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1. (5 pts) Une plaque infinie, d’épaisseur 2a, avec des normales aux surfaces orientées selon :i:ﬁz, porte une
densité volumique de charge uniforme py > 0. (voir la Fig. 2(a), ou z = 0 correspond au centre de la plaque).
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F1GURE 1 — Une plaque de charge infinie de densité homogene py > 0 et épaisseur 2a.

Déduisez, sans effectuer de calculs, les orientations du champ E dans les régions z < 0 et z > 0. En
tenant compte des invariances de la plaque, quelles conclusions pouvez-vous tirer sur les dépendances

de E(x,y,z) par rapport aux coordonnées ?
Solution : Le champ E appartient a tout plan de symétrie du probleme. Comme tout plan perpendicu-

laire a la plaque constitue un axe de symétrie, E doit nécessairement étre orienté selon la direction UZ,
c’est-a-dire le long de l'axe . Etant donné que la densité volumique de charge py > 0, on en déduit

que E s’éloigne de la plaque.
Les invariances de la distribution de charge par translation selon = et y nous dictent, conformément au
principe de Curie, que le champ FE ne dépend que de la coordonnée z.

Ainsi, on peut conclure que le champ électrique a la forme suivante : E = |z—lEz(z)ﬁz

Déterminez le champ électrique, F, = E . 7z, en fonction des coordonnées dans les régions |z| < a
et |z| > a, puis tracez ’ensemble & la main en fonction de z. (Indice : utilisez une surface de Gauss
cylindrique de hauteur 2z, centrée en z = 0, comme celles indiquées sur Fig.2(b) ).

Solution : La symétrie du probléme dicte que le champ ﬁ = é—lEz (2)77
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FIGURE 2 — E/, en fonction de z/a.

En définissant le potentiel V(z = 0) = 0, déterminez le potentiel V(z), puis tracez-le a la main en
fonction de z.



FiGURE 3 — Fil de longueur ¢, portant un courant I, dans un champ B, uniforme sur toute sa longueur.

2. (5 pts) On considére un conducteur filaire de longueur £ = 5 m, parcouru par un courant I = 3v/2 A dans la

direction . Le fil est plongé dans un champ magnétique externe ﬁ, ce qui conduit a une force de Laplace
sur le fil, ?L, dans la direction (71 + ﬁy) /V/2. (voir Fig. 3(a)).

(a) Trouvez les composantes B, et B, d’un champ magnétique uniforme sur toute la longueur du fil qui

produira une force de Laplace de ?L =6 x 10_3@N sur le fil. (On considére B, =0.)
Solution : La force de Laplace est :
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(b) Si on ajoute une composante du champ B, # 0, comment cela modifie-t-il la force exercée sur le
conducteur ?
Solution : Ceci ne modifierait pas, ? 1 car un champ orienté parallele au courant ne produit pas une
Force de Laplace :

0 B, ~B,
ojalB,|=| B. | .
1 B, 0

(¢) On adopte un systeme de coordonnées dans lequel le fil de la question (a) est situé en (z = a,y = 0). Un
autre fil, infini, est placé en (x = 0,y = —a) et porte un courant Iy selon 'axe Oz, comme indiqué dans
la Fig.3(b). Déterminez les composantes du champ B, et B, produites par le courant Iy & la position
du fil portant le courant I, (x = a,y = 0). (Rappelons que 71/(25 = —sindU, + cos qbﬁy)

Solution : Le champ magnétique créé par un courant Iy, orienté selon 'axe Oz est :
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(d)

Déterminez la valeur de Iy qui reproduirait la méme force de Laplace sur le premier fil que celle indiquée
a la question (a). Indiquez clairement le signe de I ainsi que sa valeur numérique pour a = 1 cm.
Solution : En égalisant le champ B trouvé a la position (z = a,y = 0), produit par un courant I
trouvé en I’éq.(3) avec le champ B trouvé dans Péq. (2) de 2a, on déduit que :
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Ce qui nous dit que le sens des courants de I et de Iy doit étre opposé. On s’attend a ce résultat en
se rappelant du cours que deux fils de courant orienté dans le méme sens s’attirent alors que deux fils
portant des courants opposés se repoussent.

3. (5 pts) Calculs magnéto-statique :

(a)

On considére un potentiel vecteur : X (p,0,2) = CT"QWZ dans une région cylindrique de p < a avec C'

une constante. Trouvez le champ magnétique, B (p,d,2) = IRX, associé a X (Indice : utiliser ’éq.(4)
en bas de la page).

Solution : Puisque, 4, = Ay =0et A, = CT”Q on a :
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Déduire la dimension de C.

Solution : La constante C' a les dimensions de Tesla m~1!.

%
Utilisez le théoreme d’Ampeére local pour déduire la densité volumique de courant, 7, dans la région
p < a.
Solution :
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Avec le théoreme de Ampere, on peut en déduire la densité de courant, j :

Ho Ho

Trouvez le courant I traversant une surface ? = 72,8, définie par z = constant et p < a.
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Solution :

4. (6 pts) On considére un solénoide de longueur ¢ = 314, 16 cm, constitué de N = 1000 spires et de section carrée
de cdté a = 10 cm (voir Fig.4). L’axe du solénoide est orienté selon .. Donnez les formules et effectuez les
applications numériques pour les questions (a) a (c¢). On adopte partout ’approximation du solénoide infini,
{> a.

(a)

Calculez I'expression ainsi que la valeur numérique du champ gint a l'intérieur du solénoide lorsqu’un
courant I = 10A y circule. (Indice : appliquez la formule appropriée ou utilisez le théoréme d’Ampére
en supposant que le champ magnétique a lextérieur du solénoide est nul).

Solution :
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(b)

Calculez I'inductance propre, L, du solénoide (expression et A.N.).
Solution : Le flux magnétique a travers un spire de la bobine est :

(Dspire = ‘Bint‘s = |§int|a2
et le flux a travers la Bobine est ®opine = IV ®Pgpire. L'inductance de la Bobine est maintenant :

N®yobine o N?  4x7x1077 x 1072 x 10°
= = [0 — =

=4x107%H.
I ] T x 10

L

Donnez I'expression de 1’énergie magnétique &, stockée dans la bobine et calculez sa valeur numérique
pour I = 10A (méthode au choix).
Solution :

1 1
En = §L12 = 54 x 1073 x 102 =0.2J .

Dans la Fig.5, la bobine décrite dans I’énoncé est placée dans un circuit fermé de résistance R et immergée

dans un champ externe uniforme et variable dans le temps, Bext (t) = Bgcos (wt) [cos 0, + sin 9796]
Calculez le flux de ce champ externe ®qy(t) & travers la bobine (expression uniquement).

Solution : Le flux magnétique a travers une spire de la bobine est :

Dypire = // Bext (ﬁ = // By cos (wt) [cos e, + sinbe,] - €.dS
Js Js
= By cos (wt) cos // dS = By cos (wt) cos fa* .
JJs

Le flux a travers la bobine est N fois celui d’une spire dans la bobine, et nous avons donc :

Ppobine(t) = N®gpire = Na? cos  cos (wt) .

Déduisez la force électromotrice eqy(t) induite dans la bobine par le champ extérieur ﬁext (t). (expres-
sion)
Solution :

a® obine d .
€ext (t) = 7% == [Na?By cos 6 cos (wt)| = Na®Bow cos 0 sin (wt)

Ecrivez 'équation différentielle pour le courant i(t) dans ce circuit, en fonction de la force électromotrice
eoxi(t) (due & Bog(t)), de L et de R.
Solution : Le courant i(¢) est la solution de I’équation :

Coxs (1) = L%i(t) + Ri(t) .

Bonus (A faire seulement si vous avez terminé tout le reste de I’examen) : Résoudre I’équation
différentielle trouvée en (4f) pour i(t).

Solution : Le courant i(¢) est la solution de I’équation :

ot (1) = Li(1) + Ri(1)

Simplifions la notation en définissant la constante, e = Na?Bow cos® de 5(c). La force électromotrice
g’écrit alors :

eext (t) = Na? Bow cos 0 sin (wt) = eg sin (wt) .
Le courant i(t) en régime permanent sera sinusoidale et déphasé par rapport & la force électromotrice :

i(t) = ip sin(wt — 9), et % = wip cos(wt — 0)



L’équation pour le courant en régime permanent devient donc :

eo sin (wt) = Lwig cos(wt — 0) + Rig sin(wt — 0)
= Lwig cos(wt) cos d + Lwig sin(wt) sin §
+ Rig sin(wt) cos § — Rig cos(wt)sind ,

ce qui nous donne deux équations pour les coefficients de cos (wt) et sin (wt) respectivement :

0= Lwcosd — Rsin§
eg = Rigcosd + Lwigsin .
On peut résoudre ces deux équation afin de trouver :
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= igR (cos§ + tan §sin §) = igRcos d (1 + tan®d)
T 2
— igRV1 + tan26 = igRy |1+ <;> ,

N 1 s 1
ou nous avons utilisé : COS(S = .
V1+tan?§

Nous pouvons donc déduire que :
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De facon alternative, on peut faire appel a la méthode des impédances complexes. L’impédance complexe
du circuit est :

Z =R+ jwl =|Z| e .

Le courant complexe est :
e e
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La fonction du courant dans le temps est alors :

i(t) = ipsin(wt — 0)
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FIGURE 4 — Bobine de section carrée de longueur ¢, avec un axe orienté selon u,.
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FIGURE 5 — Bobine de Fig.(4) dans un circuit de résistance R, immergée dans un champ Bex(?).
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