being ordered with increasing p. This means the
coe�cients start at n = 1,m = −1 and continue with increasing m until it reaches
1, then increasing n and starting with m = −n until n, the process being repeated
until n = m = nmax. When no maximal order nmax is chosen, the base vectors
are still arranged by increasing p, and there are, formally, two sets of coe�cients,
one for each value of q; for matrices, there are four blocks, that correspond to
(q1, q2) = (1, 1), (1, 2), (2, 1) and (2, 2) respectively.

The same order stands for the matrices' lines and columns, and for better clarity
we cast below the (q,m, n) or (q1, q2, p1, p2) numbers corresponding to the coe�-
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cients of a vector u or a matrix A (pm stands for pmax):

u =



uq=1,n=1,m=−1

uq=1,n=1,m=0

uq=1,n=1,m=1

uq=1,n=2,m=−2

uq=1,n=2,m=−1
...

uq=1,n=nmax,m=nm

uq=2,n=1,m=−1
...

uq=2,n=nmax,m=nm



=



uq=1,p=1

uq=1,p=2
...

uq=1,p=pm

uq=2,p=1
...

uq=2,p=pm



A = Aq1,q2,p1,p2

(q1, q2, p1, p2) =



1, 1, 1, 1 · · · 1, 1, 1, pm 1, 2, 1, 1 · · · 1, 2, 1, pm
...

. . .
...

...
. . .

...
1, 1, pm, 1 · · · 1, 1, pm, pm 1, 2, pm, 1 · · · 1, 2, pm, pm

2, 1, 1, 1 · · · 2, 1, 1, pm 2, 2, 1, 1 · · · 2, 2, 1, pm
...

. . .
...

...
. . .

...
2, 1, pm, 1 · · · 2, 1, pm, pm 2, 2, pm, 1 · · · 2, 2, pm, pm


This coe�cient ordering is appropriate when considering a single scatterer; when

there are N scatterers in the system, indexed by i ∈ [1..N ], each scatterer is assigned
its own local incoming �eld set, as well as its own scattered �eld coe�cient set. The
matrices describing the whole system thus consist in 2Npmax coe�cients per line or
column (for a total of 4N2p2

max coe�cients in square matrices). The coe�cient sets
are then ordered by sets of 2pmax coe�cients, as earlier, with increasing scatterer
index i. We cast below the general form of the resulting column and square matrices,
each u(i) representing a column matrix associated with the scatterer labelled i, and
each A(i,j) representing the e�ect of the scatterer i (i = j, diagonal blocks) or an
interaction between scatterers i and j (non-diagonal blocks):

usyst =

 u(1)

...
u(N)



Asyst =

 A1,1 · · · A1,N

...
. . .

...
AN,1 · · · AN,N
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A.2 Vector Partial Waves: M and N

The time harmonic Maxwell equations in an absorption free host medium can take
the form of a second order di�erential equation :

∇×∇×E (r)− k2E (r) = 0 , (A.1)

with k =
√
εbµb
√
ε0µ0ω = nbω/c, where (ε0,µ0) are the permittivity and permeabil-

ity of the vacuum, and εb and µb are the relative permittivity and permeability of
the �background� dielectric medium. The Vector Partial Waves (VPWs) are a set
of spherical waves centered on a given origin and which form a complete basis set
of solutions to eq.(A.1). [Stout 2012]

Any scattered �eld, Es (r), in the homogeneous medium and outside of a cir-
cumscribing sphere surrounding the scattering system can be developed in terms of
outgoing partial waves, that describe the �elds resulting from an ensemble of sources
inside the system,i.e.:

Es (r) =
∑
n,m

[
Mout

n,m (kr) fh,n,m + Nout
n,m (kr) fe,n,m

]
, (A.2)

where Mout
n,m, Nout

n,m, are the outgoing VPWs which satisfy eq.(A.1) with outgoing
boundary conditions, and the fq,n,m are the complex coe�cients of the scattered
�eld in the VPW basis. They can be analytically expressed in spherical coordinates
as:

Mout
n,m(kr) ≡ hn (kr) Xnm(θ, φ)

Nout
n,m(kr) ≡

√
n (n+ 1)

hn (kr)

kr
Ynm(θ, φ) +

[krhn (kr)]′

kr
Znm(θ, φ) , (A.3)

where hn are the spherical Hankel functions of the �rst kind and [krhn (kr)]′ is the
derivative of krhn (kr) with respect to kr. In this de�nition, we use orthonormal
vector spherical harmonics denoted X, Y, and Z respectively, which are de�ned in
the next section.

On the other hand, any incoming �eld E0(r) can be developed in a very similar
manner, with the help of regular VPWs, which are the regular counterpart of the
outgoing VPWs. Their expression is also very similar to the outgoing VPWs, the
di�erence being that one replaces the spherical Hankel functions hn by spherical
Bessel functions jn, thus obtaining the base vectors for a sourceless �eld (i.e. no
sources are present inside the system):

E0 (r) =
∑
n,m

[
Min

n,m (kr) eq=1,n,m + Nin
n,m (kr) eq=2,n,m

]
(A.4)

Min
n,m(kr) ≡ jn (kr) Xnm(θ, φ)

Nin
n,m(kr) ≡

√
n (n+ 1)

jn (kr)

kr
Ynm(θ, φ) +

[krhn (kr)]′

kr
Znm(θ, φ) , (A.5)

where the coe�cients fo the incoming �eld are the eq,n,m complex numbers.
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A.2.1 Compact matrix notations

In order to describe the scattering process using a compact matrix notation, we
further introduce the �row-matrices� of the 2 × pmax outgoing and ingoing VPWs,
respectively [MN]out(r) and [MN]in(r), which are de�ned by:

[MN]out,in(r) ≡



Mout,in
p=1 (kbr)

...
Mout,in

p=pmax(kbr)

Nout,in
p=1 (kbr)

...
Nout,in
p=pmax(kbr)



t

where each of the elements of [MN]out,in(r) is a VPW, i.e. a 3-D vector expressed
in the spherical basis. The equations that yield the scattered and incident �elds,
A.2 and A.4, can thus be written:

Es(r) = [MN]out(r) · f (A.6)

E0(r) = [MN]in(r) · e, (A.7)

where the �scalar product� is a shorthand notation for the sums of VPWs in equations
A.2 and A.4.

We now de�ne the compact notation of the scattered �eld in the case of a system
that consists in an ensemble of N scatterers. Let (ui)i∈[1..N] be the set of vectors
de�ning the position of each scatterer. Given a position r outside of each of the
scatterers, where we want to express the total scattered �eld, we de�ne the relative
radius vectors with respect to the center of each scatterer, ri = r−ui. We then build
a [MN]out,N(r) row-matrix that consist of N × 2pmax VPWs, 2pmax per scatterer:

[MN]out,N(r) ≡


[MN]out(r− u1)

[MN]out(r− u2)
...

[MN]out(r− uN )


t

=


[MN]out(r1)

[MN]out(r2)
...

[MN]out(rN )


t

=



M1(kbr1)
...

Mpmax(kbr1)

N1(kbr1)
...

Npmax(kbr1)

M1(kbr2)
...

Npmax(kbrN )



t

.

The �eld that is coherently scattered by the ensemble of N scatterers can then be
written with the same shorthand notation:

Es(r) = [MN]out,N(r) · f . (A.8)
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A.3 Spherical vector harmonics: X, Y and Z

The Spherical Vector Harmonics (SVHs) contain the variation of the VPWs that do
not depend on the radius. Throughout the whole thesis, we use orthonormal (over
angular integration) SVHs, meaning that the following relation is veri�ed:∫ π

0
sin θdθ

∫ 2π

0
dφA∗ν,µ(θ, φ)·Bn,m(θ, φ) = δν,nδµ,mδA,B , (A.9)

with A and B ∈ [X,Y, Z].
They are built from a �source� term Y src

n,m, that corresponds to the radial part
of the �elds satisfying Maxwell equations in a homogeneous medium (which is thus
non-propagative in the far-�eld). One can cast the SVHs in a compact fashion:

Yn,m(θ, φ) ≡ r̂Y src
n,m(θ, φ)

Zn,m(θ, φ) ≡ r
−→
∇Y src

n,m(θ, φ)√
n(n+ 1)

Xn,m(θ, φ) ≡ Zn,m(θ, φ)× r̂

For the practical numerical computing of the �source� term and of the VPWs
and SVHs, we use the algorithm described below.

A.3.1 Numerical algorithm: precursor functions

In order to compute the SVHs, we use algorithms that are based on recurrences
on the multipole expansion numbers. In the de�nitions below, it is assumed that
invalid values of the m or n expansion numbers give a null result: f(n,m, z) ≡ 0

if (|m| > n) or (n < 0), with f being any of the functions de�ned below. The
multiple-cases de�nitions are to be considered sequentially (i.e. if the �rst condition
is not fullfulled, then the next one is checked, and so on until the last one, which
covers all the remaining cases).

νeq(n, z)
n∈N,z∈C

≡

{
−
√

3/(16π) if n = 0

−
√

n(2n+1)(1−z2)
2(n+1)(n−1) νeq(n− 1, z) if n > 0

νpos(n,m, z)
n,m∈N,z∈C

≡


0 if (n = 0) or (n = 1 and m = 0)

νeq(n, z) if m = n

z
√

(n−1)(2n+1)
n+1 νeq(n− 1, z) if m = n− 1

else (see below)

νpos(n,m, z)
other cases

=

√
(n− 1) (2n+ 1)

(n+ 1) (n2 −m2)
× . . .

(
z
√

2n− 1νpos(n− 1,m, z)−

√
(n− 2)((n− 1)2 −m2)

n(2n− 3)
νpos(n− 2,m, z)

)
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νf(n,m, z)
n∈N,m∈Z,z∈C

≡
{
νpos(n,m, z) if m ≥ 0

(−1)m+1νpos(n,−m, z) if m < 0

nspos(n,m, z)
n,m∈N,z∈C

≡


0 if m < 0

zνf(n, n, z) if m = n

else zνf(n,m, z) +

√
(n−m)(n+m+1)(1−z2)

m+1

sfpos(n,m, z)
n,m∈N,z∈C

≡ zνf(n,m, z) +

√
(n+m+ 1)(n−m)

m+ 1

√
1− z2 νf(n,m+ 1, z)

nsf(n,m, z)
n∈N,m∈Z,z∈C

≡
{

(−1)msfpos(n,−m, z) if m < 0

sfpos(n,m, z) if m ≥ 0

npl(0, 0, z) ≡
√

1/(4π)

npl(1,−1, z) ≡
√

3(1− z2)

8π

npl(1, 0, z) ≡ z
√

3

4π

npl(1, 1, z) ≡ −
√

3(1− z2)

8π

npl(n,m, z)
n∈N,m∈Z,z∈C

≡


(see above) if n = 0 or n = 1
1
n

(
z
√

4n2 − 1npl(n− 1, 0, z)− (n− 1)
√

2n+1
2n−3npl(n− 2, 0, z)

)
if m = 0

else
√
n(n+ 1)(1− z2)νf(n,m,z)m

nlgdr(n, z)
n∈N,z∈C

≡

{ √
1/2 if n = 0

1
n

(
z
√

4n2 − 1nlgdr(n− 1, z)− (n− 1)
√

2n+1
2n−3nlgdr(n− 2, z)

)
if n > 0

A.3.2 Explicit de�nition of the SVHs

With the help of the precursor functions de�ned in the previous section, we de�ne
a �source� term of the SVHs:

Y src
n,m(θ, φ) ≡

{ √
1

2πnlgdr(n, cos(θ)) if m = 0√
n(n+ 1) sin(θ)νf(n,m, cos(θ)) exp(imφ)

m if m 6= 0

We can cast the SVHs in the spherical basis, [êr, êθ, êφ]:

Xn,m(θ, φ) ≡ [0, νf(n,m, cos θ) i exp(imφ),−nsf(n,m, cos θ) exp(imφ)]

Yn,m(θ, φ) ≡ [Y src
n,m(θ, φ), 0, 0]

Zn,m(θ, φ) ≡ [0, nsf(n,m, cos θ) exp(imφ), νf(n,m, cos θ) i exp(imφ)]
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We have thus given an explicit algorithm that allows one to compute the SVHs,
and thus the VPWs, in other words, all the base vectors of the multipole expansion
of the electromagnetic �elds that satisfy the Maxwell equations.





Appendix B

Mie theory

In this appendix, we will give the Mie solution for the scattering of a single, homoge-
neous sphere (radius a, relative permittivity εs, relative permeability µs) arbitrarily
placed at the origin of the coordinate system, in a homogeneous, absorption-free
background medium (relative permittivity εb, relative permeability µb). The vac-
uum wavelength under study is λ0 and the wavevector in the homogeneous back-
ground medium is written kb ≡ nb

2π
λ0
≡ √εbµb 2π

λ0
, and respectively the wavevector

inside the scatterer is ks ≡
√
εsµs

2π
λ0
.

The problem is reduced in section B.1 to a diagonal T-matrix, T, that relates
the incoming and scattered �elds coe�cients, e and f , in the multipole basis of the
VPWs: f = Te. The resulting �eld inside the scatterer is treated separately in
section B.3.

B.1 Mie coe�cients expression

The incoming �eld E0 is represented by the incoming �eld coe�cients expressed at
the centre of the sphere, eq,n,m which form the column matrix e. The multipoles of
the scatterer are excited by the incoming �eld, and the sphere will behave outside
of its circumscribing sphere as a multipolar source. The scattered �eld Es(r) can be
described by the scattered �eld coe�cients fq,n,m which form the column matrix f :

Es (r) =
∑
n,m

[
Mout

n,m (kr) fq=1,n,m + Nout
n,m (kr) fq=2,n,m

]
, (B.1)

which can be written using the shorthand notation of appendix A.2.1:

Es(r) = [MN]out(r) · f . (B.2)

The relationship between the incoming and scattered �elds has the simple form:

fq=1,n,m = bn
3

2i(ka)3
eq=1,n,m

fq=2,n,m = an
3

2i(ka)3
eq=2,n,m

(B.3)

where an and bn are the Mie coe�cients of the sphere:

an =
jn(akb)

hn(akb)

εsϕn(akb)− εbϕn(aks)

εbϕ1(aks)− εsϕ(3)
n (akb)

(B.4)

bn =
jn(akb)

hn(akb)

µsϕn(akb)− µbϕn(aks)

µbϕ1(aks)− µsϕ(3)
n (akb)

(B.5)
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where jn and hn are the spherical Bessel and Hankel functions of the �rst kind; ϕn
and ϕ(3)

n are the 'logarithmic derivatives' of jn and hn respectively:

ϕn(z) ≡ 1

jn(z)

d

dz
[z jn(z)] (B.6)

ϕ(3)
n (z) ≡ 1

hn(z)

d

dz
[z hn(z)]. (B.7)

B.2 T-matrix of an isolated sphere

Using equations B.3, the scattering of the sphere can thus be described, for a given
point r outside of the sphere, and a given maximal multipolar order nmax, by a
diagonal T-matrix of size [2nmax(nmax +2)]2 whose diagonal coe�cients are bn 3

2i(ka)3

for the �rst nmax(nmax+2) and an 3
2i(ka)3

for the next nmax(nmax+2), each multipolar
order n ∈ [1..nmax] being repeated 2n+ 1 times:

f = Te (B.8)

T (p1, p2) = δ(p1 − p2)

{
bn

3
2i(ka)3

if p1 ≤ pmax, n = floor(
√
p1)

an
3

2i(ka)3
if p1 > pmax, n = floor(

√
p1 − pmax)

(B.9)

The scattering problem is thus solved for every point outside of the scatterer. In
the next section we give the expression of the �eld inside the scatterer.

B.3 Field inside the sphere

The �eld inside the sphere, Eint(r), can be expanded in terms of regular VPWs with
coe�cients eint that can be calculated from the scattered �eld coe�cients f of the
sphere: [Stout 2001]

Eint(r) = [MN]in(r) · eint

eint,q=1,n,m = µs
ks
kb

i
µb(ks/kb)ψ′n(aks)ψn(akb)−µsψn(aks)ψ′n(akb)fq=1,n,m

eint,q=2,n,m = µs
ks
kb

i
µsψ′n(aks)ψn(akb)−(ks/kb)µψn(aks)ψ′n(akb)fq=2,n,m,

where ψn(x) = xjn(x) is the Riccati-Bessel function.



Appendix C

Solving multiple scattering

problems

In this appendix, we will give the explicit formulas that allows us to solve a multiple
scattering problem. The system is composed of an ensemble of Nsph spherically-
symetric scatterers. Together with the individual response of each sphere, the �elds
scattered by the (Nsph−1) other spheres in the system are to be calculated formally
for each scatterer by using the translation-addition theorem. The resulting multiple-
scattering system is written in the form of (the inverse of) a T-matrix.

This T-matrix does not depend on the illumination conditions, but obtaining
the solution for a given illumination (obtaining the scattered �eld coe�cients f

from the incoming coe�cients e) requires solving a system of the form T−1f = e,
where T−1 is known explicitly, but not T. From a numerical standpoint, this is
the main di�erence between multiple scattering and single scattering from a homo-
geneous sphere, wherein the T-matrix is explicitely known, and moreover diagonal,
rendering its inversion trivial. In most cases (e.g. when nmax > 2 or Nsph > 2) one
favors a numerical matrix inversions, due to the complexity of the matrix system of
equations.

C.1 Translation-addition theorem

The translation-addition theorem permits the transformation of spherical waves (in-
coming or outgoing VPWs) centred around a given origin, to be expressed in terms
of spherical waves developed about a di�erent point. In this section, we give the
essential formulas of this theorem, which allow the resolution of multiple scatter-
ing problems, as well as the evaluation of some physical quantities associated with
those problems, like radiative and nonradiative decay rates (see appendix D.2). The
equations presented below are adapted from [Stout 2002], and full derivations are
avaiable in e.g. [Stein 1961, Cruzan 1962, Tsang 1985, Chew 1990].

Let O be the origin of a reference spherical coordinate system. We consider a
point P which de�nes a spherical coordinate position vector r =

−−→
OP . Consider now

another origin O' for the spherical coordinates with position vector r0 =
−−→
OO′. The

spherical coordinates of P around this new origin are r′ = r − r0. The translation
addition theorem allows one to express the VPWs centered on origin O, in terms of



80 Appendix C. Solving multiple scattering problems

VPWs centered on origin O':

[MN]inc(r) = [MN]inc(r′) J(r0) (C.1)

[MN]out(r) =

{
[MN]out(r′) J(r0) if |r′| > |r0|
[MN]inc(r′) H(r0) if |r′| < |r0|

(C.2)

where J(r) and H(r) are the regular and irregular translation matrices, respectively
(see below in section C.1.1).

Equation C.1 allows one to express a free-propagating incoming �eld described
at position O by a column matrix of incoming �eld coe�cients eO, into an incoming
�eld at position O′, with a column matrix of coe�cients eO′ :

eO = J(r0)eO′ , (C.3)

while equation C.2 allows, amongst other applications, to express the scattered �eld
of a particle placed at position O (described by a column matrix fO of outgoing
VPWs centered on O) in terms of incident �eld placed at O′ (in terms of a column
matrix eO′ of ingoing VPWs centered on O′):

eO′ = H(r0)fr, (C.4)

an expansion which is valid as long as the local radius of the scatterer centred on
O′ is lower than the distance between the two centres, |r′| < |r0|, a condition that
is always true in the case of spherical particles.

We point out that equations C.1 and C.2 are, strictly speaking, only true in the
in�nite-dimensionnal VPW basis (each of the matrices is formally an in�nite-rank
matrix). In practice, and in order to carry out numerical computations, the in�nite
basis has to be truncated at a maximal expansion number, nmax. This allows one to
compute quasi-exact solutions of the scattering problem, since there is a maximal
multipolarity number n(R), the order of kR, beyond which the single-particle T-
matrix elements of a scatterer of radius R are essentially zero.

C.1.1 Expression of the regular and irregular translation matrices

The H(r) matrix is de�ned by blocks:

H(r) =

[
A(kbr) B(kbr)

B(kbr) A(kbr)

]
, (C.5)

with each block consisting in nmax(nmax + 2) coe�cients. The regular translation
matrix J(r) can be computed by taking the regular part of H(r) (i.e. using the same
expressions except for replacing spherical Hankel functions hn by spherical Bessel
functions jn � see below).
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We use normalized translation matrices. The coe�cients of the A and B blocks
can be cast using scalar translation-addition coe�cients aν,µ,n,m: [Stout 2002]

Aν,µ,n,m = 1
2

√
1

ν(ν+1)n(n+1)

[
2µmaν,µ,n,m

+
√

(n−m)(n+m+ 1)(ν − µ)(ν + µ+ 1)aν,µ+1,n,m+1

+
√

(n+m)(n−m+ 1)(ν + µ)(ν − µ+ 1)aν,µ−1,n,m−1

]
Bν,µ,n,m = −i

2

√
2ν+1

2ν−1)ν(ν+1)n(n+1)

[
2m
√

(ν − µ)(ν + µ)aν−1,µ,n,m

+
√

(n−m)(n+m+ 1)(ν − µ)(ν − µ− 1)aν−1,µ+1,n,m+1

−
√

(n+m)(n−m+ 1)(ν + µ)(ν + µ− 1)aν−1,µ−1,n,m−1

]
where the (kbr) variable dependance on the scalar coe�cients has been dropped for
clarity. In order to calculate the scalar coe�cients we de�ne the following coe�cients
and base functions:

a+
n,m ≡ −

√
(n+m+1)(n−m+1)

(2n+1)(2n+3)

a−n,m ≡
√

(n+m)(n−m)
(2n+1)(2n−1)

b+n,m ≡
√

(n+m+2)(n−m+1)
(2n+1)(2n+3)

b−n,m ≡
√

(n−m)(n−m−1)
(2n+1)(2n−1)

Yn,m(θ, φ) ≡ exp(imφ) Pmn (cos θ)
√

(2n+1)(n−m)!
4π(n+m)! (C.6)

aν,µ,0,0(kbr, θ, φ) ≡
√

4π(−1)ν+µYν,−µ(θ, φ)hν(kbr)

where the Pmn are the associated Legendre polynomials and the coe�cients a±n,m and
b±n,m are zero for |m| > n or n < 0. The scalar coe�cients for n 6= 0 or m 6= 0 can
then be computed using the following recursive algorithm:

aν,µ,n,m(r, θ, φ) ≡

• 0 if |m| > n or |µ| > ν or ν < 0 or n < 0

• (−1)ν+µ+n+ma∗ν,−µ,n,−m(−r∗, θ, φ) if m < 0

• (see above) if n = m = 0

• 1
b+n−1,n−1

[
b+ν−1,µ−1aν−1,µ−1,n−1,n+1(r, θ, φ)

+ b−ν+1,µ−1aν+1,µ−1,n−1,n−1(r, θ, φ)
]

if n = m

• 1
a+n−1,m

[
a−ν+1,µaν+1,µ,n−1,m(r, θ, φ)

+ a+
ν−1,µaν−1,µ,n−1,m(r, θ, φ)

− a−n−1,maν,µ,n−2,m(r, θ, φ)
]

elsewhere

The regular translation matrices can be calculated using the same algorithm,
but replacing spherical Hankel functions hn by spherical Bessel functions jn in the
de�nition of Yn,m(θ, φ) (equation C.6).
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C.2 Multiple-scattering T-matrix

We consider an ensemble of N scatterers (each characterized by a known T-matrix)
illuminated with a known incident �eld. If there are only linear scattering interac-
tions between each of the N scatterers, it follows from the superposition principle
that for a given incident �eld upon the system, each scatterer i will behave as if it in-
dividually received the superposition of the incoming �eld, and of the �eld scattered
to its position by each of the N − 1 other scatterers. Since the latter sum depends
itself on the �eld scattered by the i-th scatterer, we are left with a system of coupled
equations. In the case of an ensemble of homogeneous, spherical scatterers, we can
formulate the problem using Mie theory and the translation-addition theorem. We
give a derivation of the expression of the multiple-particle T-matrix below.

Let O be the arbitrary origin of the coordinate system, position vector, (ui)i the
positions of the spheres and Ti their individual T-matrices. We de�ne the spherical
coordinates centered on each sphere, particle-centered radius ri = r − ui. Each
sphere produces a scattered �eld Es(ri) that can be written in terms of outgoing
VPWs centered on themselves with scattered coe�cients fi:

Es(ri) = [MN]out(ri) · fi
Using equation C.4, this scattered �eld can be expressed as an incoming �eld upon
another sphere j with the VPWs centered on the sphere j:

Ei→j
s (rj) = [MN]in(rj) ·

[
H(uj − ui)fi

]
(C.7)

Let eO be the column matrix describing the incident �eld upon the system with
VPWs centered on O, using equation C.3 it can be described in terms of VPWs
centered on the scatterer j:

Ei(rj) = [MN]in(rj)J(uj)eO. (C.8)

The excitation �eld for the sphere j thus writes:

Eexc(rj) = [MN]in(rj) ·
[
J(uj)eO +

∑
i 6=j

H(uj − ui)fi
]
. (C.9)

and the excitation �eld coe�cients for the sphere j are thus:

eexc,j = J(uj)eO +
∑
i 6=j

H(uj − ui)fi (C.10)

Since fi = Tieexc,i we obtain the coupled system:

eexc,j −
∑
i 6=j

H(uj − ui)Tieexc,i = J(uj)e0,j . (C.11)

where e0,j = J(uj)eO are the incoming �eld coe�cients of sphere j. The matrix
form of this coupled equations system can be cast:

Id −H(u1 − u2)T2 · · · −H(u1 − uN )TN

−H(u2 − u1)T1 Id · · · −H(u2 − uN )TN
...

...
. . .

...
−H(uN − u1)T1 −H(uN − u2)T2 · · · Id




eexc,1

eexc,2
...

eexc,N

 =


e0,1

e0,2
...

e0,N
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The multiple-scattering matrix is then obtained by multiplying both sides by the
inverse of the leftmost matrix in the latter equation, then multiplying both sides
by the block diagonal matrix of individual T-matrices, diag

(
Ti∈[1..N ]

)
, in order to

recover the scattered �eld coe�cients on the left hand side:
f1

f2
...

fN

 =


T−1

1 −H(u1 − u2) · · · −H(u1 − uN )

−H(u2 − u1) T−1
2 · · · −H(u2 − uN )

...
...

. . .
...

−H(uN − u1) −H(uN − u2) · · · T−1
N


−1 

e0,1

e0,2
...

e0,N

 ,
(C.12)

where we succeeded into expressing the scattered �eld coe�cients directly in terms of
a matrix product of the incident �eld coe�cients. The multiple-scattering T-matrix
is thus:

T =


T−1

1 −H(u1 − u2) · · · −H(u1 − uN )

−H(u2 − u1) T−1
2 · · · −H(u2 − uN )

...
...

. . .
...

−H(uN − u1) −H(uN − u2) · · · T−1
N


−1

(C.13)

It should be noted that only T−1 is known analytically, and not T itself, in the
general case. When one only needs to get the scattered �eld coe�cients f for a
given illumination eO, a fast and accurate numerical technique consists in solving
the matrix system T−1f = eO in f using iterative techniques. In some cases though,
such as when considering a number of di�erent illumination conditions (solving the
scattering problem for various incoming �eld coe�cients e on the same system),
the explicit values of the T-matrix may be required, and one should carry out the
complete matrix inversion of Equation C.13. In general, matrices like the one on the
right side of eq.(C.13) are numerically ill-conditioned for matrix inversion. However,
direct (e.g. gaussian-pivot type) matrix inversions work quite well if one employs
analytical matrix balancing techniques.[Stout 2008]
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Figure of Merit computations

D.1 Cross-sections

The scattering, extinction and absorption cross-sections for a system of N scat-
terers illuminated by a plane wave, are de�ned in terms of power �ux using the
Poynting vectors Pinc, Pscat and Pext of the incident, scattering and extinction �ux
respectively:

Pinc = 1
2Re

[
Einc(r)×Hinc(r)

]
Pscat(r) = 1

2

N∑
i,j=1

Re
[
E

(i)
scat(r)×H

(j)]
scat(r)

]
Pext(r) = 1

2

N∑
j=1

Re
[
Einc(r)×H

(j)
scat(r) + E

(j)
scat(r)×Hinc(r)

]
,

where the extinction power �ux is taken from the incident �eld by the N scatterers,
and converted into radiated power and power dissipated by ohmic losses.

The scattering cross-section is de�ned by the total power �ux radiated in the
far-�eld, divided by the incident �ux. Let S(R) be the spherical surface of radius
R, and dΩ = R sin θdθdφ the solid angle variation, the scattering cross-section can
thus be cast:

σscat =
1

|Pinc|
lim
R→∞

∫
S(R)

Pscat(r) · r dΩ.

In the following derivationss (equations D.1 and D.2) we assume that the plane
wave, of incoming wavevector direction k̂i and linear electric polarization direction

ˆepol, is expressed at the origin with the incoming �eld expansion coe�cients eO
de�ned by: [Stout 2001]

eO,q=1,n,m = −in4πX∗n,m(k̂i) · ˆepol

eO,q=2,n,m = −in+14πZ∗n,m(k̂i) · ˆepol,

where Xn,m and Zn,m are the VSHs de�ned in A.3. Using the multipole expansion
of the scattered �elds, together with the orthonormality and far-�eld limits of the
VPWs, the scattering cross-section can be cast: [Stout 2001]

σscat =
1

k2
b

N∑
i=1

N∑
j=1

Re
[
f †i · J(ui − uj) fj

]
(D.1)
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where fj and uj are the scattered �eld expansion coe�cients and the position of the
sphere j, respectively. In a similar manner, the extinction cross-section is de�ned
by:

σext =
1

|Pinc|
lim
R→∞

∫
S(R)

Pext(r) · r dΩ.

Once again, by using the incident and scattered multipole expansion of the �elds
together with the orthonormality properties and far-�eld limits of the VPWs, the
extinction cross-section can be cast: [Stout 2001]

σext = − 1

k2
b

N∑
j=1

Re
[
e†O · J(−uj) fj

]
. (D.2)

By conservation of energy, the absorption cross-section is given by:

σabs = σext − σscat (D.3)

D.2 Decay rate enhancements

D.2.1 Body-centered T -matrices and Green function formulation

The dyadic Green function,
←→
G , of the antenna contains the information necessary

for electromagnetic calculations in that it yields the electric �eld everywhere via the
integral formula[Chew 1990]:

E (x) = iωµ0

∫
dx′
←→
G
(
x− x′

)
je
(
x′
)

(D.4)

We simplify matters by restricting
←→
G (x− x′) to situations where both the source

current positions, x′, and `receptor' positions, x, are located within the host medium.
The Green function can then be separated into an `unperturbed' Green function of
the homogeneous exterior medium Green function,

←→
G 0, plus a `scattering' contri-

bution,
←→
G s[Chew 1990, Novotny 2006]:

←→
G
(
x,x′

)
=
←→
G 0

(
x,x′

)
+
←→
G s

(
x,x′

)
(D.5)

The homogeneous, `unperturbed' Green function is translationally invariant and
satis�es the equation:

∇× ∇×
←→
G 0

(
x− x′

)
− k2

b

←→
G 0

(
x− x′

)
=
←→
I δ3

(
x− x′

)
(D.6)

where kb = (ω/c)
√
εb is the wavenumber of the exterior medium. A technical

di�culty is that
←→
G 0 is singular at the origin, but this has been studied in detail

and one can show that
←→
G 0 can be well de�ned provided that we treat it as a
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distribution and take care in treating the limit x→ x′.[Chew 1990] Expressing
←→
G 0

in direct space with r ≡ x− x′ , one has[?, Novotny 2006]:

←→
G 0 (r) =

eikbr

4πk2
br

3
P.V.

{
(1− ikbr)

(
3r̂r̂−

←→
Id
)

+ k2
br

2
(←→

Id − r̂r̂
)}
−
←→
Id

3k2
b

δ3 (r)

(D.7)
where P.V. stands for principal value. As explained in ref.[Chew 1990], the 3D delta
function term depends on the exclusion volume chosen for the principal value. The
formula presented here corresponds to a principal value chosen as either a spherical
or cubic in�nitesimal volume around the source point. Replacing the total Green
function in eq.(D.4) with the homogeneous Green function of (D.7) yields the electric
�eld, E0, produced by an isolated point dipole:

E0 (x) =
eikbr

4πεbε0r3

{
(1− ikbr) [3r̂ (r̂ · pe)− pe] + k2

br
2 [pe − r̂ (r̂ · pe)]

}
− pe

3εbε0
δ3 (r)

(D.8)
The information coming from the antenna structure is embodied in the scatter-

ing part of the total Green function,
←→
G s. The scattering Green function,

←→
G s, must

take into account the multiple scattering of the emitter radiation from all the N
components of the antenna structure. For the purpose of calculation, it is advan-
tageous to express the scattering Green function in terms of a multiple scattering
T-matrix which we de�ne in operator notation as:

←→
G s =

←→
G 0

 N∑
i=1,j=1

←→
T (i,j)

←→G 0 (D.9)

where i and j are particle labels. The multiple scattering T -matrix, T, has
thus been split up into N2 operators,

←→
T (i,j), that we call �body-centered T-

matrices�: [Stout 2002, Stout 2011]

T =


T

(1,1)
N T

(1,2)
N · · · T

(1,N)
N

T
(2,1)
N T

(2,2)
N · · · T

(2,N)
N

...
...

. . .
...

T
(N,1)
N T

(N,2)
N · · · T

(N,N)
N

 (D.10)

From a multiple scattering viewpoint, one can visualize each
←→
T (i,j) as representing

all multiple scattering events in which the �rst particle encountered by incident
radiation is j and the last particle to be encountered is i.

D.2.2 Multipole formulas for Decay rate enhancements

The total emitted power is evaluated by time averaging Pt ≡ −Et · jsrc over a
period, where Et is the electric �eld produced by the source current while taking
into account interactions with the antenna structure. Averaging this power over a
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period, T = 2π/ω, we obtain [Novotny 2006]:

Γt ≡ −
1

T

∫ T

0
dt

∫
dx Et (x, t) · je (x, t) =

ω3

2
µ0 Im

{
p∗e (xj) ·

←→
G (xj ,xj) ·pe (xj)

}
(D.11)

Some of the power emanating from the dipole emitter will be dissipated by the
antenna. The rest will be radiated o� into the far �eld where it can be detected.
The calculation of the radiated power proceeds by �rst taking the far-�eld limit
of the electric �eld given by eq.(D.4). The electric �eld is transverse in the far-
�eld limit, and we can readily obtain the H �eld from the electric �eld via the
relation [Bohren 1983]:

lim
r→∞

Ht (r) =
kb
µ0ω

r̂×Et

In the r →∞ limit, the time averaged Poynting vector is thus:

lim
r→∞

〈S〉 = lim
r→∞

1

2
Re {E∗t ×Ht} =

1

2

kb
ωµ0

r̂ ‖Et‖2 (D.12)

The far-�eld irradiance, Ir(θ, φ), and total radiated power are de�ned respectively
by:

Ir (θ, φ) ≡ lim
r→∞

r2 〈S〉 · r̂ and Γr ≡
∫
Ir (θ, φ) dΩ (D.13)

In order to determine the modi�cations to Γt, Ir (θ, φ), and Γr induced by the
antenna, we will need to normalize these values with respect to the corresponding
quantities of an isolated emitter placed inside the homogeneous background. In this
case, the analytical expressions for the �eld and homogeneous Green function of
eqs.(D.7) and (D.8) yield the textbook results for dipole emission in a homogeneous
medium. Notably, the power emitted in a homogeneous dielectric medium is:

Γt,0 =
ω3

2
µ0 Im

{
p∗e (xj) ·

←→
G 0 (xj ,xj) · pe (xj)

}
= |pe|2

ω3

12πε0c2
Re {kb}

The classic far-�eld radiation pattern and radiated power, Γ0, are readily obtained
from eq.(D.8) applied to eqs.(D.12) and (D.13):

Ir,0 (r̂) =
ω3kb

32π2ε0c2

(
1− (r̂ · p̂e)2

)
|pe|2 , Γ0 ≡

∫
dΩ Ir,0 (θ, φ) = |pe|2

ω3kb
12πε0c2

(D.14)
The purpose of this section is to generalize the analytic expressions for emitted

and radiated powers to the case in which the emitter is located near a nano-antenna
structure. We saw in the previous section that the multiple-scattering T-matrix
determines the scattering Green function (equation D.9). The scattering Green
function can then be expressed on the VPW basis, provided that we also express
the homogeneous Green function on the VPW basis. Taking advantage of the trans-
lational invariance of

←→
G 0 (x,x′), it can be written [Chew 1990]:

←→
G 0 (r,0) = ikb

1∑
m=−1

Nin
1,m (kbr) Nout

1,m (0)− r̂r̂

k2
b

δ (r) (D.15)
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Employing this expression in eq.(D.4), the unperturbed electric �eld created by an
isolated point dipole, denoted E0, is then expressed:

E0 (x) = ω2µ0

∫
dx′
←→
G 0

(
x,x′

)
· pe δ3

(
x′
)

=
ikbω

2pe
ε0c2

1∑
m=−1

N1m (kbx) f2,1,m

where we de�ne the outgoing dipole �eld coe�cients, fq=2,n=1,m, to be given by

f2,1,m ≡ Nout
1,m(0) · n̂

and n̂ is the unit vector in the direction of the emitter dipole moment, de�ned such
that pe = pen̂. All other emitter multipoles, n > 1 or q 6= 2, are null. Utilizing
the analytical expression for Nout

1,m(0), we obtain the following expressions for the
emitter �eld coe�cients:

fq,n,0 =δq,2δn,1

√
1

6π
ẑ · n̂,

fq,n,1 =
δq,2δn,1

2
√

3π
(−x̂ + iŷ) · n̂,

fq,n,−1 =
δq,2δn,1

2
√

3π
(x̂ + iŷ) · n̂

Employing expression (D.15) for
←→
G 0 in eqs.(D.9), (D.5) and (D.4) of the previ-

ous section and invoking the translation-addition theorem, we obtain an entirely
multipolar expression for the �eld radiated by a dipole emitter interacting with an
antenna structure: [Stout 2011]

Et (r) = E0 + Es =
ipekbω

2

ε0c2

N (r) f +

N∑
j,l=1

[M (krj) ,N (krj)] T
(j,l)H(l,e) f


≡ ipekbω

2

ε0c2
Ẽt (r)

(D.16)

where f denotes a column matrix containing the emitter coe�cients in the multipole
space (with only electric dipole elements non-zero) and H(l,e) ≡ H (kb (xl − xe)) are
the irregular translation-addition matrices between the position of particle l and the
emitter position.

In the second line of eq.(D.16), we de�ned a dimensionless �eld, Ẽt, proportional
to the total electric �eld. This de�nition of Ẽt proves convenient when normalizing
the antenna irradiance, Ir (θ, φ), with respect to Γ0/(4π) of the isolated emitter.
Using the de�nition of eq.(D.16) in eqs.(D.12) and (D.13), and dividing by the
irradiance of the isolated emitter (eq. D.14), the normalized irradiance is given by:

Ĩr ≡
4πIr (θ, φ)

Γ0
= 24π2 lim

r→∞
(kbr)

2
∥∥∥Ẽt (r)

∥∥∥2
(D.17)
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The electric �eld of eq.(D.16), can then be utilized in equation (D.11) to obtain
the total decay rate enhancement factor: [Stout 2011]

Γ̃t ≡
Γt

Γt,0
= 1 +

Re
{

6πkb
∑N

j,l=1 f
†H(e,j) T (j,l)H(l,e) f

}
Re {kb}

(D.18)

Likewise, the enhancement in radiative decay rate is obtained by inserting eq.(D.16)
into eqs.(D.12) and (D.13). Utilizing the translation-addition theorem and the or-
thogonality properties of the vector spherical harmonics, one obtains for the radia-
tive decay rate enhancement: [Stout 2011]

Γ̃r ≡
Γr

Γ0
= 1 + 6π

N∑
i,j,k,l=1

[
T (j,i)H(i,e) f

]†
J (j,k) T (k,l)H(l,e) f

+ 12πRe

 N∑
j,l=1

f † J (e,j) T (j,l)H(l,e) f

 (D.19)

where we see that eqs.(D.19) and (D.18) required the use of both regular, J, and
irregular, H, translation-addition matrices (see section C.1).

The multiple-scattering results of eqs.(D.18) and (D.19) simplify considerably
when a single antenna particle is present: [Stout 2011]

Γ̃t = 1 +
Re
{

6πkbf
†H(e,j) tH(j,e) f

}
Re {kb}

(D.20)

and

Γ̃r = 1 + 6π
[
H(j,e) f

]†
t† tH(j,e) f + 12πRe

[
f † J (e,j) tH(j,e) f

]
(D.21)

where t is the single-particle T-matrix. If the T-matrix is that of a spherical
(Mie) scatterer, then eqs.(D.20) and (D.21) are equivalent to expressions that
were derived previously for Mie scatterers.[Kerker 1980, Ruppin 1982, Kim 1988,
Colas des Francs 2008]



Appendix E

Dipole and quadripole models

derivation

E.1 Electric dipole dimer illuminated from the far-�eld

E.1.1 E�ective polarizabilities

Using eq. (2.5), the �eld scattered by the sphere j = 1, 2 at the center of the sphere
i = 2, 1 is:

E
(j)
scat(ri) =

eikd

4πεmε0d3

{
k2d2(r̂i×p(j))× r̂i + (1− ikd)

[
3(r̂i · p(j))r̂i − p(j)

]}
,

where r̂i is the unit vector pointing from sphere j to sphere i. In the transverse
case, r̂l ·p = 0 and (r̂l×p)× r̂l = p, whereas in the longitudinal case, r̂l ·p = p and
r̂l×p = 0 (hence there is no �far �eld� i.e. ∝ k2d2 term in the longitudinal case),
and we have:

E
(j)
scat,T(ri) =

eikd

4πεmε0d3
(1− ikd+ k2d2)p(j),

E
(j)
scat,L(ri) =

eikd

4πεmε0d3
(ikd− 1)p(j).

Using the notation γ as de�ned in eqs. (2.7a) and (2.7b), we then deduce eqs. (2.6a)

and (2.6b) from the de�nition of the excitation �elds (E(j)
exc ≡ [Einc(xj) +E

(i)
scat(xj)] ·

ẑ). Those coupled equations can also be written:

E(1)
exc = E

(1)
inc + γ(E

(2)
inc + γE(1)

exc)

E(1)
exc(1− γ2) = E

(1)
inc(1 + γE

(2)
inc/E

(1)
inc)

E(1)
exc = E

(1)
inc

1 + γE
(2)
inc/E

(1)
inc

1− γ2

E(2)
exc = E

(2)
inc

1 + γE
(1)
inc/E

(2)
inc

1− γ2
.

We de�ne the `e�ective' polarizabilities as:

p(j)(ω) = ε0εmα(ω)E(j)
exc(ω)ẑ

= ε0εmα(ω)E
(j)
inc

E
(j)
exc

E
(j)
inc

(ω)ẑ

≡ ε0εmα
(j)
eff (ω)E

(j)
inc(ω)ẑ,
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to obtain:

α
(j)
eff = α

1 + γE
(i)
inc/E

(j)
inc

1− γ2
,

from which we deduce eqs. (2.8a) to (2.8d).

E.1.2 Scattering cross-sections

To obtain an analytical expression of the scattering cross-section, we now have to
�nd an expression of the �elds in the far-�eld limit. Using:

ẑ = cos(θ)r̂ + sin(θ)θ̂,

|r− x(j)| =
[
(x− x(j))2 + y2 + z2

]1/2

≈ (r2 − 2xx(j))1/2 = r

(
1− 2xx(j)

r2

)1/2

≈ r − x(j) sin(θ) cos(φ) ≡ r − β(j)
T ,

|r− z(j)| ≈ r − z(j) cos(θ) ≡ r − β(j)
L ,

we obtain:

lim
r→∞

E
(j)
scat(r) = (ω/c)2 eik|r−x

(j)|

4πε0r
(ẑ− r̂ cos θ)p(i)

= (ω/c)2 eikre−ikβ
(j)

4πε0r
(ẑ− r̂ cos θ)p(i)

= (ω/c)2 eikre−ikβ
(j)

4πε0r
p(i) sin θθ̂,

which yields the total scattered electric and magnetic �elds E(r) and H(r) in the
far-�eld:

E(r) = (ω/c)2 eikr

4πε0r

 2∑
j=1

p(j)e−ikβ
(j)

 sin θθ̂,

H(r) = ωk
eikr

4πr

 2∑
j=1

p(j)e−ikβ
(j)

 sin θφ̂.

We then have the time-averaged far-�eld Poynting vector P(r):

P(r) =
1

2
<
[
(E)∗ ∧H

]
=

sin2(θ)ω3k

32π2ε0c2r2

[
|p(1)|2 + |p(2)|2 + 2<(p(1)(p(2))∗eik(β(2)−β(1)))

]
r̂.
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Given the incident �eld irradiance Pinc = 1
2 |E0|2(εmε0/µ0)1/2ẑ, we can now write

the di�erential scattering cross-section (see e.g. [Bohren 1983]):

d2σ

d2Ω
(θ, φ) ≡ lim

r→∞
r2r̂ · P(r)

|Pinc|

=
k4

16π2E2
0

sin2 θ

{
|α(1)

eff E
(1)
inc |

2 + |α(2)
eff E

(2)
inc |

2 + 2<[α
(1)
eff E

(1)
inc(α

(2)
eff E

(2)
inc)∗eik(β(2)−β(1))]

}
,

σscat =

∫
d2σ

d2Ω
(θ, φ)dΩ

=

∫∫
S

d2σ

d2Ω
(θ, φ) sin θdθdφ

=
k4

16π2E2
0

[
2π(|α(1)

eff E
(1)
inc |

2 + |α(2)
eff E

(2)
inc |

2)

∫ π

0
sin3 θdθ

+ 2

∫∫
S

sin3 θdθdφ<[α
(1)
eff E

(1)
inc(α

(2)
eff E

(2)
inc)∗eik(β(2)−β(1))]

]
,

where S stands for the solid angle space (θ ∈ [0, π], φ ∈ [0, 2π]). Let us consider the
term:

B =

∫∫
S

sin3 θ <[α
(1)
eff E

(1)
inc(α

(2)
eff E

(2)
inc)∗eik(β(2)−β(1))]dθdφ.

At this point, we must calculate separately the B term for the three di�erent illu-
minations. We �rst derive the k‖ term:

Bk‖ =

∫∫
S

sin3 θ <[α
(1)
eff,k‖

E2
0e−ikd(α

(2)
eff,k‖

)∗eikd sin θ cosφ]dθdφ

= E2
0

∫ π

0
sin3 θ <[α

(1)
eff,k‖

e−ikd(α
(2)
eff,k‖

)∗
∫ 2π

0
eikd sin θ cosφdφdθ.

Here we use the ordinary regular Bessel function of zeroth order J0 and the fact
that it is an even function:

J0(x) = J0(−x) =
1

2π

∫ 2π

0
eix cosφdφ

Bk‖ = 2πE2
0

∫ π

0
sin3 θ <[α

(1)
eff,k‖

e−ikd(α
(2)
eff,k‖

)∗J0(kd sin θ)]dθ

= 4πE2
0<[α

(1)
eff,k‖

e−ikd(α
(2)
eff,k‖

)∗]

∫ π/2

0
sin3 θJ0(kd sin θ)dθ.

Despite our e�orts, we did not �nd the above integral calculated 'as is' in literature.
We thus used a handbook formula from [Abramowitz 1972], equation 11.4.10 :∫ π/2

0
Jµ(z sin t) sinµ+1 t cos2ν+1 tdt =

2νΓ(ν + 1)

zν+1
Jµ+ν+1(z),
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which is correct as long as <(µ) > −1 and <(ν) > −1. Using z = kd, µ = 0 with
ν = −1/2 and 1/2, the formula yields:

C ≡
∫ π/2

0
sin3 θJ0(kd sin θ)dθ

=

∫ π/2

0
sin θJ0(kd sin θ)dθ −

∫ π/2

0
sin θ cos2 θJ0(kd sin θ)dθ

=
Γ(1/2)

(2kd)1/2
J1/2(kd)−

√
2Γ(3/2)

(kd)3/2
J3/2(kd)

= j0(kd)− j1(kd)

kd
,

where we used j0 and j1 the spherical Bessel functions of order 0 and 1, which have
analytical formulas in terms of usual functions:

j0(x) =
sinx

x
,

j1(x) =
sinx

x2
− cosx

x
.

We obtain:

Bk‖ = 4πE2
0<[α

(1)
eff,k‖

e−ikd(α
(2)
eff,k‖

)∗]

[
sin(kd)(

1

kd
− 1

(kd)3
) +

cos(kd

(kd)2

]
.

The calculus are identical for the T, k ⊥ case:

BH‖ = 4πE2
0 |αeff,H‖ |

2

[
sin(kd)(

1

kd
− 1

(kd)3
) +

cos(kd

(kd)2

]
.

The integration of the B term for the (E‖) illumination is easier:

BE‖ =

∫∫
S

sin3 θ <[α
(1)
eff,E‖

E2
0(α

(2)
eff,E‖

)∗eikd cos θ]dθdφ

= 2πE2
0 |αeff,E‖ |

2

∫ π

0
sin3 θ cos(kd cos θ)dθ

= 2πE2
0 |αeff,E‖ |

2

∫ 1

−1
(1− u2) cos(kdu)du

= 2πE2
0 |αeff,E‖ |

2

{
−
[u2

kd
sin(kdu)

]1
−1

+

∫ 1

−1

2u

kd
sin(kdu)du+

[sin(kdu)

kd

]1
−1

}
= 2πE2

0 |αeff,E‖ |
2

{
[
−2u cos(kdu)

(kd)2
]1−1 −

∫ 1

−1

−2

(kd)2
cos(kdu)du

}
BE‖ = 8πE2

0 |αeff,E‖ |
2

(
sin(kd)

(kd)3
− cos(kd)

(kd)2

)
.

using: ∫ π

0
sin3(θ)dθ =

4

3
,

σscat =
k4

16π2E2
0

[
2π(|α(1)

eff E
(1)
inc |

2 + |α(2)
eff E

(2)
inc |

2)
4

3
+ 2B

]
,
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we �nally obtain:

σscat,k‖ =
k4

6π

[
|α(1)

eff,k‖|
2 + |α(2)

eff,k‖|
2 + 2<(α

(1)
eff,k‖(α

(2)
eff,k‖)

∗e−ikd)AIF,T

]
,

σscat,H‖ =
k4

3π
|α(1)

eff,H‖
|2
(

1 + AIF,T

)
,

σscat,E‖ =
k4

3π
|α(1)

eff,E‖
|2
(

1 + AIF,L

)
,

which are eqs. (2.11a) to (2.11c).

E.2 Decay rates enhancements of a single particle with

induced dipoles and quadripoles

We consider the multipole formulas of the total decay rate enhancement factor,
equation D.20:

Γ̃tot = 1 + 6πRe[f †H(em,s)tH(s,em)f ]. (E.1)

The antenna consists in a single particle placed in the +z direction with respect to
an emitter in transverse (�orbital� number m = 1, emitter oriented on the X axis)
or longitudinal (m = 0, emitter oriented on the Z axis) coupling. In a quadrupolar
assumption, we have:

f =


e1

0

h1

0

 , H(em,s) =

[
A(kd) B(kd)

B(kd) A(kd)

]
, t = Diag(ce1, c

e
2, c

m
1 , c

m
2 ).

The superscripts (em,s) and (s,em) respectively refer to a translation from the emit-
ter to the sphere, and from the sphere to the emitter. The coe�cients h1 (null for
an electric emitter) and e1 (null for a magnetic emitter) are the incident magnetic
and electric dipole coe�cients, normalized to 1/

√
6π. The two coupling geometries

will involve An,m,ν,µ and Bn,m,ν,µ matrix blocks, where [A|B]n,m,ν,µ is the coupling
from the multipole order n with orbital number m, to the multipole order ν with
orbital number µ:

AL(kd) =

[
A1,0,1,0 A1,0,2,0

A1,0,2,0 A2,0,2,0

]
,

AT(kd) =

[
A1,1,1,1 A1,1,2,1

A1,1,2,1 A2,1,2,1

]
,

BL(kd) = 0,

BT(kd) =

[
B1,1,1,1 B1,1,2,1

B1,1,2,1 B2,1,2,1

]
.
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H(s,em) =

[
A −B
−B A

]
. (E.2)

The right-hand side of equation E.1 can thus be cast:

Γ̃L,u
tot = 1 + Re[cu1(A1,0,1,0)2 + cu2(A1,0,2,0)2], (E.3)

Γ̃T,u
tot = 1 + Re[cu1(A1,1,1,1)2 + cu2(A1,1,2,1)2 − cv1(B1,1,1,1)2 − cv2(B1,1,2,1)2], (E.4)

where u and v refer to electric (u = e, v = m) or magnetic (u = m, v = e) emitters.
The A and B coe�cients can be calculated from their analytic expressions (see
appendix C.1.1) with the angles θ = φ = 0 :

A1,1,1,1 = 1
2(ᾱs1,1,1,1 + ᾱs1,0,1,0)

= 1
2(ᾱs0,0,0,0 +

b−2,0
b+0,0

ᾱs2,0,0,0 + ᾱs0,0,0,0 +
a−2,0
a+0,0

ᾱs2,0,0,0)

= 1
2(−1√

5
ᾱs2,0,0,0 + 2ᾱs0,0,0,0)

= − 1
2
√

5

√
4πY2,0(0, 0)h2(kd) +

√
4πY0,0(0, 0)h0(kd)

= −P 0
2 (1)
2 h2(kd) + P 0

0 (1)h0(kd)

= 1
2(2h0(kd)− h2(kd))

A1,1,1,1 = 3i
2
eikd

(kd)3
(1− ikd− (kd)2).

Similarly, the other coe�cients can be cast:

B1,1,1,1 = 3i
2
eikd

(kd)2
(kd+ i),

A1,0,1,0 = −3i e
ikd

(kd)3
(1− ikd),

A1,0,2,0 = 3√
5
eikd

(kd)4
(5i(kd)2 − 15kd− 15i),

A1,1,2,1 =
√

15
2

eikd

(kd)4
(−(kd)3 − 3i(kd)2 + 6kd+ 6i),

B1,1,2,1 =
√

15
2

eikd

(kd)3
(−(kd)2 − 3ikd+ 3).

Equations E.3 and E.4 can thus be cast explicitly:

Γ̃L,utot = 1 + Re
[
−9 e2ikd

(kd)6
(1− ikd)2cu1 + 45 e2ikd

(kd)8
(ik2d2 − 3kd− 3i)2cu2

]
(E.5)

Γ̃T,utot = 1 + Re
[
− 9e2ikd

4(kd)6
(1− ikd− k2d2)2cu1 + 15e2ikd

4(kd)8
(−k3d3 − 3ik2d2 + 6kd+ 6i)2cu2

+ 9e2ikd

4(kd)4
(kd+ i)2cv1 − 15e2ikd

(kd)6
(−k2d2 − 3ikd+ 3)2cv2

]
, (E.6)

E.3 Transverse coupling of a dielectric dipolar sphere to

an electric dipole

Let us derive analytical formulas for the Poynting vector in the far �eld region
when an electric dipole emitter is transversely coupled to a dielectric sphere that is
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dominantly characterized by electric and magnetic dipole polarizabilities. Fig.E.1
de�nes the angular coordinates used in thisderivation. The surrounding medium has
relative permittivity εm and vacuum permeability µ0. The electric and magnetic
�elds produced by an electric dipole with dipolar moment denoted p, placed at
origin are given by [Jackson 1999]:

Ep(rr̂) =
eikr

4πεmε0r3

[
k2r2(r̂×p)× r̂ + (1− ikr)(3(r̂ · p)r̂− p)

]
, (E.7)

Hp(rr̂) =
eikr

4πn0r
ck2(1 +

i

kr
)r̂× p, (E.8)

with n0 the refractive index of the embedding medium (εm = n2
0), and c =

√
1/ε0µ0

the vacuum celerity. When p = p exp(iφp)x̂, the far �eld limits are given by:

Ep,ff(rr̂) = − eikr

4πεmε0r
k2 sin(θx)p exp(iφp)θ̂x, (E.9)

Hp,ff(rr̂) = − eikr

4πn0r
ck2 sin(θx)p exp(iφp)ϕ̂x. (E.10)

When the dipole is displaced by a distance d from the origin on the ẑ axis, its phase
in the far-�eld is modi�ed by the far-�eld phase shift exp(−ikd cos θz)[Rolly 2011a]
while its amplitude, whose correction is proportional to d/r is not modi�ed in the
far-�eld approximation:

Ep,ff(rr̂, d) = − eikr

4πεmε0r
k2 sin(θx)p exp(iφp) exp(−ikd cos θz)θ̂x, (E.11)

Hp,ff(rr̂, d) = − eikr

4πn0r
ck2 sin(θx)p exp(iφp) exp(−ikd cos θz)ϕ̂x. (E.12)

On the other hand, the �eld produced by a magnetic dipole with moment m =

m exp(iφm)ŷ placed at origin is given by [Jackson 1999]:

Em(rr̂) = − eikr

4πε0n0cr
k2(1 +

i

kr
)r̂×m,

Hm(rr̂) =
eikr

4πr3

[
k2r2(r̂×m)× r̂ + (1− ikr)(3(r̂ ·m)r̂−m)

]
,

Figure E.1: The angular coordinates system used in this demonstration. The zenith
angles θi and azimuthal angles ϕi are de�ned respectively to the 3 axis, i = x, y, z.
The choice i = z corresponds to the usual spherical coordinates.
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and the far-�eld contributing terms are:

Em,ff(rr̂) =
eikr

4πε0n0cr
k2 sin(θy)m exp(iφm)ϕ̂y,

Hm,ff(rr̂) = −e
ikr

4πr
k2 sin(θy)m exp(iφm)θ̂y.

Similarly to the case of an electric dipole, when the magnetic dipole is displaced by
a distance d along the ẑ axis, its phase is modi�ed in the far-�eld approximation by
the term exp(−ikd cos θz):

Em,ff(rr̂, d) =
eikr

4πε0n0cr
k2 sin(θy)m exp(iφm) exp(−ikd cos θz)ϕ̂y, (E.13)

Hm,ff(rr̂, d) = −e
ikr

4πr
k2 sin(θy)m exp(iφm) exp(−ikd cos θz)θ̂y. (E.14)

The amplitude of the emitting electric dipole is taken equal to unity with a phase
reference equal to zero: pem = x̂. The cartesian directions +x,+y will be the phase
references respectively for the electric and magnetic dipoles. Using Eqs. (E.7) and
(E.8), the �eld produced by the emitter at a distance d on the +ẑ direction can be
cast:

E0(dẑ) = − eikd

4πεmε0d3
(1− ikd− k2d2)x̂,

H0(dẑ) =
eikd

4πn0d3
c(k2d2 + ikd)ŷ.

In the case of a spherical, homogeneous scatterers, the polarizabilities are given by
Mie theory. We use dimensionless polarizabilities for notational simplicity:

α̃ = i
3

2k3a3
a1; β̃ = i

3

2k3a3
b1,

pin = 4πa3ε0εmα̃E0(dẑ); min = 4πa3β̃H0(dẑ).

We then have :

pin = 4πa3ε0εmα̃E0(dẑ)

= −eikd
(a
d

)3
(1− ikd− k2d2)α̃x̂

pin = γeα̃x̂, (E.15)

min = 4πa3β̃H0(dẑ)

min = γm
c

n0
β̃ŷ, (E.16)

where γe ≡ −eikd a
3

d3
(1− ikd− k2d2) and γm ≡ eikd a

3

d3
(ikd+ k2d2) are dimensionless

�eld coupling factors between the emitter and the electric and magnetic resonance
of the sphere, respectively. By summation of the right-hand terms in Eqs. (E.9) to
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(E.14), and replacing pin and min by their expressions in Eqs. (E.15) and (E.16),
the far �elds from the 3 dipoles together can be cast:

Etot,ff(rr̂, d) = − eikr

4πεmε0r
k2

[
(1 + γeα̃ exp−ikd cos θz) sin(θx)θ̂x

−γmβ̃ sin(θy) exp(−ikd cos θz)ϕ̂y

]
Htot,ff(rr̂, d) = − eikr

4πn0r
ck2

[
(1 + γeα̃e

−ikd cos θz)) sin(θx)ϕ̂x

+γmβ̃ sin(θy)e
−ikd cos θz θ̂y

]
.

The time-averaged Poynting vector can be cast :

P(x, y, z, r) =
1

2
<(E∗ff ×Hff)

=
ωk3

32π2ε0εmr2
<
[
|1 + γeα̃e

−ikd cos θz)|2 sin2(θx)θ̂x × ϕ̂x

+|γmβ̃|2 sin2(θy)θ̂y × ϕ̂y
+(1 + γeα̃e

−ikd cos θz)∗ sin(θx)γmβ̃ sin(θy)e
−ikd cos θz θ̂x × θ̂y

+(γmβ̃e
−ikd cos θz)∗ sin(θy)(1 + γeα̃e

−ikd cos θz)) sin(θx)ϕ̂x × ϕ̂y

θ̂x× ϕ̂x and θ̂y× ϕ̂y both equal r̂ since (r̂, θ̂i, ϕ̂i) is an orthonormal base (i = x, y, z).
For notational simplicity we choose to use the reduced cartesian coordinates, i.e.
the x, y, z coordinates of the unit radial vector r̂. With (l,m, n) = (x, y, z), (y, z, x)

or (z, x, y) we have:

cos(θl) = l, sin(θl) =
√

1− l2,
cos(ϕl) = m/

√
1− l2, sin(ϕl) = n/

√
1− l2,

θ̂x × θ̂y = z√
1−x2
√

1−y2
r̂,

ϕ̂x × ϕ̂y = z√
1−x2
√

1−y2
r̂,

and thus :

P(x, y, z) =
ωk3

32π2r2ε0εm

{
(1− x2)|1 + γeα̃e

−ikdz|2 + (1− y2)|γmβ̃|2(E.17)

+2z<[γ∗mβ̃
∗eikdz(1 + γeα̃e

−ikdz)]

}
r̂.

E.4 Far-�eld intensity of an electromagnetic dipoles and

quadripoles scatterer

In this section we derive the far-�eld Poynting vector produced by a scatterer whose
far-�eld response is dominated by its electric and magnetic dipoles and quadrupoles.
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The coupling is Transverse: the emitter is oriented on the ẑ axis and the centre of
the scatterer is placed at a distance d on the +x axis, u1 = dx̂. We �rst de�ne some
coe�cients that simplify the display of the equations:

eiΦ ≡ exp(−ikr̂ · r1)

= exp(−ikd sin(θ) cos(ϕ)).

Kc ≡ 1
4πε0εm

k2

Kr ≡ eikr

r

K ≡ KrKc

γe1 ≡ eikd(k2d2 + ikd− 1)(a/d)3

γm1 ≡ eikd(ikd+ k2d2)(a/d)3

p1 = p0γ
e
1α̃

e
1

m1 = p0γ
mα̃m1 c/n0

In the latter expression, eiΦ is the the far-�eld phase shift, Kc is a normalization
coe�cient and Kr contains the far-�eld dependence of the �elds on the radius r.
γ

e/m
i is the dimensionless coupling coe�cient between the dipole emitter and the
electric/magnetic multipole of order i. p1 and m1 are the induced dipolar moments
(see previous section).

The �elds produced by the dipoles (electric dipolar emitter, electric and induced
magnetic dipoles excited in the particle respectively) can be cast, in the local spher-
ical basis:

Eff
0 (r, θ, φ) = p0K sin(θ)êθ (E.18)

Eff
d,e(r, θ, φ) = p1Ke

iΦ sin(θ)êθ (E.19)

Eff
d,m(r, θ, φ) = m1Ke

iΦ n0
c (cosφêθ − cos θ sinφêφ) (E.20)

The �elds produced by both induced quadrupoles can be derived following the
method detailed in [Stout 2011]. In order to obtain an excitation �eld that corre-
sponds to the current notation used in this derivation, the only nonzero coe�cient
of the incoming �eld's vector, f , is fn=1,m=0 = −2i

√
2πp0Kc/

√
3. The coupling

between an electric dipole emitter and the quadrupoles of the scatterer can be cast
from the nonzero coe�cients of the irregular translation coe�cients between the
scatterer and the source:

A2,−1,1,π(kd, π/2, π) = −A2,1,1,0(kd, π/2, π)

= −
√

15
exp(ikd)(k3d3 + 3ik2d2 − 6kd− 6i)

2
√

2(kd)4

B2,−2,1,π(kd, π/2, π) = −B1,0,2,2(kd, π/2, π)

=
√

15
exp(ikd)(k2d2 + 3ikd− 3)

2
√

2(kd)3

with the otherA2,m,1,0(kd, π/2, π) andB2,m,1,0(kd, π/2, π) equal to zero. The emitter
thus couples to the induced quadrupoles, qe and qm, and we obtain the coupling
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coe�cients and the quadrupole moments:

γe2 ≡ − 5
3kd(k3d3 + 3ik2d2 − 6kd− 6i)a

3

d3

γm2 ≡ 5
3kd(k2d2 + 3ikd− 3)a

3

d3

qe = p0γ
e
2α̃

e
2

qm = p0γ
m
2 α̃

m
2

Their respective electric far-�elds if centered at the origin are:

Eq,e,0 ≡ lim
r→∞

[
A2,−1,1,0(kd, π/2, π)Nout

2,−1(r, θ, φ)

+A2,1,1,0(kd, π/2, π)Nout
2,1 (r, θ, φ)

]
te2f1,0

Eff
q,e,0 = Kqe

(
cos(2θ) cosφêθ − cos θ sinφêφ

)
Eq,m,0 ≡ lim

r→∞

[
B2,−2,1,0(kd, π/2, π)Mout

2,−2(r, θ, φ)

+B2,2,1,0(kd, π/2, π)Mout
2,2 (r, θ, φ)

]
tm2 f1,0

Eff
q,m,0 = Kqm

(
sin θ cos(2φ)êθ − sin(2θ) sin(2φ)

2 êφ

)
where Nout

n,m and Mout
n,m are the outgoing VPWs. Similarly to dipoles, the quadrupoles

are centered at u1 and their phase experience a modi�cation of eiΦ in the far �eld
region:

Eff
q,e(r, θ, φ) = K eiΦqe ×

(
cos(2θ) cosφêθ (E.21)

− cos θ sinφêφ

)
Eff

q,m(r, θ, φ) = K eiΦqm ×
(

sin θ cos(2φ)êθ (E.22)

− sin(2θ) sin(2φ)
2 êφ

)
The total, normalized (respectively to the ED emitter maximum far-�eld irradi-

ance) far-�eld irradiance can be cast:

I(θ, φ) =
1

p2
0K

2
|Eff

0 + Eff
d,e + Eff

d,m + Eff
q,e + Eff

q,m|2

=

∣∣∣∣( sin θ(1 + eiΦγe1α̃
e
1) + eiΦ

(
γm1 α̃

m
1 cosφ

+γe2 cos(2θ) cosφ+ γm2 sin θ cos(2φ)
))

êθ

−
(

cos θ sinφ(α̃m1 γ
m
1 + γe2α̃

e
2)

+
1

2
γm2 α̃

m
2 sin(2θ) sin(2φ)

)
eiΦêφ

∣∣∣∣2
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Finally we have:

I(θ, φ) =

∣∣∣∣ sin(θ)êθ + eiΦγe1α̃
e
1 sin(θ)êθ

+eiΦγm1 α̃
m
1 (cos(φ)êθ − sin(φ) cos(θ)êφ)

+eiΦγe2α̃
e
2(cos(φ) cos(2θ)êθ − sin(φ) cos(θ)êφ)

+eiΦγm2 α̃
m
2 (cos(2φ) sin(θ)êθ −

sin(2φ) sin(2θ)

2
êφ)

∣∣∣∣2,
which is equation 3.12 in the main text. In the last equation, each subsequent
line stands for the �eld produced by the emitter, and the induced electric dipole,
magnetic dipole, electric quadrupole, and magnetic quadrupole respectively.



Glossary and Acronyms

dBi Isotropic decibel. See equation 1.13. 18, 105

DDA Discrete Dipole Approximation. See [Evlyukhin 2011] and references there-
within. 2

diagonal scalar T-matrix assumption the T-matrix of the individual N scat-
terers is assumed to be diagonal in p, and scalar for every multipolarity index
n, i.e. tn,m,ν,µ = δ(n − ν)δ(m − µ)tn. This is the case when the scatterer is
a sphere made of homogeneous material, or for a shperically symmetric scat-
terer. These assumptions simplify the explicit formulas derived in this thesis,
but the general method to derive them is compatible with the case of non-
diagonal T-matrices (split ring resonator shapes for instance); they are made
throughout the whole thesis, except in section 2.2. 2

DNA Deoxyribonucleic Acid : one of the base components of life on Earth, it
stores genetic information. Its unique structure and properties make it a very
interesting tool in nano-sciences : for instance, it can be used to �x a given
distance between di�erent nanoparticles in small or large-scale structures. 43,
46

ED Electric Dipole. 51

EMWs Electromagnetic waves. 33

GMT Generalised Mie Theory. 16, 17, 22, 42, 49, 51, 60

incoming �eld a �eld that is incoming from sources located outside of the consid-
ered spherical surface. The poynting vector �ux through the surface is thus
null. The radial dependence of incoming �elds can be cast using spherical
Bessel functions and their derivatives. 15, 71

IR Infrared electromagnetic radiation, i.e. wavelengths between ≈ 800 nm and 300
µm. Near IR: between 800 nm and 1.4µm. 47

LDOS Local Density of Optical states. See e.g. [Novotny 2006]. 10

MD Magnetic dipole. 47

optical antenna optical antennas are transducers in the visible spectrum of the
electromagnetic �eld: they allow the conversion of the electromagnetic energy
coming from the far-�eld to locally avaiable electromagnetic energy (e.g. into
a sub-wavelength sized electric �eld intensity spot). 10, 41, 106
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scattered �eld scattered �elds are the multipole expansion �elds that satisfy scat-
tering boundary conditions, the Poynting �ux is directed towards the exterior
of the considered spherical surface, which thus encloses a source. The radial
dependence of scattered �elds can be cast using outgoing spherical Hankel
functions and their derivatives. 15, 71

split ring resonator a planar or thick split-ring geometry that allows an easy
�hybrid� coupling between the electric and magnetic induced dipoles (and/or
between the di�erent multipoles) of the structure. See section 2.2. 21, 30

visible spectrum visible electromagnetic radiation, i.e. wavelengths between ≈
400 nm and ≈ 800 nm. 1, 3, 33, 55, 103

VPWs Vector Partial Waves, the incident and outgoing Mn,m and Nn,m. See
appendix A.2. 15, 77, 101

VSHs Vector Spherical Harmonics, Xn,m, Yn,m and Zn,m . See appendix A.3. 85



List of Mathematical Symbols

Greek symbols
angular frequency (ω) of the (harmonic) electromagnetic �eld under consid-

eration. Most of the equations omit the e−iωt dependence of the �elds.
15

coupling factor (γ) between 2 dipoles, resulting from the propagation of the
dipole �eld from one dipole to the other, plus the polarization of the �eld
(α). 23

cross sections (σscat, σext) σscat, σext are the scattering and extinction cross
sections, respectively. See e.g. [Bohren 1983]. 25

decay rates (Γrad,Γtot) Γrad,Γtot are the radiative and total decay rates of an
emitter, respectively. Any given value of Γ is a normalized (dimensionless)
decay rate, ratio of the decay rate with the antenna structure over the decay
rate in the embedding medium, Γ0. For clarity a tilde is often used in this
context, e.g. Γ̃rad = Γrad/Γ0. 42, 63

dimensionless polarizabilities (α̃) polarizability divided by the volume of
the scatterer. For spheres of radius a, α̃ = α/(4πa3). 56

permittivity (ε) relative permittivity of a medium; ε0 is the (absolute) per-
mittivity of vacuum. 34

pi (π) ratio of the perimeter of a circle to its diameter. 13
quantum e�ciency (η) of an emission. η is the quantum e�ciency if the

initial emitter is perfect (η0 = 1) while ηeff is the �nal (e�ective) quantum
e�ciency when considering a non-unit initial quantum e�ciency. 6, 9, 18,
42, 46, 63

relative phase (φ) between two dipoles. φ = arg(p2/p1). 24
wavelength (λ) wavelength of the impeding light. Unless speci�ed otherwise,

λ refers to λ0, the wavelength of the corresponding radiation in vacuum. 15

Mathematical symbols
far-�eld phase shift (eiΦ) that is due to the displacement of the i-th scatterer

from the origin, eiΦ ≡ eikri
eikr0

. Due to the far-�eld approximation, the numer-
ical value is taken as the �rst signi�cant term of the expansion of the phase
shift in series of 1/r as r →∞, that is, eikr̂·ui , a quantity that is explicitly
de�ned in each formula derivation. 59, 97, 100

imaginary number (i) i ∈ C, i2 = −1. 13

Roman symbols
cartesian base coordinates (x, y, z) (the reference coordinate system). 14
directivity (DdBi) expressed in isotropic decibels (dBi). DdBi =

10 log(4πP/Γrad) where P is the power per steradian emitted in the di-
rection of interest and Γrad is the total radiative power of the antenna.
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An isolated dipole radiates with a directivity of 1.76 dBi, while a perfectly
isotropic radiation has a directivity of 0 dBi. 63

e�ciencies (Qscat, Qext) Qscat, Qext are the scattering and extinction e�cien-
cies, respectively. They are de�ned by the interaction cross section divided
by a relevant geometric cross section, for a sphere of radius a : Q = σ/(πa2).
When there are multiple scatterers the total cross section is divided by the
sum of the geometric cross sections. 26

electric dipole moment (p) p0 is the emitting dipole moment. 23
electric �eld (E, E) E is the vector �eld associated to the electric �eld; E

is the (complex) scalar electric �eld at one position, the projection of E

on a speci�ed or otherwise trivially inferred axis. The 0 or inc subscripts
designate an incoming �eld; the scat subscript designates a scattered �eld;
the tot subscript designates a total (incoming plus scattered) �eld; and
the exc subscript designates an excitation �eld, sum of the incoming �eld
plus the �elds scattered by all the other scatterers except the one under
consideration. 15

magnetic �eld (H, H) Same as E but for the magnetic �eld instead of the
electric �eld. 15

multipole expansion numbers (n, m) n ∈ N∗ is the multipole order (n = i

refers to a 2i-pole) and m ∈ [−n..n] is the orbital number. See A.1. 30, 69,
73

number of scatterers (N) (generally assumed to be spheres) of the considered
scattering system or optical antenna. This ensemble is indexed by the
integer i. 14

origin (O) of the sperical or cartesian coordinate system. 14, 106
particle-centered radius (ri) radius centered on the ith scatterer, ri = r0−ui

where r0 is the radius centered on origin and ui is the position vector.
|ri| = ri. 14, 82

position vector (ui) of the ith ∈ N scatterer. 14, 82, 106
radius (a) of a sphere. 25
spherical base coordinates (r, θ, ϕ) (standard conventions apply, see 1.9).

14
wavevector (k, k) k is the considered wavevector ; k is the associated wavenum-

ber, de�ned in a homogeneous medium by k = ωnm/c0. 15, 34

Subscripts, superscripts and diacritical signs
Longitudinal (L) longitudinal coupling: the 2 or more interacting dipoles are

parallel to each other and oriented along the line that intersects them both.
22

Transverse (T) transverse coupling: the 2 or more interacting dipoles are
parallel to each other and oriented perpendicularly to the line that intersects them
both. 22, 100
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