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Abstract 

We discuss the problem of the dynamic dielectric and magnetic response on the whole fre- 
quency range of a composite material. We derive exact one-body expressions of the momentum- 
dependent mean constitutive kernels, for an assembly of dielectric and magnetic spheres of finite 
size, on the basis of their T-matrix. The effective homogeneous-like constitutive constants are 
defined, and used in a coherent potential approximation. In a second step, we solve the dispersion 
relation in order to extract observable quantities. 
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In spite of several attempts [ 1-3],  it turns out that, at the present time, no clear cut 

expressions of  the one-body order effective dynamic dielectric and magnetic constants 
of  a composite random medium containing spheres with constitutive parameters (es, #s), 

embedded in a background homogeneous medium (hereafter referred to as "bare") de- 

fined by parameters (era, t~m), are available in the literature. Though we benefit, thanks 
to Mie, from the knowledge of the exact solution of  the one-sphere problem, this situa- 
tion is partly due to considerable confusion about what "effective" dynamic constitutive 
parameters of such a medium ought to be, owing to spatial dispersion effects. Our pur- 
pose here is to discuss this uncomfortable situation, and propose a new perspective, 
which we subsequently develop with the help of  the coherent potential approximation 
(CPA). 

It is well known that statistical disorder induces spatial dispersion in the response 
kernels [4]. I f  D(r)  = eoe(r)E(r) and B(r) = /~oju(r)H(r) in a realization of the 
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medium, then the statistical averages of these fields (denoted by (.)) are linked in an 
infinite medium by convolution products involving dyadic translation-invariant response 
kernels. In the Fourier representation we have, by definition o f  the follow±n9 kernels 
(we work in the time-harmonic regime, and we omit hereafter the og-dependence): 
(D)(k) = e0ee(k)(E)(k) and (B)(k) :-- #0~e(k)(H)(k). The divergence-free character 
of B implies that we can write ~e, i j (k)  = #e(k)P±,i j (k) ,  with P±(k) the transverse 
projector. By contrast, the dyadic permittivity kernel writes (for isotropic disorder) 
~e, ij(k) -- e l ( k )P±, i j ( k )+  ell(k)Pll,ij(k), where Pll(k) is the longitudinal projector [4]. 
The spatial dispersion (i.e. the momentum dependence of the kernels) is what makes 
the difference between an averaged inhomogeneous medium and a homogeneous one. 
Its origin lies in the presence of the inhomogeneity length scale a (here, the sphere 
radius). 

We denote by Ge : (G), the statistical average over the configurations of the elec- 
tric Green function in the medium, related to a current source iogl~oJs. It completely 
determines (E), and writes Ge = (Go 1 - S) -1, in terms of the so-called "self-energy" 
operator S and of the Green function of the bare medium Go. Explicitly, Zij(k) -- 

Z±(k)Pi ,  ij(k) + Zil(k)Pll,ij(k ). Then 

1 1 
Ge, ij(k ) k2/#m - (co/c)2em - S ± ( k ) e ± ' i J  (k )  - (09/c)Zcm + Sll(k)  PIl'ij(k)" 

(1) 

The expression of Go is obtained by letting 2;±,ll -_- 0. The modes k(co) which 
the fields can sustain are the solutions of the longitudinal and transverse dispersion 
equations, respectively, obtained as the roots of the denominators in the longitudinal 
and transverse parts of (1) - i.e., as the poles of the mean Greens function. Averaging 
and combining Maxwell's equations, one easily arrives at the identities 

k2/#m - (co/c)2Cm - ,S±(k)  = k2/I.~e(k) - (co/c)2c±(k) ,  

E m -~- (c/co)2Xil(k) = ell(k ) . (2) 

They provide the transverse and longitudinal dispersion relations, respectively, when 
set to 0. Thus, the three kernels Z, ~e and ~e are not mutually independent. In particu- 
lar, the self-energy does not alone determine both the average dielectric and magnetic 
properties of the medium. Its role is mainly to lock the fields (and subsequently the re- 
sponse kernels) at some particular values of k (which we hereafter call "observables"), 
via the dispersion equations, when one goes back to the direct space. We note that the 
longitudinal part of (H)(k), which does not exist in a homogeneous medium, cannot 
be determined by the Green function of the electric field and the average constitutive 
equations. We exclude it from the scope of this paper. 

Let us compute the effective response kernels at one-body order. We define an 
electric (resp. magnetic) potential operator LI/e (resp. LI~) for the ith scatterer. This 
permits us to expand in the direct space the operator e(rlr') -= e ( r ) f ( r -  r ') (resp. 
6 ( r -  r')XT' ×/z-l(r ' )~7'×) as a sum of one-body operators. Setting LI i : 13/e + LI~, 
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we write down the familiar multiple-scattering series: G = Go + Go ~i UiG = Go + 

Go )--liT±G0 + Go Zj¢i TiGoTjGo + "  ", wherein the individual T-matrices are Ti = 
Ui(1-GoUi) -1 [5]. 

The average permittivity kernel is given, according to its above definition, by ~e = 
(eG)(G) -1. Therefore, expanding this relation at one-body order yields, in the ther- 
modynamic limit and at constant density of scatterers n -- N / V  ( N  is the number of 
scatterers, V, the volume of the system. Each average (.) is proportional to 1/V)  

~e(k) =gm -I-N(C/CO) 2 (<U~ e) + <UfGoT;)) (k) + O(n2). (3) 

In a similar way, we obtain, by using averaged Maxwell equations: 

1 _  1 N._N_Trace{((UM)+(UMGoTi))(k)}+O(n2). (4) 
#e(k ) #m 2k 2 

This is consistent with the familiar result S = N<mi) + O(n 2) and relations, Eq. (2), 

since by definition, Ti = Ui + U/GoT/= (U e + tl e GoTi)+ (U~ + U~GoT). The explicit 
computation of these two k-dependent response kernels via that of Ti, in terms of a 
Mie dyadic series expansion over the vector spherical harmonics basis, constitutes our 

main result [6]. 
We can now address the question of effective parameters in their usual sense, that 

is, as k-independent constants describing the average medium (both in its longitudinal 
and transverse response) as if it were homogeneous. Strictly speaking, such quantities 
do not exist (i.e. are not observable) because of the dispersion relations. On the other 
hand, they are required for the conventional CPA treatment of the one-body problem, 
since all our T-matrix calculations have been performed starting from a homogeneous 
bare medium. The main problem we face is that, in opposition to the homogeneous 
case, different permittivities appear in the longitudinal and transverse parts of the mean 
Greens function at any (real) finite k. Statistical isotropy however implies that ell(k = 
O) = e ± ( k  = 0). This common value thus emerges as the only possible choice for 
the effective permittivity constant eeff. The spatial dispersion obscures what the correct 
choice for #err would be. Indeed, the formulation of the problem in an infinite medium 
is invariant under the transformations 1/#e(k) ~ l / f ie(k)  = 1 / # e ( k ) +  (o9/c)26eL(k) /k  2, 
e ± ( k ) ~ e'_L ( k ) = e_L ( k ) -- 6e ± ( k ), where 6e i ( k ) is any part of e±(k) proportional 
to k 2. These transformations are accompanied by related new definitions for the fields 
(D) and (H), which correspond to a re-shuffling of the currents [2,7]. Performing such 
transformations, and taking #elf as the limit k ~ 0 of the result for the obtained #e(k), 
are clearly non-commuting operations. We therefore imposed as a guide the physical 
constraints that #err: (1) be finite when either es or #s ~ 0; (2) remain finite when 
09 ~ co; and (3) obey the Kramers-Kronig relations, with positive imaginary parts. 
These led us to a final form of #err matching that of eefr, with e,,, es replaced by #m, #~ 
(and vice versa). Direct coupling terms between the dielectric and magnetic response 
are absent in our both Eeff and #err, these quantities being coupled only through common 
spherical functions h~l)(aks) and j l (akm) .  
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Fig. 1. CPA (celt, #elf) and final (eke, I~ke ) effective parameters as a function o f  the reduced frequency (aog/c) 
(see text). The inner constitutive parameters are es = 10, #s = 2, and the outer ones are Cm = ~ m  = 1. The 
volume concentration of  spheres is f = 0.28. The same line style applies to the real and imaginary part o f  
the same quantity. The imaginary parts begins at (0, 0). 

On the basis of these eeff and #eff, and of the O(n) correction they define, we worked 
out a self-consistent CPA calculation (that is, a dynamic version of the Bruggeman 
formula [1]), in which the matrix is described as zero-radius spheres embedded with the 
finite-sized ones in the effective medium. We found the iterative solution of the system 
for the self-consistent eefr and #eff to always converge for any concentration of spheres, 
at any frequency. Using the obtained values as the background effective medium values, 
we were then able to iteratively solve at any frequency the transverse dispersion relation 
(which now involves two different types of inclusions) for an observable mode ke, up 
to the volume concentration f = 0.28 of finite-sized spheres (for example, Fig. 1). 
This value of ke was then substituted into Eqs. (3) and (4) in order to obtain the 
(observable) effective permittivity and permeability constants eke : e±(ke) and #ke = 
pe(ke) pertaining to this transverse mode (we summed 50 terms in the Mie series) [6]. 

In this theory, it is only in the last step that we can recover, for instance, the 
dielectric-magnetic coupling leading to an effective diamagnetic permeability in a 
composite made of metal spheres [2,3] (not shown here). However, as discussed 
above, an always possible re-shuffling of the currents makes different values for the 
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couple (eke, Pk~) equally acceptable, even though some combinations lead to a negative 
imaginary part in ktk~, in the high-frequency regime [7]. The problem of finding a com- 
bination with an always positive imaginary part in the whole frequency range in the 
metallic case (which may be of  better experimental relevance), and that of numerically 
computing ke for any concentration, are currently under investigation. 
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