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Abstract 
We show that non-perturbative effective interaction techniques can be applied to the l/N--t 0 

limit of the pairing Lipkin model to yield an apparently exact solution. Results at finite N allow 
us to study the reliability of the random phase and related approximations. This model which is 
very similar in behavior to the Gross-Neveu model allows us to make interesting observations 
about the effect of tunneling on discrete symmetry “Goldstone” degeneracies. This analysis is 
also interesting from the many-body point of view as our method avoids the occurrence of RPA 
instabili~ at large values of the coupling constant and at least in the present model we see that 

such an “instability” indicates a N --+a, limit phase transition. 

1. Introduction 

In this work we solve the l/N + 0 limit of the pairing Lipkin model [l] using a 
combination of effective potential and RPA techniques. This model contains a 
discrete symmetry between particle and hole states. Hartree-Fock analysis pre- 
dicts that this symmetry is spontaneously broken for sufficiently large coupling, the 
well-known deformed Hartree-Fock potential 121. In the present work we show 
that the spontaneous symmetry breaking can be conveniently treated by effective 
interaction techniques which when combined with RPA apparently achieve an 
exact solution to the problem including a phase transition in the N -+ M limit. 

In addition, finite-N results provide interesting observations about the effect of 
tunneling on the degeneracies induced by the spontaneous breaking of the discrete 
symmetry. The principle difference being that in the N + 03 limit, a shifted 
single-particle spectrum (the non-relativistic analogue of a mass shift) occurs only 
when the interaction coupling is sufficiently large to produce SSB (spontaneous 
symmetry breaking). At finite N however, the single-particle spectrum is shifted 
for all values of the coupling. Witten found evidence of a related phenomenon for 
a continuous s~rnet~ in the SU(N) Thirring model [3]. Thus the finite-N 
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Thirring model has fermion mass generation even when the symmet~ is not 
spontaneously broken. 

Subsequent publications will concern treatments of the fluctuations (i.e. correla- 
tion energy at finite-N and other l/N corrections). The motivation for using the 
Lipkin model in the present work was to find a system where the l/N expansion 
could be studied in ~mparison with exact results. We stress that the techniques 
developed here can be generalized to more complicated systems, but for the sake 
of clarity in the discussion of spontaneous symmetry breakdown, we largely limit 
the discussion to the Lipkin model example. 

Also, we wish to emphasize that we did not simply make a boson approximation 
in the current work. That is we took care to insure that our formulae contain 
exchange terms. ~though such considerations are irrelevant in the N -+ a? limit, 
they should be included if we are to make serious attempts at calculating l/N 
corrections. 

In the next section we derive RPA in a Feynman diagram context and discuss 
several important RPA features such as its role in l/N expansions, RPA “break- 
down”, and RPA no~alization. The reader familiar with RPA lore may in 
principle skip this section ahhough the somewhat “novel” derivation of RPA 
normalization may prove of interest. In sect. 3 we calculate the effective potential 
in the pairing Lipkin model using recently derived summation techniques. In sect. 
4 we compare the combined RPA - effective potential analysis to exact results. 
Finally in sect. 5 we address other physical quantities such as binding energy and 
the single-particle spectrum. 

2. A derivation of RPA via Feynman diagrams 

There exists a variety of RPA derivations throughout the literature. In nuclear 
physics the most common arises from the linearization of the equations of motion. 
In this section we derive the RPA for discrete systems in a Green function context 
using the alternative language of Feynman diagrams. The advantage of this 
method is that it employs standard field theory techniques such as Feynman 
diagrams and Dyson equations. It even yields the sometimes obscure RPA normal- 
ization in a fashion analogous to wave-function normalization l . 

As usual in many-body physics, we assume our hamiltonian has the form 
H = Hd -t V, where H,’ is a one-body hamiltonian and V is a two-body interaction 
i.e. 

l To be precise, RPA normalization appears as particle-hole wave-function normalization. 



We follow the convention that I/ is an operator while V&r8 is an antisymmetrized 
matrix element of I/ i.e. 

Q3,7s = Kp.rs - Yx/ap,sy 9 (2) 

where 

V crp,ys = bYv+~)7 (3) 

I a/3) representing a fermionic product state occupying single-panicle states 1y and 
j3. As usuaf, H& is viewed as the “unperturbed” interaction. We thus build our 
perturbation theory around an N-particle closed-core ground state I cN), which is 
the lowest-energy Slater-determinant ground state of the unperturbed hamiltonian, 
Hi. 

For sake of notational convenience we define a shifted one-body hamiltonian, 
Ha, such that 

H,,d~ffHd-(cIHdIc)=Hg’-~~, (4) 

where E: is the unperturbed ground-state energy. With this definition, the 
single-partide single-hole energies of I&, have the Landau-~igdal defjnition of 
quasi-particle energy for an N-particle system. That is to say, we can write the 
one-body hamiltonian as Ha = H$ - Ht, H$ having the property that 

HJ’ak I c) = EmaL / c) = (E:” - $‘)ak I c), (5) 

where eN denotes the energy (using hamiltonian Ha) of the mth state of the 
N + l-bomdy system. The hole hamiltonian has analogous properties 

H,ha, I c) = Eiai I c) = (E,$’ - t$-‘)ai I c}. (6) 

Thus the ith single-hole energy is the energy of the N-particle ground state minus 
the energy of the ith N- 1 particle state. 

We now define the bare (i.e. unperturbed) single-particle Green function as 

f,s(~)~f~(~)~~Ia,(t)a8(0)l~>-~(-~)~~Ia~(O)a,(t)Ic~, (7) 

using interaction-picture creation and destruction operators. 
The unperturbed particle-hole Green function is likewise defined 

[F.b(t)]mi,njdefB(t)(CIal(f)a,,(t)a~(0)clj(O)IC) 

+~(-~)(cla~(O)u~(O)a~(~)a~(~)lc) 
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m’ i j n 

(a) (b) (4 
Fig. 1. Diagrams taking part in the RPA: (a) particle-hole interaction proceeding forward in time, (b) 

backward-time particle-hole state undergoing interaction to begin propagating forward in time, (c) 

particle-hole interaction proceeding backward in time. 

where m, n are used here and throughout to denote particle states while i, j are 
used to denote hole states. F:(t) and F;(t) are known respectively as the 
advanced and retarded particle-hole Green functions. An equivalent definition of 
Fb is 

Fb(f) = -f(t).0 -t>* (9) 

Now we switch on the two-particle interaction operator V. We define particle- 
hole matrix elements (shown diagrammatically in Fig. la) as 

Am,i;mf,if Elf (mi I I/ I m’i’) = (c I ufu,Vut,tai~ I c) = - Vmir,mri. (10) 

In order to include ground-state correlations, we will include another class of 
interactions 

B,,i;,t,jr~f(mi; nj I V I c) = (c I afa,u~dz,~V I c) = Vmn,i, (11) 

(shown in Fig. lb), and its complex conjugate Bt. We see that the B interaction 
may be viewed as that between a particle-hole state propagating forward in time 
and one propagating backward in time. The particle-hole states propagating 
backward in time may also undergo interactions l , so we also introduce the matrix 
operator 

Af,jt;,,jd2f(lZrj' IV I nj) = (C 1 UfrUnpVUt,Uj I C) = -Vnrj,j,n 

(shown in Fig. lc). 

(12) 

* Depending on the physical problem considered, the space spanned by n, j may or may not be the 
same as that spanned by m, i. 
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With these definitions, we are now ready to derive the RPA equation. We begin 
considering a retarded bare particle-hole propagator 

(13) 

where as always in this work, the 0” implies an arbitrarily small positive real 
number. In the following discussion we will find it convenient to write this in a 
matrix form with panicle-hole indices suppressed i.e. 

F;(o)= 1 
w-Ho+iO’ * 

We now begin to construct an approximation to the full particle-hole Green 
function. It is clear that we should include interactions between the forward-going 
particle-hole pairs. Summing these (ladder diagrams) to all orders yields 

F-(o)~ff&o) +F;(O)AFg(w) + .*. = o_H 
0 
‘, +io+ ) 

where the matrix elements of A are given by (10). The same thing could be done 
for the advanced propagator to yield 

1 
F+(o) = - 

w+H,+A*--0” (16) 

Rather than stop here, we note another type of diagram which should be 
included. Consider a forward propagating particle-hole state which interacts 
through Bt, propagates backwards in time, then interacts through B to propagate 
forward in time again. The backward-going particle-hole lines may interact through 
A* so we use the advanced propagator in (16) for these lines. We will call this 
interaction the RPA interaction defined 

VnPA( w) zf -B 
1 

w+H,+A* -iO+ 
BT. (17) 

We may sum interactions of this type to all orders using a Dyson equation where 
our approximation to the true Green function is defined 

G(w) =F-(w) +F-(w)V,,,(o)G(o). (18) 

The reader should note that this Green function is defined on the m, i states (i.e. 
forward-going) particle-hole space. 



Using (151, (17), and (18) we find 

{G(o)}-‘=o4,~4+B~+~ +;*_iO+Bt 
0 

def 
= c.0 -&“ph(w), (19) 

where S?&(o) for reasons which will become clear below is referred to as the 
particle-hole (energy dependent) “effective” hamiltonian. 

In principle if A, A*, and B contained all possible diagrams without overcount- 
ing then (19) woufd be an exact result. The random-phase “approximation” then is 
just to consider the contributions to A, A*, and B given by (lo)-(12). 

When we extract physical results, we recaI1 that we are trying to approximate 
the exact Green function. The exact Green function has a Fourier transform 

where E, represents an eigenstate of the full hamiItonian for the N-particle 
system. Thus we see that since (19) is an approximation to the exact Green 
function, the poles of G(o) should be identified as the physical spectrum found in 
the denominator of (20). Using (19) we see that the poles of G(o) are given by the 
self-consistent eigenvalues of the effective hamiltonian i.e. 

1 
%h( ‘;h ) x” = H,,x” +/LX* -B 

E;h+Ho+A*-iO+ 
B+P 

= E;&, (21) 

where x0! is a vector in the particle-hole space. From the remarks made above we 
have 

E,q,=E,-E,. (22) 

Thus we see that the self-consistent solutions to our “effective” hamiltonian acting 
within the particle-hole space give the excitation spectrum of the full hamiltonian. 

Eq. (21) may be easily solved by use of a simple trick, i.e. we define a vector ya 
in the backward-going space fn, j), 

def 1 

ya= - Eg+H,+A*-iO+ 
B+Xa. 
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With this definition (21) is written 

Hoxa +Ax” + By* = E;,& 

while the definition in (23) may be expressed 

-H,,ya-A*y”-B+P=E;,,y? 

559 

(24) 

(25) 

Putting these together, we have an eigenvalue equation 

H,+A 

-B+ _HoB_A$] =‘h$:] (26) 

Thus our solution for the physical spectrum is the eigenvalue spectrum of this 
matrix, usually called the RPA matrix. Frequently in physical problems, the 
particle-hole space for backward-going lines is identical to that of the forward- 
going lines; in this case the RPA matrix can take the symmetric form 

H,+A 

-B _;_A)[;:] =E;h[;:]T (27) 

where A and B can be taken as real symmetric matrices. We note that as expected 
from the true Green function, the symmetric form has the property that if EFh is a 
solution, then -Eih is also a solution. 

Upon inspection, we note that our RPA matrices (26) and (27) do not tell us the 
proper normalization of the RPA eigenvector. A properly normalized eigenvector 
however contains important physical information. Looking at the residues of the 
exact Green function, (201, we realize that 

(28) 

As we do not yet know the value of the physical eigenvector, X*, let us choose for 

convenience 1 xa 1 dzf Emil xzi )* = 1, and calculate the renormalization constant 
relating the two. With our chosen xn normalization, and (191, we find the residue 
at the pole of the retarded Green function is 

(29) 
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which is essentially that of Hengeveld et al. 141. Under the assumption that Ha, A, 
and B are energy independent and using the definitions in (19) and (231, we see 
that this can be rewritten as 

The properly normalized transition vector is thus 

X” = ( zphy2xa. (31) 

As y* is linearly dependent upon xL2, it should be similarly resealed such that 

Y” = (zghy2ya. (32) 

Using the relation in (30) and 1 xa I= 1, it is clear that the properly renormalized 
physical amplitudes X* and Y” satisfy 

yielding the familiar RPA normalization condition. 
We should note however that in nuclear physics the “hard core” of the nuclear 

potential necessitates that short-range correlations be taken into account by 
replacing the bare interaction with a Brueckner G-matrix. Contrary to the assump- 
tion made in deriving (30), the G-matrix is in principle energy dependent. More 
importantly, Allart and coworkers [4,5] have shown that one obtains improved 
description of nuclear properties by simultaneously including self-energy contribu- 
tions to the single-particle hamiltonian H, and additional core polarization dia- 
grams in the particle-hole interactions of the A and B matrices (ex. including 
couplings to 2p2h states). Corrections to the B matrix can be rendered energy 
dependent while corrections to A and self-energy terms are energy dependent. 
Thus in general, the excitation spectrum derived from (21) are the self-consistent 
solutions, w = E$,(w), of the energy-dependent RPA matrix 

(34) 

where for notational convenience we take II, to be an energy-independent mean 
field and associate the energy-dependent self-energy corrections with the A matrix 
corrections. Carrying through the same analysis as above for the energy-dependent 



RPA matrix, (341, we find that the RPA normalization for the properly normaIized 
vectors now denoted S!’ and y is 

as recently derived by Yang and &to [6]. In the current work, we only consider 
calculations of lowest order in the l/N expansion, and we will see that ordinary 
RPA with no~alization (33) will precisely yield this term. Inclusion of diagrams of 
higher orders in the I/IV expansion would however create energy dependencies 
and thus necessitate the use of the corrected normahzation of (35). 

We are now in a position to see some of the possible pitfalls of RPA. The poles 
of the exact Green function occur at real w. The RPA matrix equation which 
purports to calculate these poles, (27) or (341, is non-hermitian and thus given 
appropriate values of the matrix elements can generate complex eigenvalues. 
When such conditions occur in the course of calculations it is often said that the 
RPA solution is “unstable” or has “broken down”. 

Another problem has recently been discussed at length by Kuo and collabora- 
tors. That is, given the general structure of the RPA equation, it can be shown [7] 
that the normaIizations of the physical amplitudes (see Eqs. (28) and (33)) diverge 
at the point of onset of complex eigenvaiues. In view of (281, a divergent RPA 
normalization is clearly pathological for a finite system. 

To understand the “breakdown” of RPA we must ask ourselves why RPA 
should be a good approximation in the first place. Although it does sum a class of 
Feynman diagrams to all orders, there is a large number of diagrams to each order 
that are ignored by the RPA. The reasoning becomes clear when we regard the 
diagrammatic structure. RPA sums up all diagrams of the form shown in Fig. 2, 
where each dot represents an interaction integrated over all possible time order- 
ings. The dots for a particular graph thus may represent A, A*, B or Bt 
depending on the time ordering of a particular graph while summing over all 
possible time orderings. 

We now note that in each loop of Fig. 2, we must sum over al1 possible 
particIe-hole states. Upon inspection, we readily see that RPA sums in each order 
of perturbation theory those particle-hole diagrams containing the largest number 

X + 
fi I + + . . . . 

Fig. 2. Feynman diagrams contributing to the RPA appro~mation of the true Green function. The 
interaction is denoted by a dot. All possible time orderings are summed. 
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of loops. Thus we expect RPA to be a good approximation if there is a large 
number of degenerate or nearly degenerate intermediate particle-hole states, thus 
making the maximum loop diagrams much larger order by order than the diagrams 
containing fewer loops. For example, in the N-particle Lipkin model introduced in 
the next section, each loop in the RPA expansion is weighted by a factor (N - 1). 
Thus as we will see in sect. 4, RPA is equivalent in the Lipkin model to the lowest 
order in the l/N expansion of the particle-hole propagator. 

We now see that our worries stated above concerning the divergence of RPA 
eigenvector normalization no longer holds as the number of particle-hole states + 
03. If the number of particle-hole states + a then the normalization of the RPA 
eigenvector, 1 X” 1, may indeed + ~0 while individual matrix elements, (281, remain 
finite. This argument may relieve our worries about RPA normalization, but does 
not appear to help us understand the appearance of complex RPA eigenvalues. As 
will be demonstrated in the following sections for the Lipkin model however, the 
stability of RPA will depend on the proper choice of unperturbed ground state. 

From here on we will leave the general case and limit our discussion to the 
Lipkin model. Essentially all of the formulae which follow can be generalized to 
more complex systems, but the derivations and symmetry-breaking analysis will be 
more transparent if not buried beneath formalism. 

3. An effective potential for the Lipkin model 

In this section we show how auxiliary fields similar to those employed in 
relativistic field theory treatments of four-point interactions may be introduced to 
the Lipkin many-body hamiltonian. As in the Gross-Neveu model, the Lipkin 
model contains a discrete symmetry, and the vacuum expectation value of an 
auxiliary field (defined below) will serve as an order parameter for the sponta- 
neous breaking of this symmetry. As is common in such theories an effective 
potential based on the auxiliary field will be used to probe for instabilities in the 
perturbative (i.e. symmetric) ground state. 

The pairing Lipkin model has the following simple form. We take one shell of 
energy & lying above the Fermi surface with spin j and another shell of energy 
- $e and spin j lying below. We address the case of N = 2 j + 1 particles. The 
unperturbed ground state thus has all particles lying in the lower shell. The 
unperturbed hamiltonian is written 

I&)= ~E~(at,,,~+,,-~~,,~-,~)~ 
m 

(36) 
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while the two-body interaction has the form 

= - #A c q&J - )j-mat+,mtz3m 
[ 

c c~~o,r,o( -)‘-m’a:;,.a-,,f 
m I[ m’ 1 

+ h.c., (38) 

where A is a positive real number (We lose no generality in this choice since the 
eigenspectrum for this model depends only on h*A.) The interaction in (38) is 
written in angular-momentum coupled form to stress that the interaction is 
amongst particle-hole pairs coupled to zero angular momentum. 

We now note that the hamiltonian transforms H * -H under the discrete 
symmetry transformation 

@+,, -+a.,,, @:??I --4% (39) 

(we have made use of the fact that the sign A is arbitrary). It is this symmetry 
which we expect to be susceptible to spontaneously breaking. 

In this model there is no direct interactions of the form (10) or (12), but we do 
have a turn-around interaction (and its complex conjugate) of the form found in 
(11): 

B+_,+_= -(N- l)Adzf -u. (40) 

We note that had we just included the direct terms we would have had B+_,+_= 
-AL%, and that the additional A comes from including the exchange interaction 
which here corrects for the presence of Pauli violating terms in 9 of the form 

t &,,a -,,a +,,a-,,. 
We take the field theory example and rewrite the hamiltonian in an equivalent 

form (i.e. having the same equations of motion). That is, we introduce 2N(N - 1) 
auxiliary fields to the hamiltonian 

(41) 

where the prime on the summation tells us that terms m = m’ are not included in 
the sum. As in field theory the auxiliary fields do not have true equations of 
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motion but instead obey constraint equations which result in the expectation-value 
relations 

(%z,??C>= a4[4,m% + 4,m~%z~l > 
(Q&J= ~~([&P+,, +&d~+,dl). (42) 

Thus as promised the expectation value of an auxiliary field is a candidate order 
parameter of the symmetry in (39). 

Our hamiltonian now takes the form 

-~m*,mr[ut,mu+,m +at,,fa+,mI . (4% 

As in the field theory, the effective potential Y?(a)> is defined as the sum of 
all connected vacuum-to-vacuum diagrams with the expectation value, (a), of the 
auxiliary fields allowed to be non-zero. The leading terms in the l/N expansion of 
V(((+)) are given by the vacuum expectation energy of the auxiliary fields plus a 
sum of one-body one-loop diagrams i.e. 

1 
+c- n 27ri / 

dw eiWo+ 
Tr(f[.fn(o)*n12+ ?4[.f,,(@)~,d4+ -.*) 

+0(1/W, (9 
where fJw> is the one-body Green for a particle(hole) having spin projection n 

with 

i 

$5 - iO+ 0 
dn = 

0 I -*.5+iO+ ’ 

The interaction matrix SF,, has the form 

(46) 



The origin of the terms in the sum of (44) is easily seen. The first term is the 
Fourier transform of a particle undergoing the interaction 9 at time 0 propagat- 
ing forwards to time t where it interacts via a second 9 whereupon it propagates 
backwards in time to the original ~29 interaction at t = 0 which turns it back into 
the original state which started out (wherein the explanation for taking the trace). 
The convergence factor eioo+ is a result of avoiding an ambiguity of the time 
ordering operator at t = 0. The factor 3 corrects for our ability to choose either of 
the 35’ as the starting point. The second term in (44) describes a situation where 
the particle interacts with 9 three times before returning to the starting point and 
so on. Similar sums together with more detailed e~Ianations of counting and 
convergence factors have been considered recently by Yang et al. [8]. 

Using the fact that the trace of any odd power of f,Cw>z2$ is zero we can 
rewrite (44) as 

tv(<d) = C’ 
i 

2((um m’ 
*’ 

1)” + 2((am*,mr>)2 

m,m’ 
A 

1 

1 +c- n 27ri i‘ dw eid,+ Tr(.M~b% + f[fn(w)~J2 

+f[f,(4,%]“+ -*)+0(1/N), (48) 

allowing us to write the one-loop sum (i.e. the third term on the right-hand side of 

(44)) as 

- F &/dO eioo+ Tr In{ 1 -~,LZ$}. 

This may be further rewritten by defining a Dyson equation 

which allows us to write * 

V(b)) = c’ 
2((Gm.m’))2 + 2((4t,m’~)2 

m,m’ 

A 
A 

i 

1 
+c--- n 2ri / 

do eiwO+ In Det g,f;‘. 

(50) 

(51) 

* It is interesting to note that had we carried out our calculation in the path-integral formalism we 
would have at one point integrated over the fermion fields in order to obtain an effective lagrangian. 
Such a procedure would have given us the same ‘In Det’ form. Thus it is interesting to note how a 
path-integr~ manipulation can correspond to an infinite summation of Feynman graphs. 
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The one-loop sum may be evaluated by noting that g, defined in (50) may be 
expressed 

The poles of (52) are obtained by solving the one-body eigenvalue equation, 

In the Lipkin model case 63) has just two eigenvalues, denoted A-.&. 
We now see that the determinant of (51) is simply expressed as 

Det{ g,fi “} = 
[,+~,-io+][6Pf&+iO+] 

[w+~n-iO+][W-~n+iO+] ’ (54) 

allowing us to write 

ln Det(g,fl’) = ln[ w + $.s - iO+] - ln[ o f 8, - io+] 

+ terms having poles in the lower w-plane. (55) 

Under the #-integration of (50, the terms having poles in the lower o-plane are 
identically equal to zero. Introducing an integration variable X, the first two terms 
of (55) may be rewritten 

Inverting the order of integration and performing the contour integration first we 
have the surprisingly simple result for the one-loop diagram sum 

Results of a similar eigenvalue form were obtained by Tzeng and Kuo [9] in a 
somewhat different context for calculating sausage diagrams using particle-par- 
ticle hole-hole ring diagrams. 

For our Lipkin model hamiltonian, the one-body eigenmatrix for spin projection 
n is 
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and has solutions 

567 

(59) 

We thus find that 

The minimum satisfies hermitivity conditions 

( c~,~,) = (fl:,,,) = positive real, (61) 

where the last assignment is chosen for convenience. In addition, the minimum 
satisfies the angular-momentum symmetry so we take 

(c~,,~>=(&> for all 12, ~2’. (62) 

The effective potential thus acquires the simple form 

F(G)) = 
4N(N- l)(&>2 

h 

+#&-NN\l$2+4(N- 1)2(6>2 +0((1/JV)O). (63) 

The effective potentia1 may be more conveniently written in terms of the resealed 
interaction, U, and a resealed field, (+, defined 

Cd~f2(N- l)(?, (64) 

and 

L~d~f(jv- l)h, (65) 

yielding 

“t;r(<d) =N 
i 
~-(ar.+(~)2)1/2+~ito(i,*)). (66) 
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V&J>) 

J 00 <a> 

Fig. 3. The spontaneously broken effective potential for the Lipkin model plotted as a function of the 
expectation value of the auxiliary field, (u). 

Ignoring l/iV corrections, the minimization condition is now simply found to be 

dT( Gr)) 2% -0 =-- 

d(a) (u)=oo 0 ,j+ = 
0. (67) 

We see that there are two different domains of solutions to a0 

i 

0 if E&u 
CT0 = 

d/< u2 - &‘) if E<L). (68) 

A typical (and familiar) example of the effective potential, (3.66), for u > E is 
shown in Fig. 3. 

4. The RPA excitation spectrum 

In order to construct an RPA matrix for the Lipkin model we must construct an 
angular-momentum-invariant particle-hole state. Our particle-hole state is then 
chosen to be 

(69) 

where the fi is a normalization factor arising from the fact that we are concerned 
with identical fermions. 

Using the procedure outlined in sect. 2 for the states given in (691, we easily find 
the RPA matrix for the Lipkin model 

I & V I -v -& ’ (70) 



having eigenvalues 
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A=*_. (71) 

We note that the eigenvalues of this RPA equation are real for u <E and 
complex for u > E. Thus the Lipkin model provides an excellent example of the 
features mentioned in sect. 2. That is, above a certain coupling strength the 
eigenvalues become complex. Just before this point one can verify that the X and 
Y normalizations diverge. However, we saw in the previous section that the point 
of onset of complex eigenvalues, zr > E is exactly the same as the point where our 
unperturbed vacuum becomes unstable and (g) develops a non-zero expectation 
value. Thus RPA should be carried out about the true vacuum rather than the 
unstable perturbative vacuum. 

For a given a-vacuum the single-particle eigenstate is 

where ICY/~ + j/3)* = 1. Thus the particle state in 
amplitude cy to be in the particle state of the 
probabili~ amplitude @ to be in the hole state 
eigenstate on the other hand is 

(72) 

the (CT) vacuum has a probability 
original vacuum, (CT) = 0, and a 
of the original vacuum. The hole 

(73) 

The probability amplitude for the particle-hole pair of the (a) vacuum to be in 
the same state as the particle-hole pair of the (a) = 0 vacuum is therefore (Y*. 
The probability amplitude to be in a two-hole state is r-10 and a two-particle state 
-~$3. Finally the probability amplitude to be propagating as a backwards 
particle-hole state is p2. 

Now we can calculate the matrix elements of the ~a particle-hole RPA. The 
matrix element for a particle-hole particle-hole interaction is ~<a$ + Zc&_?~ + p,“> 
= U. That is, UCX$ gives the interaction strength for the particle-hole particle-hole 
interaction proceeding exactly as for the (u) = 0 vacuum, 2uc&3~ the interaction 
strength for proceeding as a particle-particle hole-hole interaction of the (a) = 0 
vacuum etc. Recalling that the one-body energies for the a,-vacuum are *,$a = 
+ 1/$E2, we form the RPA equation for the a,-vacuum 

[ 

/m v 

/ (74) 
-E -u’&* + 4rr,2 

where c0 is given in Eq. (68). 
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Fig. 4. Energy of the first excited state, Et, with respect to the ground state, Ee, plotted as a function of 
interaction strength, u = h(N - 1). The solid line is the RPA, (i.e. N -+KJ), limit as given by Eq. (71). 

The dotted curves are given respectively by the solutions at N = 30, N = 50, N = 100. 

In the case of u < E, (IT) = 0; Eq. (74) is none other than the ordinary RPA 
equation given by the techniques of sect. 2 (i.e. Eq. (70)). For u > E, Eq. (74) has 
zero eigenvalues indicating that the first excited state has collapsed into degener- 
acy with the ground state. This indicates that our model system undergoes a phase 
transition from a phase having a non-degenerate ground state to a phase having a 
degenerate ground state at u = E. The eigenspectrum of Eq. (68) is plotted in Fig. 4 
together with the exact solutions for N = 4, 6, 8, 30,50, 100. Keeping in mind that 
all the plots that touch the zero excitation axis remain there, then we see it is 

Fig. 5. The transition amplitude no~alization, IY I’, plotted as a function of interaction strength. The 
RPA limit is given by the solid curve, N = 14 by the dashed curve, N = 50 and N = 100 by dotted 

curves. 
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highiy suggestive that RPA together with the effective potential provides the exact 
N -+ Q) Iimit. 

The reader should note that for this simple system ordinary RPA yields the 
N -+ a3 limit up to the transition point, u = E. Secondly, by introducing an auxiliary 
field, we take into account the spontaneous generation of a single-particle poten- 
tial (CT) which prevents complex eigenvalues and accurately describes the creation 
of a degenerate ground state for the regime u > 8. 

We are now in a position to check the applicabili~ of the RPA normalization 
derived in sect. 2 (see Eqs. (33) and (28)). Plotting the results for N = 14, N = 50, 
and N = 100, in Fig. 5, we are not surprised to see RPA yielding the appropriate 
N -+ 03 limit. This graph confirms a well-known rule of RPA analysis that one can 
only trust RPA normalizations when IY I* is small. The reason is now clear. When 
JY I2 is large we are approaching the N --+ 00 phase transition point and thus l/N 
corrections (i.e. extended RPA) become very important. 

5. Binding energy and single-particle spectrum 

Let us now look at other impo~ant physical quantities such as the ground-state 
energy and single-particle excitation spectrum. 

We start with the true ground-state energy Ea. The standard analysis tells us 
that the energy of the true ground state with respect to the perturbative ground 
state, Z;, = E, - E,,, is given by 

Of course we have calculated y only to leading order in l/N, i.e. order (l/N)-‘. 
The next order in l/N are diagrams of order fl/ACl*. Thus we expect the 
correlation energy, A, defined in the current work as the difference between the 
true ground-state energy shift, -Co and Eq. (7.5) calculated to lowest order l/N, to 
approach some finite function of u as N + co. 

Such indeed appears to be the case as shown in Fig. 6 where we plot results for 
N = 14, 100, 200. Note that as in variational treatments our result always underes- 
timates the total binding energy. Using techniques similar to those of ref. [9] we 
can calculate to all orders in u the correlation diagrams (sausage diagrams) for 
ZJ < E which form the first-order l/N corrections (also plotted in Fig. 6). Unfortu- 
nately, we know of no convenient all-order sums for the case where u > E. As 
expected this correlation energy, A, has a peak at the transition point, TV = E. That 
the correlation then increases at large u can be attributed to the fact that the 
energy scale of the system is increasingly going beyond the unperturbed reference 
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Fig. 6. Correlation energy of the ground state plotted as a function of interaction strength. N = 14 is the 
dashed curve, N = 100 and N = 200 are given by dotted curves, N = 200 having the highest peak. The 

calculated first-order l/N correction for u < E is given by the solid curve. 

energy E. An analogous behavior for A is found in the usual Hartree-Fock 
mean-field analysis [lo]. 

The single-particle energy can be similarly compared with the exact results. 
Single-particle Green function theory tells us that the single-particle energy is 
given by the ~ndau-Migdal relation of 

Esp = E,N+’ - Et, (76) 

def 
Fig. 7. Single-particle energies, Esp = Ez+l - EF, plotted as a function of interaction strength. The 

solid curve gives the N --) m limit. The N = 4 solution is given by the dotted curve. 
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where both EON+’ and Eg are calculated for the N-particle Lipkin model. That is, 
EN+l in the absence of interaction would be the energy of N-particIes in the filled 0 

- t.s shell plus one particle in the $ shell, while Et would be the energy of the 
filled - +E shell, thus given an unperturbed single-particle energy of Esp = T&S. The 
exact result for N = 4 is plotted in comparison with the N -+ CO limit in Fig. 7. As 
we see, these results are already in rather good agreement. N = 6 is already so 
close to the N + C+J limit that it is only distinguishable near u = E. Even this small 
discrepancy rapidly disappears and at N 2 20 no difference can be seen on the 
scale shown here. 

6. Discussion 

We note that the behavior of the excitation spectrum in Fig. 4 is precisely what 
we would expect based on the effective potential. As long as u < E, the effective 
potential has a unique minimum, and the RPA gives the location of the first 
excited state. For u > E, the effective potential has a double minimum, and thus a 
doubly degenerate ground state. In other words this is the discrete symmetry 
analogue of the Goldstone phenomenon, An analogous phenomenon also appears 
in the Gross-Neveu model [Ill. There the spontaneous breaking of a discrete 
chiral symmetry results in a scalar bound state having the same energy as a free 
fermion-antifermion pair. 

It is interesting to note that the effective potential of Eq. 166) oniy depends on 
the parameter U/E. Thus naively one would expect SSB for a11 N. One quickiy 
realizes however that the height of the potential barrier (see Eq. (66)) between the 
two “degenerate” states is proportional to N, and thus we can expect a tunneling 
phenomenon at finite N. As such we might consider using the WKB approxima- 
tion, i.e. i~stantons, to estimate the tunneling effects [12]. Rather than carry out 
such a program (we will address this problem quantitatively using a different 
method in a subsequent publication) let us simply look qualitatively at the finite N 
effects based on the exact solution. 

For N > 8 the point of (near) degeneracy is simply pushed out beyond u = E. 
However, for N Q 8 tunneling prevents the formation of a degenerate state. From 
Eq. (42) we identify the condensate as 

M,ma-,m )=aopo= T, (77) 

where m is arbitrary. The first equality is found simply by taking the true ground 
state to be a scalar determinant of hole eigenstates in the co “mean” field, (73). 
The second is found by using the constraint equation (42). We find from the exact 
solutions that this condensate is zero for all values of ZJ at finite N provided the 
ground and first excited states are non-degenerate. In the degenerate case we are 
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allowed to construct a superposition state where (77) is non-zero. Thus in accor- 
dance with a discrete version of Goldstone’s theorem the symmetry can be 
spontaneously broken only when a ground-state degeneracy is created. 

In principle the ground state and first excited state are never degenerate at 
finite N. Although they become infinitesimally close as u + co. Thus it would 
appear that in a complete theory of the effective potential that SSB would 
apparently occur at finite N for the physical modes, while the underlying symmetry 
of the bare fields is never broken at finite N. 

We remind the reader that this model is very reminiscent of the Gross-Neveu 
model. There one has an C)(N) s~rnet~ where N is the number of fundamental 
fermions, plus a discrete chiral symmetry. In the l/N + 0 limit, one readily obtains 
the prediction of spontaneous symmetry breaking with an accompanying degener- 
acy of the ground state and the first excited state. The biggest apparent difference 
between the behavior of the two models is that in the Lipkin model SSB only 
occurs when u is sufficiently large. This however only occurred because we gave 
the hamiltonian an unperturbed single-particle spectrum. Had the two unper- 
turbed levels been degenerate from the outset then all values of u (in the N -+ CC 
limit) would have generated SSB. Simultaneously, a non-degenerate single-particle 
spectrum (the non”relati~stic analogue of mass generation) would be generated. 

Finally we note that these techniques can be generalized to more realistic 
nuclear models. In a realistic calculation the N counts the number of degenerate 
or nearly degenerate loops to be summed over in the RPA calculation. This work 
would seem to imply that as long as N is sufficiently large, we might expect 
l/N-+ 00 results to be reasonably accurate for most quantities. As is well known 
however, the accurate evaluation of physical quantities such as binding energies 
will often necessitate the calculation of l/N corrections. 

Careful study of the use of auxiliary fields shows that this method is closely 
related to the Hartree-Fock method. In some circumstances the two methods are 
identical. In realistic cases a combined use of the two methods may prove the most 
useful. For instance the ease with which we solved the Lipkin model auxiliary 
potential was due in large part to the fact that eigenstates of the one-body Z& 
potential always form a stationa~ point solution (local m~mum or minimum), of 
the Hartree-Fock equations. Thus a realistic potential may be best solved by 
finding the Hartree-Fock solution and then using auxiliary fields to probe for 
deformation instabilities. 

We would also like to point out a recent work wherein RPA was fo~ulated in a 
variational context [lo], and improvements were made by making improved approx- 
imations to a general variation. This method proved quite reliable in providing 
ground-state properties for all values of u excepting those near the transition point 
where it still was an improvement with respect to other methods. Ahhough we 
concentrated here on the l/N expansion, the relationship between these tech- 
niques may prove of interest. 
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The zero-temperature analysis of this work is currently being extended to finite 
temperature where phase transitions and symmetry restoration may be properly 
discussed. 

The author would like to thank Manque Rho, D. Vautherin, Dan Strottman, 
and T.T.S. Kuo for helpful discussions. 
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