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15 janvier 2025 13h30
4 problèmes / Durée de l’épreuve 2h.
Formulaire A4 manuscrit autorisé / Calculettes standards autorisées
1. (5 pts) Une plaque infinie, d’épaisseur 2a, avec des normales aux surfaces orientées selon ±−→u z, porte une

densité volumique de charge uniforme ρ0 > 0. (voir la Fig. 2(a), où z = 0 correspond au centre de la plaque).

Figure 1 – Une plaque de charge infinie de densité homogène ρ0 > 0 et épaisseur 2a.

(a) Déduisez, sans effectuer de calculs, les orientations du champ −→E dans les régions z < 0 et z > 0. En
tenant compte des invariances de la plaque, quelles conclusions pouvez-vous tirer sur les dépendances
de −→E (x, y, z) par rapport aux coordonnées ?
Solution : Le champ −→E appartient à tout plan de symétrie du problème. Comme tout plan perpendicu-
laire à la plaque constitue un axe de symétrie, −→E doit nécessairement être orienté selon la direction −→u z,
c’est-à-dire le long de l’axe −→u z. Étant donné que la densité volumique de charge ρ0 > 0, on en déduit
que −→E s’éloigne de la plaque.
Les invariances de la distribution de charge par translation selon x et y nous dictent, conformément au
principe de Curie, que le champ −→E ne dépend que de la coordonnée z.
Ainsi, on peut conclure que le champ électrique a la forme suivante : −→E = z

|z|Ez(z)
−→u z.

(b) Déterminez le champ électrique, Ez ≡
−→
E · −→u z, en fonction des coordonnées dans les régions |z| < a

et |z| > a, puis tracez l’ensemble à la main en fonction de z. (Indice : utilisez une surface de Gauss
cylindrique de hauteur 2z, centrée en z = 0, comme celles indiquées sur Fig.2(b) ).
Solution : La symétrie du problème dicte que le champ −→E = z

|z|Ez(z)
−→u z.

|z| ≤ a : ©
∫∫ −→

E ·
−→
dS = 2Ez(z)S = Qint

ε0
= 2zSρ0

ε0
=⇒ Ez(z) = zρ0

ε0
(1a)

|z| ≥ a : ©
∫∫ −→

E ·
−→
dS = 2Ez(z)S = Qint

ε0
= 2aSρ0

ε0
=⇒ Ez(z) = aρ0

ε0
(1b)

Figure 2 – Ez/a en fonction de z/a.

(c) En définissant le potentiel V (z = 0) = 0, déterminez le potentiel V (z), puis tracez-le à la main en
fonction de z.
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Figure 3 – Fil de longueur `, portant un courant I, dans un champ B, uniforme sur toute sa longueur.

2. (5 pts) On considère un conducteur filaire de longueur ` = 5 m, parcouru par un courant I = 3
√

2 A dans la
direction −→u z. Le fil est plongé dans un champ magnétique externe −→B , ce qui conduit à une force de Laplace
sur le fil, −→F L, dans la direction

(−→u x +−→u y

)
/
√

2. (voir Fig. 3(a)).

(a) Trouvez les composantes Bx et By d’un champ magnétique uniforme sur toute la longueur du fil qui
produira une force de Laplace de −→F L = 6× 10−3 (−→u x+−→u y)√

2 N sur le fil. (On considère Bz = 0.)
Solution : La force de Laplace est :

−→
F L = I

∫ `

0

−→
d` ∧

−→
B = I

0
0
`

 ∧
BxBy

0

 = I`

−ByBx
0

 ,

mais d’après l’énoncé on a :

−→
F L = 6× 10−3

√
2

1
1
0

 = I`

−ByBx
0

 = 3
√

2× 5

−ByBx
0


=⇒ Bx = −By = 10−3

5 T = 2× 10−4T = 2Gauss =⇒ −→B = 10−3

− 1
51

5
0

T

(2)

(b) Si l’on ajoute une composante du champ Bz 6= 0, comment cela modifie-t-il la force exercée sur le
conducteur ?
Solution : Ceci ne modifierait pas, −→F L car un champ orienté parallèle au courant ne produit pas une
Force de Laplace : 0

0
1

 ∧
BxBy
Bz

 =

−ByBx
0

 ,

(c) On adopte un système de coordonnées dans lequel le fil de la question (a) est situé en (x = a, y = 0). Un
autre fil, infini, est placé en (x = 0, y = −a) et porte un courant I0 selon l’axe Oz, comme indiqué dans
la Fig.3(b). Déterminez les composantes du champ Bx et By produites par le courant I0 à la position
du fil portant le courant I, (x = a, y = 0). (Rappelons que −→u φ = − sinφ−→u x + cosφ−→u y).
Solution : Le champ magnétique créé par un courant I0, orienté selon l’axe Oz est :

−→
B(ρ, φ, z) = µ0I0

2πρ
−→u φ = −→B(ρ = a

√
2, φ = π

4 , z) = µ0I0

2πa
√

2

− 1√
2

1√
2

0


= 4π10−7

4πa I0

−1
1
0

 = 4π10−7

4π10−2 I0

−1
1
0

 = 10−5I0

−1
1
0

T .

(3)

2



(d) Déterminez la valeur de I0 qui reproduirait la même force de Laplace sur le premier fil que celle indiquée
à la question (a). Indiquez clairement le signe de I0 ainsi que sa valeur numérique pour a = 1 cm.
Solution : En égalisant le champ −→B trouvé à la position (x = a, y = 0), produit par un courant I0

trouvé en l’éq.(3) avec le champ −→B trouvé dans l’éq. (2) de 2a, on déduit que :

10−5I0

 1
−1
0

 = 10−3

− 1
51

5
0

 =⇒ I0 = −100
5 = −20A .

Ce qui nous dit que le sens des courants de I et de I0 doit être opposé. On s’attend à ce résultat en
se rappelant du cours que deux fils de courant orienté dans le même sens s’attirent alors que deux fils
portant des courants opposés se repoussent.

3. (5 pts) Calculs magnéto-statique :

(a) On considère un potentiel vecteur : −→A (ρ, φ, z) = Cρ2

4
−→u z dans une région cylindrique de ρ ≤ a avec C

une constante. Trouvez le champ magnétique, −→B (ρ, φ, z) = −→rot
−→
A, associé à −→A (Indice : utiliser l’éq.(4)

en bas de la page).
Solution : Puisque, Aρ = Aφ = 0 et Az = Cρ2

4 on a :

−→
B (ρ, φ, z) = −→rot

−→
A = 1

ρ
−→u ρ

[
∂Az
∂φ
− ∂ (ρAφ)

∂z

]
+−→u φ

[
∂Aρ
∂z
− ∂Az

∂ρ

]
+ 1
ρ
−→u z

[
∂ (ρAφ)
∂ρ

− ∂Aρ
∂φ

]
= −→u φ

∂

∂ρ

(
Cρ2

4

)
= Cρ

2
−→u φ

(b) Déduire la dimension de C.
Solution : La constante C a les dimensions de Tesla m−1.

(c) Utilisez le théorème d’Ampère local pour déduire la densité volumique de courant,
−→
j , dans la région

ρ ≤ a.
Solution :

−→rot
−→
B = 1

ρ
−→u ρ

[
∂Bz
∂φ
− ∂ (ρBφ)

∂z

]
+−→u φ

[
∂Bρ
∂z
− ∂Bz

∂ρ

]
+ 1
ρ
−→u z

[
∂ (ρBφ)
∂ρ

− ∂Bρ
∂φ

]
= 1
ρ
−→u z

∂

∂ρ

(
Cρ2

2

)
= 1
ρ
Cρ−→u z = C−→u z .

Avec le théorème de Ampère, on peut en déduire la densité de courant,
−→
j :

−→
j = 1

µ0

−→rot
−→
B = C

µ0

−→u z .

(d) Trouvez le courant I traversant une surface −→S = −→u zS, définie par z = constant et ρ ≤ a.
Solution :

I =
∫∫
S

−→
j ·
−→
dS =

∫∫
S

C

µ0

−→u z ·−→u zdS = C

µ0

∫ a

0
ρdρ

∫ 2π

0
dφ = C

µ0
S = C

µ0
πa2 .

4. (6 pts) On considère un solénoïde de longueur ` = 314, 16 cm, constitué de N = 1000 spires et de section carrée
de côté a = 10 cm (voir Fig.4). L’axe du solénoïde est orienté selon −→u z. Donnez les formules et effectuez les
applications numériques pour les questions (a) à (c). On adopte partout l’approximation du solénoïde infini,
`� a.

(a) Calculez l’expression ainsi que la valeur numérique du champ −→B int à l’intérieur du solénoïde lorsqu’un
courant I = 10A y circule. (Indice : appliquez la formule appropriée ou utilisez le théorème d’Ampère
en supposant que le champ magnétique à l’extérieur du solénoïde est nul).
Solution :

−→
B int = µ0

N

`
I−→u z = 4× π × 10−7 × 103 × 10

π
−→u z = 4× 10−3−→u z T .
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(b) Calculez l’inductance propre, L, du solénoïde (expression et A.N.).
Solution : Le flux magnétique à travers un spire de la bobine est :

Φspire = |−→B int|S = |−→B int|a2

et le flux à travers la Bobine est Φbobine = NΦspire. L’inductance de la Bobine est maintenant :

L = NΦbobine

I
= µ0a

2N
2

`
= 4× π × 10−7 × 10−2 × 106

π
= 4× 10−3 H .

(c) Donnez l’expression de l’énergie magnétique Em stockée dans la bobine et calculez sa valeur numérique
pour I = 10A (méthode au choix).
Solution :

Em = 1
2LI

2 = 1
24× 10−3 × 102 = 0.2 J .

(d) Dans la Fig.5, la bobine décrite dans l’énoncé est placée dans un circuit fermé de résistance R et immergée
dans un champ externe uniforme et variable dans le temps, −→Bext(t) = B0 cos (ωt)

[
cos θ−→u z + sin θ−→u x

]
.

Calculez le flux de ce champ externe Φext(t) à travers la bobine (expression uniquement).
Solution : Le flux magnétique à travers une spire de la bobine est :

Φspire =
∫∫
S

−→
Bext ·

−→
dS =

∫∫
S
B0 cos (ωt) [cos θêz + sin θêx] · êzdS

= B0 cos (ωt) cos θ
∫∫
S
dS = B0 cos (ωt) cos θa2 .

Le flux à travers la bobine est N fois celui d’une spire dans la bobine, et nous avons donc :

Φbobine(t) = NΦspire = Na2 cos θ cos (ωt) .

(e) Déduisez la force électromotrice eext(t) induite dans la bobine par le champ extérieur −→Bext(t). (expres-
sion)
Solution :

eext (t) = −dΦbobine

dt
= − d

dt

[
Na2B0 cos θ cos (ωt)

]
= Na2B0ω cos θ sin (ωt)

(f) Écrivez l’équation différentielle pour le courant i(t) dans ce circuit, en fonction de la force électromotrice
eext(t) (due à −→Bext(t)), de L et de R.
Solution : Le courant i(t) est la solution de l’équation :

eext (t) = L
d

dt
i(t) +Ri(t) .

(g) Bonus (A faire seulement si vous avez terminé tout le reste de l’examen) : Résoudre l’équation
différentielle trouvée en (4f) pour i(t).
Solution : Le courant i(t) est la solution de l’équation :

eext (t) = L
d

dt
i(t) +Ri(t)

Simplifions la notation en définissant la constante, e0 ≡ Na2B0ω cos θ de 5(c). La force électromotrice
s’écrit alors :

eext (t) = Na2B0ω cos θ sin (ωt) ≡ e0 sin (ωt) .

Le courant i(t) en régime permanent sera sinusoïdale et déphasé par rapport à la force électromotrice :

i(t) = i0 sin(ωt− δ), et di

dt
= ωi0 cos(ωt− δ)
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L’équation pour le courant en régime permanent devient donc :

e0 sin (ωt) = Lωi0 cos(ωt− δ) +Ri0 sin(ωt− δ)
= Lωi0 cos(ωt) cos δ + Lωi0 sin(ωt) sin δ
+Ri0 sin(ωt) cos δ −Ri0 cos(ωt) sin δ ,

ce qui nous donne deux équations pour les coefficients de cos (ωt) et sin (ωt) respectivement :

0 = Lω cos δ −R sin δ
e0 = Ri0 cos δ + Lωi0 sin δ .

On peut résoudre ces deux équation afin de trouver :

tan δ = Lω

R
, (?)

et

e0 = i0 (R cos δ + Lω sin δ) = i0R

(
cos δ + Lω

R
sin δ

)
= i0R (cos δ + tan δ sin δ) = i0R cos δ

(
1 + tan2 δ

)
= i0R

√
1 + tan2 δ = i0R

√
1 +

(
Lω

R

)2
,

où nous avons utilisé : cos δ = 1√
1+tan2 δ

.
Nous pouvons donc déduire que :

i0 = e0

R

√
1 +

(
Lω
R

)2
= e0√

R2 + (Lω)2
.

De façon alternative, on peut faire appel à la méthode des impédances complexes. L’impédance complexe
du circuit est :

Z = R+ jωL = |Z| ejδ .

Le courant complexe est :
ic = ec

Z
= ec
|Z|

e−jδ .

La fonction du courant dans le temps est alors :

i(t) = i0 sin(ωt− δ)

où :
i0 = e0

|Z|
= e0√

R2 + (Lω)2
,

et la phase :
tan δ = Im{Z}

Re{Z} = Lω

R
.

Figure 4 – Bobine de section carrée de longueur `, avec un axe orienté selon uz.
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Figure 5 – Bobine de Fig.(4) dans un circuit de résistance R, immergée dans un champ Bext(t).

µ0 = 4π 10−7 H.m−1 ,
1

4πε0
' 9× 109 F.m−1

Cylindrique : −→rot
−→
F (ρ, φ, z) = 1

ρ
−→u ρ

[
∂Fz
∂φ
− ∂ (ρFφ)

∂z

]
+−→u φ

[
∂Fρ
∂z
− ∂Fz

∂ρ

]
+ 1
ρ
−→u z

[
∂ (ρFφ)
∂ρ

− ∂Fρ
∂φ

]
(4)
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