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uTation density. Thus, applying a low-Pp potential and
including relativistic effects, nuclear matter saturation
can be explained rather satisfactorily [1, 14].

So far, our discussion has been concerned with nuclear
ground states. Another important and interesting area
are the excited states of nuclei. In a microscopic ap-
proach, one starts from a bare NN potential and derives
the Brueckner G-matrix which, in turn, is used to cal-
culate certain classes of diagrams defining the effective
interaction in an open shell, Vog. The matrix elements
of Vo can then be used to calculate, for example, the
energy spectrum of an open-shell nucleus including both
the ground state and the excited states.

First work along this line was done by Kuo and Brown
[15], who derived matrix elements of the effective inter-
action between two nucleons outside an 60 core. As is
well known, these s-d shell matrix elements have been
remarkably successful, at least qualitatively, in nuclear
shell-model calculations. They were, however, derived
some twenty-five years ago and during this time there
have been developed both more realistic NN potentials
and more systematic many-body methods for calculating
these matrix elements. It should be worthwhile, then,
to incorporate these improvements into the calculation.
An attempt in this direction has been carried out by
Shurpin, Kuo, and Strottman [16]. They performed a
folded-diagram calculation of these matrix elements us-
ing both the Reid and Paris NN interactions. The result-
ing matrix elements and the energy spectra seem to have
a general deficiency when compared with the recent and
highly successful empirical matrix elements of Wilden-
thal [17]. As will be illustrated shortly, a main prob-
lem appears to be that, in general, there is not enough
attraction provided by the calculated matrix elements.
This fact was stressed recently also by Daehnick [18] who
found, particularly, for the T=0 matrix elements a large
and systematic discrepancy between theory and experi-
ment due to a general lack of attraction on the theoretical
side.

In the quoted theoretical work, conventional, local,
strong-tensor-force NN potentials were used. In view of
the problems mentioned, it is natural to raise the ques-
tion of how sensitive the effective interaction is with re-
gard to the bare two-nucleon potential used as input in
these calculations. As discussed, in particular, there is
latitude in the strength of the tensor force. Therefore
it should be worthwhile to examine the influence of the
strength of the bare two-nucleon tensor force on the the-
oretically derived effective interaction and its resultant
energy spectra.

Thus, in the present work, we will use the Bonn poten-
tial to derive the s-d shell effective interaction [19] and
then apply it in the calculation of the spectra of some
light s-d shell nuclei. As discussed, the particular fea-
ture of the Bonn potential relevant to this application is
its weak tensor force. To further investigate this aspect,
other versions of this potential have been constructed [1],
in which the strength of the nuclear tensor force is varied
systematically. In the subsequent discussion, we will de-
note the original Bonn potential by Bonn A (Pp = 4.4%)
while the stronger tensor-force versions will be denoted

by Bonn B and C (Pp = 5.0% and 5.6%, respectively).
(See Ref. [1] for more details concerning the potentials.)
Another interesting aspect is the A-dependence of the
effective interaction (where A denotes the nuclear mass
number). In a recent study of the A=17 to A=39 nuclei,
Wildenthal et al. {17] used the following law:

M(A) = M(18)(18/A4)°3, (1)

where M(A) denotes a matrix element of the effective
interaction for a nucleus with the mass number A. This
formula implies that the strength of all matrix elements
decreases with the mass number, the cause of which is
assumed to be the mass dependence of the nuclear ba-
sis states [17]. Note that the very successfully empirical
analysis by Wildenthal et al. is based on the above law.
Therefore, it is of interest to examine the A dependence
in a microscopic model. Recently, Hosaka, Kubo, and
Toki [20] have studied the A dependence for the bare
G matrix in the sd-shell and found an average mass de-
pendence of A~1/4. Our microscopic calculations include
besides the bare G matrix also diagrams of second order
in G and folded diagrams. We will compare our result
with the assumption Eq. (1) and the findings of Ref. [20].

Since the formalism applied in this work has been pub-
lished in length before, we will only briefly review it in
Sec. II. The results of our calculations are presented and
discussed in Sec. III. Section IV contains summary and
conclusions.

II. FORMALISM

In this work, we will use the folded-diagram approach
by Kuo, Lee, and Ratcliff [21, 22] in which the effective
interaction is expressed as a series in the number of folds.
Namely,

Veg=Fo+F1+F,+F3+--- (2)

where F), denotes a (n+1) Q-box term (see below) con-
nected with n sets of folded lines. For example, the three-
times folded term has the form

r--¢[afafa ®

where [ stands for a generalized folding operation. @ is
in principle an infinite sum of irreducible diagrams while
Q’ is obtained from Q by removing terms of first order
in the reaction matrix G. The calculation of Q can only
be made approximately by selecting certain classes of di-
agrams. We include in the @ box all the 2-body and
1-body valence irreducible diagrams up to second order
in the model-space G matrix, i.e., diagrams D1-D7 of
Fig. 1 (see Ref. [16] for more details). Although there
is no rigorous theoretical proof that the higher-order Q-
box diagrams could be dropped, it is however indicated
in the calculation of Ref. [16] that their effects can be
largely reduced when the corresponding folded diagrams
are included as well. .

To evaluate those diagrams of the @) box, we need first
to calculate the model-space G matrix, which is defined
by the integral equation
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FIG. 1. Q-box diagrams included in the present work. U
is the single particle potential. D1-D3 are one-body diagrams
while D4-D7 are two-body diagrams.

G(w) = VNN + VnQ2 Q2G(w), (4)

1
w— Q2TQ>

where Q5 is the shell-model Pauli exclusion operator
shown in Fig. 2 and T is the two-nucleon kinetic-energy
operator. Using Tsai and Kuo’s method [23] and a ma-
trix inversion approach [24], the exact solution of Eq. (4)
can be written as

G(w) = G.(w) + AG (5)
with G, the free reaction matrix, defined as,
1
Gr(w) =Vyn + Van Z;__—TGF (w) (6)

and AG given by

1
Pyl/e+ (1/€)Gr(1/e)]

1 1
AG = -G, (@) P, P2 Gr ()

(7)

withe=w-—T and P, =1 — Q>.

In practical calculations, it is customary to use har-
monic oscillator wave functions for the low-energy states
and plane waves for the states of higher energy. The har-
monic oscillator states depend on the chosen frequency
parameter hw. As we will discuss below, this introduces
the dependence on the nuclear mass number A.

Once the effective interaction is obtained, the spectra
of light sd-shell nuclei can be calculated by a diagonaliza-
tion procedure. In our work, we employ the shell-model
code developed by the Rochester—-Oak-Ridge Collabora-
tion [25].
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FIG. 2. Pauli exclusion operator Q, used in the calcula-
tion of the model-space reaction matrix G.

III. RESULTS AND DISCUSSION

A. Matrix elements

Applying the formalism outlined in the previous sec-
tion and using the numerical methods described in
Refs. [16, 24], we have first calculated the folded-
diagram sd-shell effective interaction. For the bare
NN interaction we employ the energy-independent one-
boson-exchange parametrization of the Bonn potential
of Ref. (1], which we will denote by Bonn A (Pp =
4.4%). This potential is derived from relativistic meson-
exchange theory and defined in the framework of the
Blanckenbecler-Sugar reduction of the Bethe-Salpeter
equation using one-boson-exchange (OBE) terms. As
mentioned earlier, the essential difference between this
interaction and other commonly employed potentials lies
in the strength of the tensor force. Due to relativistic
nonlocal terms, the tensor force of the Bonn potential
is weaker than in local parametrizations of the nuclear
force. To elucidate systematically the effect of the tensor
force strength on the effective interaction, we will also
apply two variations of the Bonn potential with system-
atically increased tensor force strength, denoted by Bonn
B and C (Pp = 5.0% and 5.6%, respectively) [1].

In Table I, we list some typical s-d shell matrix el-
ements derived from these three potentials. Wilden-
thal’s empirical matrix elements are shown for compari-
son. The sensitivity to the tensor force strength can be
clearly seen. For instance, let us look at matrix element
(TJ, abed)=(01, 4444) first. It is -1.49, —1.24, and -1.09
MeV for Bonn A, B, and C, respectively. The weaker the
tensor force the more attractive the matrix element. The
result obtained from the weakest tensor force potential
(Bonn A) is closest to the empitical value of —1.63 MeV.

This trend is known from nuclear groundstate calcula-
tions (e.g., triton, 180, nuclear matter; see Ref. [1] for an
overview) and can be understood in terms of medium ef-
fects on the Brueckner G matrix. All realistic NN poten-
tials are fit to the NN scattering data and the deuteron
binding energy for which a certain intermediate-range at-
traction is required. A strong tensor force potential pro-
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TABLE I.  Shell model matrix elements (abT J|Veg|cdT J)
(in units of MeV), as derived from the Bonn A, B, and C
potentials [1]. The empirical data are from the analysis by
Wildenthal et al. [17]. The orbital notation is 4 = Od%,
5=1s 3 and 6 = Od3. For non-Hermitian matrix elements
the average is given. hiw = 14 MeV.

TABLE II. Individual two-body contributions contained
in the @ box, derived from the Bonn A potential. D4-D7
refers to the diagrams in Fig. 1. The total is listed in col-
umn sum. For notation, parameters, and units see legend of
Table I.

TJ abcd D4 D5 D6 D7 Sum
TJ abced A B C Empirical 10 4444 -1.72 -0.29 -0.41 -1.10 -3.52
0 1444 277 263 =60 oY) 4455 -081 -0.12 -0.10 -040 -1.43
4455 113 106 104 13 4466 -341 -011 -026 -0.81 -4.59
4466 351 341 335 319 5555 -245 -007 -0.07 -0.10  -2.69
’ ' ) 5566 -0.66 -0.10 -0.08 -0.24 -1.08
5555 -2.05 -1.90 -1.85 -2.12
6666 -0.33 -0.25 -0.30 -0.53 -1.41
5566 -0.83 -0.80 -0.79 -1.08
6666 -1.28 2121 -1.18 -2.18 01 4444 -0.52 -0.55 -0.28 -0.34 -1.69
4455 -0.54 -0.31 -0.09 -0.20 -1.14
01 4444 -1.49 -1.24 -1.09 -1.63
4466 +2.80 +0.13 -0.06 -0.76 +2.11
4455 -1.02 -0.88 -0.79 -1.18
5555 -3.91 -0.44 -0.28  +0.21 -4.42
4466 +1.45 +1.29 +1.18 +0.72
5566 -0.32  +40.12 -0.09 +0.25 -0.04
5555 -3.53 -3.20 -2.98 -3.26 6666 0.33 0.26 0.08 011 0.78
5566  +0.03 -0.01 -0.02 +0.03 _ _ - _ e
6666 -0.76 -0.61 -0.52 -1.42
. . . TABLE III. Same as Table II, but for Bonn C.
vides a large part of this attraction by means of a term
of second order in the tensor potential. On the other TJ abcd D4 D5 D6 D7 Sum
h'and., a NN potential with a weaker ‘tensor component 10 4444 177 030 -041 -094 342
yielding a smaller second-order term will have a more at- 4455 -082 -013 -0.10 -0.35  -1.40
tractive central force to provide the necessary attraction 4466 339  -012 -027 -0.73 451
to fit the NN data. Ip the nuclear many—body system., 5555 -2.45 -0.07 -0.07 +0.03 -2.56
terms of second and higher order are quenched by Pauli 5566 -067 -010 -0.08 -0.21 -1.06
and dispersive effects [1]. The larger the tensor force, the 6666 -038 -025 -031 -0.39 -1.33
larger the second-order term, and the larger the absolute 01 4444 020 -051 -0.21 -0.38 -1.30
value of the quenching of this attractive term (yielding a 4455 043 -028 -0.05 -0.23 -0.99
net repulsive medium effect). 4466 +253 4009 -0.09 -068 +1.85
Though in the free two-body channel, the tensor force 5555 -3.49 -043 -0.25 +0.15 -4.02
plays an important role only for the T' = 0 states (par- 5566 -0.45 +0.11 -0.09 +0.28 -0.15
ticularly, 38;-3D;), the effective interaction for the T=1 6666 +0.00 -0.24 -0.08 -0.10 -0.42
states is also affected by the tensor-force strength. This
is mainly due to the core polarization diagram (diagram
D7 of Fig. 1). To see this point more clearly, we tabulate
the individual two-body diagram contributions to the Q
box in Tables II and III. As seen in these tables, for T=1
the core polarization diagram (D7) is sensitive to varia- TABLE  IV. Shell model matrix  elements

tions of the strength of the tensor force, while for T=0
the bare G matrix (diagram D4 of Fig. 1) shows this sen-
sitivity. Generally speaking, the effective interaction for
the T'=1 states has a weaker dependence on the tensor-
force strength than that for the T'=0 states, as shown in
Tables II and III.

Comparing the predictions in Table I with the empiri-
cal matrix elements of Wildenthal, it is clearly seen that
with the weakest tensor force potential (Bonn A) the best
agreement is achieved. This point becomes even more
clear, when comparison is made with predictions from
local strong-tensor force potentials, like Reid and Paris
(Table IV). As example, let us consider the matrix ele-
ment (T'J, abcd)=(10, 4444). The results based on the
Reid and Paris potentials, -2.07 and -2.22 MeV, respec-
tively, are significantly weaker than the Wildenthal re-
sult of -2.82 MeV, with which the Bonn A prediction of

(abT'J|Veg|cdT'J) (in units of MeV) calculated from the Bonn
A [1], the Paris [5], and the Reid potential [4]. Notation as in
Table I.

TJ abcd Bonn A Paris Reid Empirical

10 4444 -2.77 -2.22 -2.07 -2.82
4455 -1.13 -0.89 -0.88 -1.32
4466 -3.51 -3.09 -3.05 -3.19
5555 -2.05 -1.61 -1.47 -2.12
5566 -0.83 -0.69 -0.69 -1.08
6666 -1.28 -0.95 -0.85 -2.18

01 4444 -1.49 -1.01 -1.01 -1.63
4455 -1.02 -0.67 -0.56 -1.18
4466 +1.45 +1.12 +0.92 +0.72
5555 -3.53 -2.73 -2.63 -3.26
5566 +0.03 -0.06 -0.07 +0.03
6666 -0.76 -0.51 -0.53 -1.42
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-2.77 MeV is in close agreement. For the (T'J, abed)=(01,
4444) matrix element the situation is quite similar. The
better agreement is in general due to an increase of at-
traction.

In this work, the convergence properties of the folded
diagram series have also been studied. Terms up to Fj
are displayed in Table V (for the exact definition of F;, see
Ref. [16]). It is seen that the contributions from the three
plus four folds are very small. Thus, in agreement with
earlier findings [16], the folded-diagram series appears to
converge rather satisfactorily. A previous study using the
Bonn potential [26] has also shown that a weaker tensor
force potential has a negligible Vary-Sauer-Wong effect
[27], leading to better convergence.

The overall improvement on the theoretically derived
effective interaction can be seen in the total x? [28] cal-
culated for the 63 matrix elements (see Table VIII of the
Appendix) which is 20.1, 24.9, and 25.3 MeV? for Bonn
A, Reid, and Paris potentials, respectively. For the T=0
matrix elements only, it is 15.0, 17.5, and 18.5 MeV?, and
for T = 1 one obtains 5.1, 7.4, and 6.8 MeV?, again, for
Bonn A, Reid, and Paris potentials, respectively.

We should note that some of the calculated matrix
elements still lack attraction. An example is the [6666]
multiplet. Though the Bonn A prediction is more attrac-
tive than any other, still substantial attraction is missing
in this case (cf. Tables I and IV). It appears that large
differences occur mostly for the matrix elements which
involve the d3/, orbit. A possible reason for this is the
following. First, this orbit is nearly unbound and it is
probably not well represented by a harmonic oscillator
wave function. More realistic would be a wave function
derived from a Woods-Saxon potential or obtained in a
Hartree-Fock calculation.

A more pertinent reason may be the following. The
s.p. (single-particle) energies are treated as adjustable pa-
rameters in Wildenthal’s calculation, while in our folded-
diagram formalism we are supposed to use the A=17 ex-
perimental s.p. energies whose relative spectrum is (0,
0.87, 5.08) MeV for the orbit 4, 5, 6, respectively. In
contrast, the corresponding “best-fit” s.p. energies used

TABLE V. Representative Vog matrix elements in the F,
series (using the Bonn A potential). Notation, parameters,
and units as in Table I; F,, as defined in Ref. [16].

TJ abed F‘o ﬁ1+ﬁ’2 F3+F4 Ve
10 4444 -3.52 +0.60 +0.15 -2.77
4455 -1.43 +0.23 +0.06 -1.14
4466 -4.59 +0.94 -0.00 -3.65
5555 -2.69 +0.56 +0.08 -2.05
5566 -1.08 +0.26 +0.02 -0.80
6666 -1.41 +0.07 +0.06 -1.28
01 4444 -1.69 +0.13 +0.07 -1.49
4455 -1.14 +0.12 +0.02 -1.00
4466 +2.11 -0.83 +0.07 +1.35
5555 -4.42 +0.79 +0.10 -3.53
5566 -0.04 +0.01 -0.01 -0.04
6666 -0.78 -0.03 +0.05 -0.76

by Wildenthal are (0, 0.78, 5.59) MeV. In fact, the to-
tal two-body effective Hamiltonian Heg, i.e., the sum of
the s.p. energies and the effective interaction matrix el-
ements, for the [6666] multiplet given by our calculation
is actually quite close to that of Wildenthal. The above
comparison may have brought with it an important mes-
sage concerning the many-body forces which have not
been taken into account in our derivation. The above
multiplet involves only two valence nucleons and we have
reproduced Wildenthal’s Heg well. Many-body effective
forces are not involved in this case. However, when there
are more than, e.g., two d3/; nucleons, such forces may
be needed in order to reproduce Wildenthal’s Heg. We
feel that Wildenthal’s choice of the s.p. energies contains,
to some extent, an effective way to compensate for the
many-body forces which have not been considered in his
empirical matrix elements.

B. Spectra

Besides the comparison with so-called empirical ma-
trix elements, it may be instructive to also compare di-
rectly with the experimental data. For that purpose, we
have calculated the spectra of some light sd-shell nuclei
(Fig. 3). These spectra are calculated using the above-
derived sd-shell effective interaction with an A depen-
dence as proposed by Wildenthal and co-workers [17],
Eq. (1). In these figures, the potential predictions are
arranged such that the tensor force strength (and the
Pp) decreases when going from left to right (cf. Table
VI). Besides the experimental spectra, we also show those
obtained when using Wildenthal’s empirical matrix ele-
ments.

It is evident that a number of low-lying experimen-
tal levels are not reproduced by our calculation. This is
mainly because of the model space which we have chosen
for our calculation. Our model space consists of a closed
160 core with active valence nucleons confined in the sd-
shell. Thus, for instance, our calculated levels for 20O
and !8F are those whose wave functions are predominan-
tely of 2pOh (two-particle-no-hole) nature. The states
whose wave functions are mainly of 4p2h structure are
not supposed to be adequately described by our model-
space calculation. The experimental 3.63 MeV 0%, 5.26
MeV 2%, and 7.12 MeV 41 states of 120, see “Exp.” col-
umn of the 20 spectrum (Fig. 3), are well known to be

TABLE VI. Deuteron D-state probability, Pp, for the
NN potentials applied in the calculation of the spectra dis-
played in Fig. 3.

Potential Pp (%)
Reid [4] 6.47
Paris [5] 5.77
HMI1 [29] 5.75
Bonn C [1] 5.61
Bonn B [1] 4.99
Bonn A [1] 4.38
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members of a 4p2h band. Hence it is not unexpected that
these states are not reproduced well by our calculation,
nor by Wildenthal’s calculation which is also based on a
closed 180 core model space. We note that Wildenthal
included only the lowest 0%, 1.98 MeV 2%, and 3.55 MeV
4% states in his fit [17]. This is clearly a resonable thing
to do as these states are well known to be of 2pOh na-
ture. The second 4% state given by Wildenthal and by
our Bonn A calculation are both at about 9 MeV, which is
in good agreement with the recent measurement by For-
tune et al. [31]; they identified that the predominantly
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ds/ads/2 47 level is at 9 MeV.

We now turn to the energy levels of 8F (Fig. 3), which
have been rather extensively studied [32]. Wildenthal
included the lowest six states (“Wild.” column) in his fit,
as these states are generally believed to be predominately
of 2p0h nature. Our calculation has given these six levels
but with a much broader spread. This may indicate that
the 4p2h admixture is more important in '8F than in
180'

Our calculated lowest 3% level for 1°F (see Fig. 3) is
too close to the ground state, as compared with Wilden-
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Positive-parity energy spectra of some A = 18 — 21 nuclei. For the calculated spectra the Reid [4], Paris [5], HM1

[29], and Bonn A, B, C [1] potentials are used. The spectra obtained by using Wildenthal’s empirical interaction (Wild.) [17]

and the experimental data (Exp.) [30] are also shown.
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C. A dependence

We turn now to the A dependence of the effective in-
teraction. As mentioned earlier, in the present work a
harmonic-oscillator single-particle (s.p.) potential is used
to describe the unperturbed s.p. orbits. This s.p. po-
tential has one parameter, namely fiw. The s.p. wave
functions and the corresponding s.p. energies depend on
this oscillator parameter. It is reasonable to assume that
the oscillator parameter depends on the mass number A
of the nucleus, with a larger A implying a smaller Aiw
(corresponding to a larger nuclear radius). We use the
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relationship

hw = 41.47TA™3 MeV. (8)

Some matrix elements as a function of A are listed
in Table VII. As samples, we have calculated the cases
A=18, 23, 28, 33, and 38 corresponding to Aiw=15.8, 14.6,
13.7, 12.9, and 12.3, respectively. In Fig. 4 these matrix
elements are plotted versus fiw. It is seen that the depen-
dence on Aw (or equivalently on A"}?) is almost linear,
which is in qualitative agreement with the assumption
made in the empirical analysis by Wildenthal, Eq. (1).
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FIG. 3. (Continued).
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FIG. 4. A dependence of some typical matrix elements (using the Bonn A potential). For orbital notation see legend of
Table I.
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TABLE VIII. s-d shell matrix elements calculated from the Bonn A potential. Notation, parameters, and units as in Table I.
TJ abcd Vabcd T Jabed Vabcd TJ abcd Vabcd T Jabed Va.bcd
014444 -1.4899 024565 -2.3296 054444 -3.3831 124565 1.2664
014446 3.5445 024645 -1.3985 104444 -2.7702 124566 -0.6302
014455 -1.0178 024646 -4.1049 104455 -1.1265 124645 -0.2372
014465 0.2951 024665 -1.4808 104466 -3.5088 124646 -0.2028
014466 1.4522 026565 -1.2532 105555 -2.0511 124665 0.6953
014646 -6.4045 034444 -0.7392 106655 -0.8341 124666 -0.9748
014655 2.2509 034445 -1.5783 106666 -1.2810 126565 -0.1412
014665 1.9065 034446 1.9458 114646 -0.2191 126665 0.2636
014666 -0.2461 034466 0.6098 114665 -0.0590 126666 0.2949
015555 -3.5329 034545 -3.4145 116565 0.4112 134545 0.2104
016555 -0.5565 034566 0.0671 124444 -0.9482 134645 -0.0790
016565 -2.9886 034645 1.1185 124445 -0.8269 134646 0.4279
016655 0.0273 034646 -0.8800 124446 -0.2285 144444 0.0533
016665 -0.8229 034666 2.0155 124465 0.8472 144446 -1.3148
016666 -0.7629 036666 -2.0657 124466 -0.8947 144646 -1.2952
024545 -0.4683 044646 -3.8224 124545 -1.1223

matrix folded-diagram method. Furthermore, we have
applied these matrix elements to calculate the energy
spectra of light sd-shell nuclei. The main result is that
these matrix elements are generally more attractive than
in former derivations. This increase of attraction leads
to a substantially better agreement with the empirical
matrix elements as well as with the experimental en-
ergy spectra. The reason for these improvements can be
clearly traced to the weaker tensor force characteristic
for the Bonn potential.

The present results derived from the Bonn potential
together with earlier findings like, e.g., the successful pre-
diction of the triton binding energy [1, 8] and the quanti-
tative explanation of nuclear-matter saturation [14], may
indicate that modern genuine meson-theoretic potentials
allow for a more consistent and successful description of
nuclear structure phenomena than traditional, simplistic

(local) nuclear force models.

As a by-product of our calculations, we have also in-
vestigated the dependence of the effective interaction on
the nuclear mass number A. An overall mass dependence
of A=1/3 is obtained in close agreement with the assump-
tions by Wildenthal et al., the source of which is found
to be the nuclear wave function, or equivalently, the s.p.
field. There are a number of cases where the A depen-
dence of our calculated matrix elements appears to be
different from the empirical A dependence of Wildenthal.
This point deserves further study in the future.

This work has been supported in part by the U.S.
National Science Foundation (through the NSF-Idaho
EPSCoR program under Grant No. RII-8902065, the
NSF San Diego Supercomputer Center, and under Grant

No. PHY-8911040) and by the U.S. Department of

TABLE IX. s-d shell matrix elements calculated from the Bonn B potential. Notation, parameters, and units as in Table I.

T Jabcd Vabed T Jabcd Vabed T Jabcd Vabed T Jabcd Vabed
014444 -1.2359 024565 -2.2593 054444 -3.2498 124565 1.2312
014446 3.3070 024645 -1.3311 104444 -2.6360 124566 -0.6008
014455 -0.8770 024646 -4.0229 104455 -1.0640 124645 -0.2202
014465 0.2793 024665 -1.3998 104466 -3.4128 124646 -0.1957
014466 1.2933 026565 -1.1728 105555 -1.8997 124665 0.6877
014646 -6.0576 034444 -0.6294 106655 -0.8008 124666 -0.9436
014655 2.0497 034445 -1.5161 106666 -1.2074 126565 -0.1204
014665 1.9576 034446 1.8798 114646 -0.2037 126665 0.2586
014666 -0.1343 034466 0.5631 114665 -0.0399 126666 0.2834
015555 -3.1975 034545 -3.2427 116565 0.4156 134545 0.2176
016555 -0.6323 034566 0.0536 124444 -0.9233 134645 -0.0789
016565 -2.9317 034645 1.0856 124445 -0.8069 134646 0.3975
016655 -0.0103 034646 -0.8183 124446 -0.2238 144444 0.0418
016665 -0.8146 034666 1.9997 124465 0.8326 144446 -1.2806
016666 -0.6071 036666 -1.9807 124466 -0.8909 144646 -1.2338
024545 -0.3808 044646 -3.6831 124545 -1.0918
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APPENDIX: COMPLETE LIST OF s-d
SHELL MATRIX ELEMENTS

In Tables VIII and IX we give a complete list of all 63
s-d shell matrix elements derived from the Bonn A and
Bonn B potentials, respectively.
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