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a b s t r a c t

We present a semi-analytic theory for calculating light–particle interactions in shaped

laser beams even when the paraxial beam description is invalid. It requires weighting

the expressions for the cross sections with a beam normalization parameter, K, associated

with the incident power. An analytical formula for K in terms of the beam shape

coefficients [1–3] is derived. We show that approximate expressions for this beam

normalization parameter based on either a Parseval or paraxial type approximation are

inadequate for optics involving high numerical apertures.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Shaped laser beams have become a routine tool in
numerous light–particle applications like optical force experi-
ments, particle size analyzers, and Doppler velocimetry. One
of the most powerful theoretical methods for modeling
shaped beam is to develop their wave function in terms of
the vector partial waves (also known as vector spherical
wave functions or multipolar fields). Such developments
provide an efficient description of the beam throughout all
space (both near and far fields), and when described in this
framework, even complicated beam profiles are guaranteed
to satisfy the Maxwell propagation equations. The co-
efficients in the vector partial waves (VPW) expansion can
conveniently be formulated in terms of beam shape coeffi-
cients as has been studied extensively by Gouesbet, Grehan
and Lock. (see Refs. [1–3] and references cited therein).

Quantitative theoretical predictions require establishing
the relationship between the beam shape coefficients and the
ll rights reserved.
total beam power. This may appear trivial at first glance
since the relationship between scattered field coefficients and
scattered power is a simple and well-known analogue of the
Parseval formula from signal analysis (cf. Eq. (8) below). In
this work, we derive a convenient analytic formula between
the incident field coefficients and the incident beam power
and we will see that it is more complex than its scattered
field analogue. Last, we show how this factor normalizes
cross-sectional type formulas for shaped beams.

The outline of this work is as follows: our notation is
introduced by reviewing VPW field developments and
beam shape coefficients in Section 2 and recalling why the
scattered power satisfies a Parseval type relation. We also
explain why a Parseval type relation for incident beam
power does not hold for the beam shape coefficients. We
finally present an analytic formula that correctly relates
beam power to the beam shape coefficients. This result is
formulated in terms of beam normalization parameter, K.
The utility of this formula for non-paraxial beams is
tested on a generic case using the beam shape coefficients
derived in the localized approximation for Davis beams.
Finally, we derive formulas for calculating light particle cross
sections in Section 3. Time harmonic fields with exp�iot

time dependence and SI units are used throughout.
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2. Electromagnetic partial wave expansions

The time harmonic Maxwell equations in an absorp-
tion free host medium takes the form of a second-order
differential equation

r �r � EðrÞ�k2EðrÞ ¼ 0, ð1Þ

with k¼
ffiffiffiffiffiffiffiffiffiffiebmb
p ffiffiffiffiffiffiffiffiffiffiE0m0

p o¼ nbo=c, where ðE0,m0Þ are the
permittivity and permeability of the vacuum, and eb and
mb are the relative permittivity and permeability of the
‘‘background’’ or ‘‘host’’ dielectric medium. The vector
partial waves (VPWs), Mn,m and Nn,m, are a set of spherical
waves centered on a given origin and which form a
complete basis for solutions to Eq. (1).

Any scattered field, EsðrÞ, in the homogeneous medium
and outside of a circumscribing sphere surrounding the
scattering system can be developed in terms of outgoing
partial waves i.e.

EsðrÞ ¼ E
X
n,m

½Mð3Þn,mðkrÞf h,n,mþNð3Þn,mðkrÞf e,n,m�, ð2Þ

where Mð3Þn,m, Nð3Þn,m, are the outgoing VPWs which satisfy
Eq. (1) with outgoing boundary conditions [4–6]. They can
be analytically expressed in spherical coordinates as

Mð3Þn,mðkrÞ � hnðkrÞXn,mðy,fÞ

Nð3Þn,mðkrÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ1Þ

p hnðkrÞ

kr
Yn,mðy,fÞþ

½krhnðkrÞ�0

kr
Zn,mðy,fÞ,

ð3Þ

where hn are the spherical Hankel functions of the first
kind and ½krhnðkrÞ�0 is the derivative of krhnðkrÞwith respect
to kr. The three vector spherical harmonics, denoted as X,
Y, and Z, are given explicitly in Appendix A and are defined
to be orthonormal under angular integrationZ p

0
sin y dy

Z 2p

0
df An

n,mðy,fÞ � Bn,mðy,fÞ ¼ dn,ndm,mdA,B, ð4Þ

with A¼X, Y, or Z and B¼X, Y, or Z.
In Eq. (2) and throughout the rest of this work, the

summation
P

n,m is a shorthand for summing over all
multipole orders i.e.X
n,m

-
X1
n ¼ 1

Xm ¼ n

m ¼ �n

: ð5Þ

The f h,n,m and f e,n,m of Eq. (2) are the dimensionless
outgoing field coefficients (for type TE and TM waves
respectively). Since all other factors on the right hand side
of Eq. (2) are dimensionless, the factor E has the dimen-
sion of electric field, and a modification of its value only
changes the overall intensity of the field. The value of this
factor is determined by the amplitude of the incident field
for scattering problems.

In analogy with the scattered field, the incident field
is developed in terms of regular VPWs with TE(TM)
fields being respectively described by the coefficients
ah,n,mðae,n,mÞ

EincðrÞ ¼ E
X
n,m

½Mð1Þn,mðkrÞah,n,mþNð1Þn,mðkrÞae,n,m�, ð6Þ

where the ‘regular’ VPWs, Mð1Þn,m, Nð1Þn,m, have the same
expression as in Eq. (3) except that one replaces the
spherical Hankel functions, hn, with spherical Bessel
functions, jn. The factor E can now be related to the
incident power flux (i.e. irradiance) since for plane waves,
EincðrÞ ¼ Eêincexp ðikinc � rÞ, the incident irradiance is given
by

Iinc � Sinc � k̂inc �
1

2
RefEn

inc �Hincg � k̂inc ¼
E2

2

ffiffiffiffiffiffiffiffiffiffiffi
ebE0

mbm0

r
, ð7Þ

where Sinc is the incident Poynting vector, and k̂inc

and êinc are respectively the unit wavevector and polar-
ization vectors. In Eq. (7), we invoked the fact that for a
plane wave, the incident magnetic field is given by

HincðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ebE0=mbm0

p
k̂inc � Einc.

2.1. Radiated power and cross sections

The most common use of partial wave developments
has been to describe scattered fields, with the Mie theory
of spherical scatterers being the most well-known exam-
ple in electromagnetism. As long as the electromagnetic
effects are linear, radiated power is proportional to the
power of the incident plane wave, and the scattered
electromagnetic field adopts a particularly simple and
useful expression

Pscat ¼
Iinc

k2

X
n,m

½9f h,n,m9
2
þ9f e,n,m92

� ¼
Iinc

k2

X
q ¼ h,e

X
n,m

9f q,n,m9
2
,

ð8Þ

where Iinc is the irradiance of the incident plane wave
given in Eq. (7). This formula is analogous to Parseval’s
relation of signal analysis and it states that the total
scattered power is simply the sum of the power in each
multipole order.

One derives the result of Eq. (8) by first recalling that
in the far field limit, HscatðrÞ ¼

r-1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ebE0=mbm0

p br � Escat, and
the total radiated (scattered) power is obtained by inte-
grating over all directions in the far field i.e.

Pscat ¼ lim
r-1

Z
r2r̂ � SscatðrÞ dO

¼
1

2

ffiffiffiffiffiffiffiffiffiffiffi
ebE0

mbm0

r
lim
r-1

Z
r2En

scatðrÞ � EscatðrÞ dO: ð9Þ

One finishes the derivation of Eq. (8) by inserting the far-
field expressions for Mð3Þn,m and Nð3Þn,m

lim
r-1

Mð3Þn,mðkrÞ-i�nþ1 expðikrÞ

kr
Xn,mðr̂Þ,

lim
r-1

Nð3Þn,mðkrÞ-i�n expðikrÞ

kr
Zn,mðr̂Þ ð10Þ

into the scattered field development of Eq. (2). The final
result of Eq. (8) is then obtained by appealing to the
orthogonality of the VSHs over angular integration, cf.
Eq. (4). Finally one uses Eq. (7) to fix the parameter, E, in
terms to the incident irradiance, i.e.

E2
¼ 2Iinc

ffiffiffiffiffiffiffiffiffiffiffi
mbm0

ebE0

r
: ð11Þ

An expression for the scattering cross section, sscat,
naturally arises from Eq. (8)

Pscat ¼ Iincsscat, ð12Þ
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which yields the well-known multipole expression for the
scattering cross section

sscat ¼
1

k2

X
q ¼ h,e

X
n,m

9f q,n,m9
2
: ð13Þ

When the scatterers and the variations in beam inten-
sity are both small with respect to the wavelength, one
can approximate the light–matter interactions by inter-
preting Eq. (12) as a local relation, namely that the power
scattered by a particle at a position r, is approximately
PscatC IincðrÞsscat, where IincðrÞ is the local irradiance of the
shaped beam. However, this approximation is invalid in
many situations involving high numerical aperture (NA)
optics.
2.2. Partial wave developments and beam shape coefficients

Before the advent of lasers, the most common theore-
tical choice for incident fields in electromagnetic theory
was a polarized homogeneous incident plane wave for
which field coefficients can be determined analytically in
terms of the VSHs [6,7]

ph,n,m ¼ 4pinXn

n,mðk̂incÞ � êinc,

pe,n,m ¼ 4pin�1Zn

n,mðk̂incÞ � êinc, ð14Þ

where we replaced the arbitrary incident field coeffi-
cients, a, by the symbol, p, as a reminder that the ph,n,m

and pe,n,m are the VPW coefficients of an incident
plane wave.

Using the values of the plane wave coefficients given in
Eq. (14), and defining the bz axis to lie along incident beam
direction, the analytic expressions of the 9m9¼ 1 plane
wave coefficients are

ph,n,1 � 4pinXn

n,mð0,0Þ � êinc ¼ in
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð2nþ1Þ

p
ðibxþbyÞ � êinc,

pe,n,1 � 4pin�1Zn

n,mð0,0Þ � êinc ¼ in
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð2nþ1Þ

p
ðibxþbyÞ � êinc,

ph,n,�1 ¼ in
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð2nþ1Þ

p
ðibx�byÞ � êinc,

pe,n,�1 ¼ in
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð2nþ1Þ

p
ð�ibxþbyÞ � êinc, ð15Þ

with ph,n,m ¼ pe,n,m ¼ 0, when 9m9a1. Since we fixed the
axial angle to be zero in Eq. (15), we made use of the
simple relation between spherical and Cartesian unit
vectors in this direction, namely bh ¼ bx and b/ ¼ by .

The plane wave has an axisymmetric power distribu-
tion for arbitrary polarization vectors, êinc. Given the axial
symmetry of common optical elements, the power dis-
tribution of many shaped beams will also be axisym-
metric (one should remark however, that when beam
polarizers are present, incident field intensities, JEincJ

2,
are not fully axisymmetric). These axisymmetric beams
cover a wide variety of beams, like Gaussian, Bessel and
top hat beams, but exclude more exotic beams like vortex
and radially polarized beams (the treatment in this work
can however be extended to include these cases).

It has been shown that axisymmetric beams can be
described by the beam shape coefficients, gn, which can be
taken to be real, and depend on the orbital quantum
number n, but not on the axial quantum number m or on
the TE (TM) nature of the coefficients [3]

ah,n,m ¼ gnph,n,m, ae,n,m ¼ gnpe,n,m: ð16Þ

2.3. Beam power normalization

Given the close analogy between the partial wave
developments of Eqs. (2) and (6), one might expect the
incident power, Pinc, to satisfy a Parseval type relation
analogous to that of Eq. (8). If this were true, the incident
beam power would be proportional to the sum of the
incident field coefficients such that

Pincp
?
Kparsv �

1

4

X
q ¼ h,e

X
n,m

9aq,n,m9
2
, ð17Þ

where we defined the dimensionless Parseval type beam
normalization factor, Kparsv. The factor 1=4 in Kparsv was
introduced so that in the paraxial limit it agrees with the
exact beam normalization parameter, K, given below in
Eq. (23). Invoking Eqs. (15) and (16), one readily obtains
an expression for Kparsv in terms of the beam shape
coefficients

Kparsv ¼ p
X1
n ¼ 1

ð2nþ1Þg2
n: ð18Þ

We will see in Fig. 1 that Kparsv is only approximately
proportional to the power of shaped beams.

One way to see why the Parseval expression, Kparsv, is
not proportional to the incident beam power is to remark
that the scattered power Parseval relation of Eq. (8) relied
on the orthonormality of the vector spherical harmonics
for a 4p solid angular integration around a field source.
Regular partial waves, on the other hand, can be viewed
as fields whose sources have been sent to infinity, and
they propagate into any closed surface from infinity and
then proceed to propagate outside of this volume. The
power integral of the incident field over any closed sur-
face is null as is routinely invoked in scattering theory [4].
Although the incident beam power could be obtained by
integrating the incident irradiance over a zo0 or z40
hemisphere whose radius is sent to infinity, the vector
spherical harmonics are no longer orthogonal under a
hemispherical angular integration, which prevents the
occurrence of a Parseval type expression. Another way to
proceed, used here, is to obtain the incident beam power by
integrating irradiance over an infinite z¼ constant plane,
which is most readily performed in the z¼0 plane as
outlined in Appendix B.

The incident magnetic field is determined from Faraday’s
law

HincðrÞ ¼
Binc

mbm0

¼
1

iombm0

r � EincðrÞ

¼ E

ffiffiffiffiffiffiffiffiffiffiffi
ebE0

mbm0

r X
n,m

½Nð1Þn,mðkrÞae,n,mþMð1Þn,mðkrÞae,n,m�, ð19Þ

and the convenient curl properties of the VPWs, r �
M¼ kN and r � N¼ kM. Defining the z direction to lie
along the beam axis, the total incident beam power, Pinc,
is obtained as an integral of the irradiance in any



Fig. 1. (a) The red solid line represents analytic results for the beam

normalization parameter, K, plotted as a function of the beam shape

parameter, s, when the beam shape coefficients of a localized beam are

given by Eq. (31). The dashed blue line represents the Gaussian

approximation, Kg ¼ p=2s2, and the dotted Green curve is the Parseval

normalization parameter, Kp, of Eq. (18). In (b), the relative errors with

respect to K are plotted for Kg (dashed blue curve) and Kp (dotted green

curve). (For interpretation of the references to color in this figure

caption, the reader is referred to the web version of this article.)
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z¼ constant plane

Pinc ¼
2p
k2

Z 1
0

IincðrÞkrðk drÞ
����
z ¼ cst

, ð20Þ

where r is the distance from the beam axis in cylindrical
coordinates, and IincðrÞ is the incident field irradiance in
the bz direction

IincðrÞ ¼
1
2RefEn

incðrÞ �HincðrÞg � bz: ð21Þ

From dimensional arguments, it is convenient to
define a dimensionless beam normalization parameter,
K, that is proportional to the incident power

Pinc � K
E2

2k2

ffiffiffiffiffiffiffiffiffiffiffi
ebE0

mbm0

r
: ð22Þ
Combining Eq. (20) with Eq. (22), the dimensionless beam
normalization parameter, K, is expressed as

K¼
ffiffiffiffiffiffiffiffiffiffiffi
mbm0

ebE0

r
4p
E2

Z 1
0

IincðrÞkrðk drÞ
����
z ¼ cst

: ð23Þ

Making the convenient choice of z¼0, one obtains an
analytic expression for K in terms of the shape coeffi-
cients, gn, as outlined Appendix B, yielding

K¼ p
X1

p,q ¼ 0

g2pþ1g2qþ1ð4pþ3Þð4qþ3Þ

 
ð2p�1Þ!!

ð2pþ2Þ!!

ð2q�1Þ!!

ð2qþ2Þ!!
ð�1Þp�q

þp
X1
p ¼ 1

X1
q ¼ 0

g2pg2qþ1

ð2qþ1Þ!!

ð2qÞ!!

ð2p�1Þ!!

ð2pÞ!!

ð4pþ1Þð4qþ3Þ

pð2pþ1Þ�ð2qþ1Þðqþ1Þ
ð�1Þp�qþ1

�
,

ð24Þ

where even double factorials are taken to stop at 2
(ex. 6!!¼ 6� 4� 2). The interest of Eq. (24) is that it holds
for arbitrary beam profiles, but it should be remarked that
this problem has previously been addressed in the context
of some specific beam profiles [8,9].

This formula will be compared with approximate
expressions in Fig. 1 after a brief discussion of the Gaussian
(paraxial) beam approximation in the next section.

2.4. Gaussian (paraxial) approximation

The most common description of laser beams is to
invoke the paraxial approximation of the TEM00 mode in
which the beam irradiance has an approximately Gaus-
sian profile. In the standard paraxial approximation, the
tightness of the beam focusing can be parameterized via
the dimensionless beam shape parameter, s, which is
defined

s�
1

kw0
�

w0

2zR
C

tan yd

2
, ð25Þ

where w0 is the minimal beam radius or ‘waist’, zR is the
Rayleigh diffraction length, and yd is the angle of beam
divergence. The first equality in Eq. (25) gives us a
physically transparent expression of the s parameter as
the wavelength divided by the beam circumference at the
minimal focus or ‘spot’. This s factor in most familiar laser
applications is extremely small due to the low divergence
of most laser beams. However, this factor is no longer
minuscule for laser beams that have traveled through
high NA optics, where it can be on the order of � 1=4
or more.

Defining the z-axis to lie along the beam axis, the
Gaussian approximation for irradiance in the paraxial
approximation is expressed as

IgaussðrÞ ¼ Igaussð0Þ
w0

wðzÞ

� �2

exp �
2r2

w2ðzÞ

� �
with

wðzÞ ¼w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

z

zR

� �2
s

, ð26Þ

where Igaussð0Þ is the irradiance at the focal point. The
power integral of Eq. (20) for a Gaussian irradiance readily
yields
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Pgauss ¼
p
2

w2
0Igaussð0Þ ¼

p
2

1

k2s2
Igaussð0Þ: ð27Þ

A direct calculation of the incident irradiance, Iincð0Þ, at
the center of the VPW coordinate system is presented in
Eq. (C.4) of Appendix C and results in

Iincð0Þ ¼
1

2
E2g2

1

ffiffiffiffiffiffiffiffiffiffiffi
ebE0

mbm0

r
: ð28Þ

Finally, inserting this result into Igaussð0Þ of Eq. (27), gives:

Pgauss ¼
p
4

E2

k2s2
g2

1

ffiffiffiffiffiffiffiffiffiffiffi
ebE0

mbm0

r
¼ Kgauss

E2

2k2

ffiffiffiffiffiffiffiffiffiffiffi
ebE0

mbm0

r
, ð29Þ

where the second equality invokes the definition of beam
normalization parameter in Eq. (22), thus fixing the beam
normalization parameter, Kgauss, in the Gaussian beam
approximation

Kgauss ¼
p

2s2
g2

1: ð30Þ

Consequently, as long as g1 is non-zero, which is the case
for Gaussian type beams, we are free to arbitrarily fix
g1 ¼ 1, which simplifies the Gaussian approximation to
the beam normalization parameter to Kgauss ¼ p=2s2.

There are, however, well established inadequacies of
the paraxial beam description. Notably, the paraxial
approximation is invalid for beams produced by high NA
optics which results in the Gaussian irradiance profile of
Eq. (26) being incompatible with the Maxwell equations.
Non-paraxial beam corrections can be treated in the Davis
prescription and take the form of a perturbation expan-
sion in terms of the s2 parameter [10]. Gouesbet, Grehan
and Lock et al. have shown that in the localized approx-
imation, one can obtain simple analytic expressions for
the beam coefficients of a localized beam [1,3]. The details
can be found in their references, but are not essential for
our purpose here. Suffice it to say that one can find an
analytic expression for the beam shape coefficients that
can be pushed beyond paraxial approximation

gn ¼ expf�s2ðn�1Þðnþ2Þg: ð31Þ

At this point, we have derived an exact expression for
the beam normalization parameter, K, and two approx-
imate formulas, Kgauss and Kparsv. The values of K, Kgauss,
and Kparsv are all three plotted in Fig. 1(a). The relative
errors of Kgauss, and Kparsv with respect to the exact value
of K are plotted in Fig. 1(b). It is interesting to remark that
the Gaussian beam approximation underestimates the
value of K, while the Parseval relation overestimates it.
All three results agree in the paraxial limit of s-0, but
the relative errors are on the order of 10–20% for beam
shape parameters, s, on the order of � 0:25 which is
characteristic of the values in high NA beams. For the
purposes of numerical comparison, when s¼0.25 one
finds: K¼ 29:616, Kgauss ¼ 25:133, and Kparsv ¼ 33:65. It is
worth remarking from Fig. 1(b), that even for beam shape
parameters of s� 0:1, that the errors incurred by the
approximate formulas of Kparsv and Kgauss are on the order
of a few percent.
3. Power normalized cross section in shaped beams

For plane waves, the total incident power is infinite,
and one calculates scattered power in terms of incident
irradiance (dimensions of power per unit surface). This
irradiance formulation is no longer practical for shaped
beams, and it is consequently preferable to formulate
scattered power in terms of the (finite) incident power
which requires normalizing the cross sections with the
beam normalization parameter derived in Eq. (24). One
way to do this is to invoke some of the translation–
addition theorem tools that are familiar from multiple
scattering theory [4,5].

In scattering theory, the transition matrix (or simply
T-matrix) of a scatterer characterizes the electromagnetic
response subject to all possible incident fields. In the VPW
basis, the T-matrix is formulated in a coordinate system
chosen to favor the particle’s position and symmetry [11].
For the beam description in Section 2 on the other hand,
we adopted a coordinate system adapted to the beam
geometry (z-axis lying along the beam axis, and the origin
of the coordinate system preferentially positioned at the
beam focal point).

The translation–addition theorem for VPWs allows one
to express the incident field at the particle position,
aq,n,mðrÞ, in terms of the incident field coefficients of the
beam coordinate system, aq0 ,n,mð0Þ, via the regular transla-
tion–addition matrix, JðkrÞ [4,5,12–14]

aq,n,mðrÞ ¼
X

q0 ¼ ðh,eÞ

X
n,m
½JðkrÞ�q,n,m;q0 ,n,maq0 ,n,mð0Þ: ð32Þ

The scattering coefficients, f q,n,mðrÞ for a particle
located at the position r can then be obtained from the
incident field coefficients at this point, aq,n,mðrÞ, by using
the T-matrix, T, of the particle [5,11,4]

f q,n,mðrÞ ¼
X

q0 ¼ ðh,eÞ

X
n,m

Tq,n,m;q0 ,n,maq0 ,n,mðrÞ: ð33Þ

The scattered power, Pscat, can now be related to the
incident beam power, Pinc, via a power normalized cross
section, ~sscat i.e.

PscatðrÞ � k2 ~sscatðrÞPinc, ð34Þ

where the position dependent scattering cross section
~sscatðrÞ is given by

~sscatðrÞ ¼
1

k2K

X
q ¼ ðh,eÞ

X
n,m

9f q,n,mðrÞ9
2
: ð35Þ

It should be remarked that when defined in this way,
the ~sscat are independent of the overall normalization of
the beam shape coefficients and that they only differ from
the ordinary cross sections of Eq. (12) by the presence of
the beam normalization parameter, K in the denominator.
Another interesting observation is that k2 ~sscat can be
regarded as a scattering efficiency in the sense that it is
constrained by energy conservation to always be less than
or equal to 1.
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A power normalized extinction cross section can also
be derived in analogy with plane-wave cross sections

~sextðrÞ ¼
1

k2K

X
q ¼ ðh,eÞ

X
n,m

Re½an

q,n,mðrÞf q,n,mrÞ�: ð36Þ

It is important to remark that the extinction cross section
defined in Eq. (36) is the correct expression for shaped
beams in that it avoids an erroneous application of the
optical theorem (see Refs. [15–17] for detailed discussions
on this topic).

Finally, one defines a power normalized absorption
cross section in the usual manner

~sabsðrÞ ¼ ~sextðrÞ� ~sscatðrÞ: ð37Þ

4. Conclusions

The beam normalization parameter derived in this
work allows cross sections in shaped beams to be for-
mulated in a fully analytic manner in terms of the
particle’s T matrix; something which was previously
possible only for incident plane waves. We demonstrated
that if one does not calculate this parameter exactly, but
instead adopts a Parseval type expression or a Gaussian
approximation then the errors can be of the order of
10–20%. Such errors are consequential given the precision
one usually strives for in the calculation of the particle’s
T-matrix.

Although the translation–addition matrix formulation
of Section 3 is a relatively simple and flexible means of
solving the problem of the particle’s position in a shaped
beam, it is not the only way to solve this problem. The
beam normalization parameter on the other hand does
seem to be an essential element of treating the problem of
beams formed with high NA optics (in the context of a partial
wave framework at least). Optical tweezers and confocal
microscopy are two important applications where this for-
mulation should prove useful.

Appendix A. Vector spherical harmonics

There is no universally accepted notation for the vector
spherical harmonics (VSH). Our notation for their normal-

ized forms (cf. Eq. (4)) is Xn,m, Yn,m, and Zn,m

Xn,mðy,fÞ � Zn,mðy,fÞ � br,

Yn,mðy,fÞ � brYn,mðy,fÞ,

Zn,mðy,fÞ �
r=Yn,mðy,fÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðnþ1Þ
p ¼ br � Xn,mðy,fÞ, ðA:1Þ

where Yn,mðy,fÞ are the scalar spherical harmonics and
the normalization coefficients, gn,m, are defined

gn,m �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ1Þðn�mÞ!

4pnðnþ1ÞðnþmÞ!

s
: ðA:2Þ

It is also convenient to introduce the normalized func-
tions um

n and sm
n defined in terms of the associated

Legendre functions Pn
m

um
n ðcos yÞ �

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ1Þ

p gn,m

m

sin y
Pm

n ðcos yÞ, ðA:3Þ
sm
n ðcos yÞ �

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ1Þ

p gn,m

d

dy
Pm

n ðcos yÞ, ðA:4Þ

which allow us to conveniently express the transverse
VSHs as

Xn,mðy,fÞ ¼ ½ium
n ðcos yÞby�sm

n ðcos yÞb/� expðimfÞ,

Zn,mðy,fÞ ¼ ½sm
n ðcos yÞbhþ ium

n ðcos yÞb/�expðimfÞ: ðA:5Þ

Appendix B. Shaped beam power

The power of an incident beam is calculated by
integrating the normal component of the time averaged
incident Poynting vector, Sinc, over any infinite open
surface that the beam passes through. Since we are
working with spherical coordinates, it is convenient to
perform our analytic integrations in the z¼0 plane. Using
the field VSWF field developments of Eqs. (6) and (9), the
irradiance for time harmonic fields is explicitly

IincðrÞ ¼
1

2
RefEn

inc �Hincg � bz
¼�

1

2

ffiffiffiffiffiffiffiffiffiffiffi
ebE0

mbm0

r
E2
X

n,m;nm
Ref�i½an

h,n,mMð1Þ,nn,m ðkrÞ

þan

e,n,mNð1Þ,nn,m ðkrÞ� � ½ah,nmNð1Þn,mðkrÞþae,n,mMð1Þn,mðkrÞ� � bzg:
ðB:1Þ

The irradiance integral in the z¼0 plane then corresponds
to taking y¼ p=2, and integrating over f¼ ½0,2p� and
r¼ ½0,1�.

An inspection of Eq. (B.1) shows that an analytic calcula-
tion of the beam power, Eq. (20), will involve four integrals
involving vector products of the VSWFs. The contribution to
the total beam power involving the coefficient product
an

h,n,mae,nm (denoted dPðh,eÞ) is zero since Mð1Þ,nnm �Mð1Þnm � ẑ ¼ 0
in the z¼0 plane. The vector product involving an

e,n,mah,n,m
(denoted dPðe,hÞ) does however have a non-zero contribution
to the power integral of Eq. (20), namely

dPðe,hÞ
¼

Z 1
0

r dr

Z 2p

0
df Ref�i½an

e,n,mah,n,mNð1Þ,nn,m ðkrÞ�Nð1Þn,mðkrÞ�g � ẑ
���
y ¼ p=2

¼�E2 p
k2

ffiffiffiffiffiffiffiffiffiffiffi
ebE0

mbm0

r X
n,n,m ¼ 71

Re½an

e,n,mah,n,m�
um

n ð0Þu
m
n ð0Þ

m

� nðnþ1Þ

Z 1
0

jnðxÞ

x
½xjnðxÞ�

0 dxþnðnþ1Þ

Z 1
0
½xjnðxÞ�

0 jnðxÞ

x
dx

� �
,

ðB:2Þ

where the um
n ðcos yÞ are defined in Eq. (A.5). One finds that

um
n ð0Þu

m
n ð0Þ with 9m9¼ 1 is non-zero only if both n and n are

odd. The analytic expression for um
n ð0Þu

m
n ð0Þ with both n and

n odd is

um
n ð0Þu

m
n ð0Þ ¼

ð�1Þðn�nÞ=2

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ1Þð2nþ1Þ

p
ðn�2Þ!!

ðnþ1Þ!!

ðn�2Þ!!

ðnþ1Þ!!
: ðB:3Þ

The Bessel function integral gives a particularly simple result

nðnþ1Þ

Z 1
0

jnðxÞ

x
½xjnðxÞ�

0 dxþnðnþ1Þ

Z 1
0
½xjnðxÞ�

0 jnðxÞ

x
dx

¼ ð�1Þðn�nÞ=2, ðB:4Þ

to yield finally



B. Stout et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 126 (2013) 31–37 37
dPðe,hÞ
¼ �

Iincð0Þ

2k2

X1
p,q ¼ 0

X
m ¼ 71

Re½an

e,2pþ1,mah,2qþ1,m�

m

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4pþ3Þð2qþ3Þ

p ð2p�1Þ!!

ð2pþ2Þ!!

�
ð2q�1Þ!!

ð2qþ2Þ!!
: ðB:5Þ

Finally, using the defining property of the beam shape
coefficients, gn, of Eq. (16), and the expressions for the
pe,n,m and ph,n,m of Eq. (15), we can write this sum directly
in terms of the gn.

dPðe,hÞ
¼ Iincð0Þ

p
k2

X1
p,q ¼ 0

g2pþ1g2qþ1ð4pþ3Þð4qþ3Þ

ð2p�1Þ!!

ð2pþ2Þ!!

ð2q�1Þ!!

ð2qþ2Þ!!
ð�1Þp�q: ðB:6Þ

Evaluating the remaining dPðh,hÞ and dPðe,eÞ contributions
to the total beam power in a similar manner, and appeal-
ing to the defining relation, Eq. (16) for the beam normal-
ization parameter, K, yields the analytic expression for
K found in Eq. (24).

Appendix C. Incident irradiance at the beam focus

The irradiance at the beam focus (fixed as the coordi-
nate system origin) can be calculated by remarking that as
r-0, only the Nð1Þ1,mðkrÞ VSWFs are non-zero, and that

Nð1Þ,n1,m ðkrÞ � Nð1Þ1,mðkrÞ � ẑ

¼

ffiffiffi
2
p

j1ðkrÞ½krj1ðkrÞ�0Yn

1,mðbrÞX1,mðr̂Þ

k2r2
� ẑ

�

ffiffiffi
2
p
½krj1ðkrÞ�0j1ðkrÞY1,mðbrÞXn

1,mðbrÞ
k2r2

� ẑ

�
½ðkrjnðkrÞ�0Þ2Zn

n,mðy,fÞ � Xn,mðy,fÞr̂

k2r2
� ẑ: ðC:1Þ

Using the limits

lim
x-0

j1ðxÞ �
x

3
lim
x-0
½xj1ðxÞ�

0 �
2x

3
, ðC:2Þ

we obtain

1

2p

Z 2p

0
df

X1

m,m ¼ �1

an

e,1,mah,1,mNð1Þ,n1,m ð0Þ � Nð1Þ1,mð0Þ � ẑ

������
y ¼ p=2

¼�i
8

9

X
m ¼ 71

m an

e,1,mah,1,mum
1 ð0Þu

m
1 ð0Þ

¼
i

6p fa
n

e,1,�1ah,1,�1�an

e,1,1ah,1,1g, ðC:3Þ
where we used um
1 ð0Þ ¼�

1
4

ffiffiffiffiffiffiffiffiffi
3=p

p
. Putting this result into

Eq. (B.1), the irradiance at the origin takes the form

Iincð0Þ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffi
ebE0

mbm0

r
E2 1

6pRefan

e,1,�1ah,1,�1�an

e,1,1ah,1,1g

¼
1

2
E2g2

1

ffiffiffiffiffiffiffiffiffiffiffi
ebE0

mbm0

r
, ðC:4Þ

where in the last line, we used Eqs. (16) and (15) to put
this result in terms of the beam shape coefficients.
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