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Metallic dimers: When bonding transverse modes shine light
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The optical properties of dimers of dipolar metallic particles of a typical size of 100 nm cannot be predicted
by the quasistatic approximation, even for nanogap sizes much smaller than the wavelength of the illuminating
light, due to the strong interparticle scattering. Nonquasistatic expressions for scattering cross sections show
that the transverse bonding mode becomes the brightest mode for decreasing nanogaps in the antenna, and the
fundamental role of the interparticle scattering term in these unexpected optical properties is demonstrated.
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I. INTRODUCTION

Nanogap antennas can serve to concentrate light into tiny
volumes, thereby allowing strong interactions between light
and very small amounts of matter. Metallic dimers have been
investigated successfully for conceiving biosensors able to
probe matter at the molecular level,1–3 create optical traps for
particles,4,5 or serve as reproducible Raman spectrometers.6

These applications exploit the hot spots produced in the
nanogaps between neighboring particles through the cou-
pling of individual-particle dipole modes into bonding and
antibonding modes.7 In the optical frequency range, the
quasistatic approximation is valid for dimers of spheres
roughly smaller than 50 nm in diameter with nanometric
separations. In the quasistatic approximation, opposite phase
modes are dark, i.e., exhibiting small scattering cross sections.
Those “dark” modes have been extensively studied recently,
since they can produce magnetic permeability8 or control
the quantum yield of an emitter.9 Experiments typically
employ somewhat larger particles, ∼100 nm in diameter,
for technological reasons but also because their larger scat-
tering cross sections facilitate the probing of the scattered
light.

Although the quasistatic approximation remains reasonable
for isolated particles, it fails when dipolar particles are
strongly coupled.10,11 We show that for nanogaps as small
as 25 nm, transverse bonding modes that are expected to
be dark from a quasistatic standpoint can actually behave
as bright modes (and vice versa). In this work, we develop
nonquasistatic expressions for the scattering cross sections
of metallic dimers, which explain and predict these features.
The behavior of the interparticle scattering field is a key issue
in this study, and its phase dependence with respect to the
nanogap length will be investigated thoroughly. Our conclu-
sions and results are verified by a full electromagnetic treat-
ment implemented in the framework of the generalized Mie
theory.12

This paper is organized as follows: In Sec. II, we show that
for a certain configuration, the transverse bonding mode of a
dimer can be “bright,” i.e., it can present a large scattering
cross section. In Sec. III, we develop a nonquasistatic dipolar
model that is able to reproduce accurately this behavior, and
we reveal the crucial role played by the interparticle scattering
field. We conclude in Sec. IV.

II. A BRIGHT TRANSVERSE BONDING MODE

A. Conditions of illumination

We consider a dimer of silver spherical particles (diameters
D = 110 nm, permittivity extrapolated from experimental
values of Palik and Ghosh13) in a polymer environment of
refractive index nm = 1.5, where the two spherical scatterers
have a center-to-center separation d, and are placed along
either the x̂ axis or the ẑ axis, depending on the studied
illumination conditions (see Fig. 1). The different particle
orientations were chosen so that the incident electric field can
be conveniently taken to lie along the ẑ axis throughout this
study, i.e.,

Einc,L(x) = Einc,T ,k‖(x) = E0ẑeikx,
(1)

Einc,T ,k⊥(y) = E0ẑeiky,

where k = (ω/c)nm is the wave number of the incoming plane
wave in the embedding polymer. The induced dipole moments
of each particle are also aligned along the ẑ axis, and can be
expressed as

p(j )(ω) = ε0εmα(ω)E(j )
exc(ω)ẑ, (2)

where j is the particle label and E
(j )
exc is the exciting electric

field associated with the particle. In this work, the dipolar
polarizability, α, is extracted from the electric dipole Mie
coefficient,14,15 a1, via the relation12 α = 6πa1/ik

3, thus
avoiding the quasistatic approximation (we use a polarizability
that is 4π times the one in the above-mentioned work by
Doyle). This formulation automatically includes the so-called
radiation damping effects and more generally all the absorption
effects, which, in “pointlike scatterer” models, have to be
included as corrections.

B. Results

The generalized Mie theory is implemented to accurately
calculate both the scattering cross section and the electric field
at the center of each metallic particle. We plot the relative
phase of the two induced dipoles as a function of the incident
wavelength together with the scattering cross section of the
dimer (Fig. 2). In this paper, we focus on wavelengths between
500 and 750 nm, where all dipolar phenomena occur for the
studied dimer. Hence the features of the cross sections around
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(a) (b) (c)

FIG. 1. (Color online) (a) Definition of the spherical coordinates;
dimer illumination schematics for (b) transverse illuminations and
(c) longitudinal illumination.

λ = 425 nm, which are of a multipolar nature (quadrupolar for
the most part), will not be described.

Symmetry dictates identical phases for the induced dipoles
of a dimer in both longitudinal and transverse k⊥ illuminations,
but phase differences are important for a k‖ illumination. It
is worth remarking that for an illumination along the dimer
axis (i.e., T ,k‖) and nanogaps much smaller than the incident
wavelength (like both the 25 and 100 nm cases), the maximum
of the scattering cross section does not correspond to in-phase
dipoles, but rather to strongly dephased ones. In the case of
a 100 nm nanogap [Fig. 2(b)], the two induced dipoles are in
fully opposite phase at the scattering cross-section maximum.
Moreover, the nearly opposite phase mode observed for the
25 nm nanogap has a larger scattering efficiency than the
in-phase mode observed for an illumination perpendicular to
the dimer axis, k⊥. Let us emphasize that this study is per-
formed on particles having diameters near those investigated
experimentally16–20 separated by tiny nanogaps (e.g., 25 nm in
Fig. 2, left). It is thus of fundamental importance to reveal the
physical properties responsible for such unexpected properties.
To this end, we derive below an analytical formalism able to
accurately predict the scattering efficiency maxima of metallic
dimers in terms of particle polarizabilities and separations.

III. EFFECTIVE POLARIZABILITY MODEL

A. Derivation

Let us now develop an effective polarizability approach21–24

wherein the multiple scattering phenomena occurring between

FIG. 2. Silver particles, D = 110 nm in diameter, with respective
nanogap sizes, (d − D), of 25 nm (left) and 100 nm (right). Full
lines and symbols, left scale: Scattering efficiencies per particle,
Qscat ≡ σscat/(2πa2); full circles: T ,k ‖ and (open circles) T ,k ⊥
illuminations; open squares: L illumination; full lines: values for the
monomer [σscat/(πa2)]. Dashed black line, right scale: Relative phase
of the induced dipoles for the T ,k ‖ illumination.

the two spheres are assimilated into an “effective” polarizabil-
ity (which depends on the incident illumination orientation and
polarization). The electric field produced by an electric dipole
moment p(j ) can be expressed as25

E(j )
scat(r) = eikr

4πεmε0r3
{k2r2(r̂ × p(j )) × r̂

+ (1 − ikr)[3(r̂ · p(j ))r̂ − p(j )]}. (3)

For an incident field polarized in the z direction, the excitation
field at the center of a sphere j , E

(j )
exc (in the configurations

of Fig. 1), also lies along the ẑ direction and is the sum of
the incident field and the field scattered by the other sphere
i: E

(j )
exc ≡ [Einc(xj ) + E(i)

scat(xj )] · ẑ. The excitation fields for
spheres 1 and 2 can then be written as (see Appendix A)

E(1)
exc = E(1)

inc + γE(2)
exc, (4a)

E(2)
exc = E(2)

inc + γE(1)
exc, (4b)

where γ is defined to represent the interparticle scattering
couplings (either purely transverse or longitudinal for the cases
studied here):

γT = γ
k‖

T = γ
k⊥
T ≡ eikd α

4πd3
(k2d2 + ikd − 1), (5a)

γL ≡ eikd α

2πd3
(1 − ikd). (5b)

We remark in these expressions of γL,T that the propagation
term, eikd , is only partly responsible for the phase of γL,T , and
we can readily surmise that the respective factors (k2d2 +
ikd − 1) and (1 − ikd) play non-negligible roles on the phase
of γL,T , particularly at distances that are small or comparable
to the wavelength.

The solution to the system of coupled equations [Eqs. (4a)
and (4b)] can be expressed in terms of “effective” polarizabil-
ities that read (see Appendix A)

α
(1)
eff,T ,k‖ = α

1 + γT eikd

1 − γ 2
T

, (6a)

α
(2)
eff,T ,k‖ = α

1 + γT e−ikd

1 − γ 2
T

, (6b)

α
(1)
eff,T ,k⊥ = α

(2)
eff,T ,k⊥ = α

1 + γT

1 − γ 2
T

= α

1 − γT

, (6c)

α
(1)
eff,L = α

(2)
eff,L = α

1 − γL

, (6d)

which express the induced dipole moments directly in terms
of the incident field, i.e.,

p(j )(ω) = ε0εmα
(j )
eff (ω)E(j )

inc(ω)ẑ. (7)

The effective polarizabilities are thus proportional to the
single-particle polarizability, and to a term involving the
interparticle coupling γ . We obtain in this manner an analytical
expression for the relative phase, φ, between the two induced
dipoles in the T ,k‖ case,

φ = arg(p2/p1) = arg

(
eikd 1 + γT e−ikd

1 + γT eikd

)
. (8)
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(a) (b) (c)

FIG. 3. (Color online) Top row: Scattering efficiency calculated with the dipolar model, vs the center-to-center separation, d , and the
wavelength, for a dimer of silver spherical particles 110 nm in diameter. The center-to-center particle separation lies on the abscissa, and the
vacuum wavelength on the ordinate (both in micrometers); (a) longitudinal illumination, (b) T ,k⊥ illumination, and (c) T ,k‖ illumination. The
bottom row displays the same quantities using calculations from the generalized Mie theory.

We demonstrate in Appendix B that scattering cross
sections of a dimer of dipolar particles are closely linked
to the square modulus of the effective polarizabilities in a
manner similar to the scattering efficiency of a monomer that is
directly proportional to the square modulus of its polarizability.
The total scattering cross section σscat (Ref. 12) can thus be
cast,

σscat,T ,k‖ = k4

6π

[∣∣α(1)
eff,T ,k‖

∣∣2 + ∣∣α(2)
eff,T ,k‖

∣∣2

+ 2 Re
[
α

(1)
eff,T ,k‖

(
α

(2)
eff,T ,k‖

)∗
e−ikd

]
AT

]
, (9a)

σscat,T ,k⊥ = k4

3π

∣∣α(1)
eff,T ,k⊥

∣∣2
(1 + AT ), (9b)

σL
scat = k4

3π

∣∣α(1)
eff,L

∣∣2
(1 + AL), (9c)

where the factors AT,L are, respectively, defined to contain the
radiative interference effects:

AT ≡ 3
(k2d2 − 1) sin(kd) + kd cos(kd)

2(kd)3
,

(10)

AL ≡ 3
sin(kd) − kd cos(kd)

(kd)3
.

The radiative interference terms, AT,L, can both be replaced
by 1 in the limit of kd → 0 (third order), and decrease only
slowly with increasing kd. Consequently, their kd dependence
can be safely ignored during this study. For the sake of
completeness, we also derive the extinction cross sections
in Appendix C. In Appendix D, we show the relative error
between this approximation and the quasiexact generalized
Mie theory that we used in this study. Finding the general
applicability domain of this nonquasistatic dipolar approach

is beyond the scope of this paper, but we can state that for the
studied system, the relative error in the (550 < λ < 750 nm)
region of the spectrum does not exceed 10% for separations
d > 50 nm, and remains in most cases under 5% for all
separations.

B. Results and discussion

The normalized per sphere scattering efficiencies, Qscat

(cf. Fig. 2), are plotted in Fig. 3 for all three illuminations
as functions of λ and d using both the above analytic model
and full electromagnetic calculations (generalized Mie theory
with nmax = 20 maximum multipole order). The monomer
resonance frequency is indicated in all graphs by a dashed
white line. One can see that the analytic dipole formalism
remarkably predicts that (i) transverse couplings can produce
larger scattering cross sections than longitudinal couplings,
and that (ii) for in-phase dipoles modes (longitudinal and
T ,k⊥ illuminations) the maxima are not obtained when the
separation is minimal (d − D → 0), but rather for separations
of d = 450 and 300 nm, respectively. Although the formalism
we use in the present paper does not take into account any
nonlocal permittivity effect, nor the behavior of the spheres
in the conductive contact limit,26,27 the calculations remain
valid for small distances provided we use a high enough
multipole order to allow convergence.28 We also remark on
a pseudoperiodicity of the scattering efficiencies in all three
considered illuminations, first observed experimentally by Olk
et al. in 2007.29 We will see below that the study of Eqs. (9a)–
(9c) provides a quantitative estimate of the periodicity and
explains why the periodicity in the longitudinal and T ,k⊥
illuminations is twice as large as that observed for the T ,k‖
illumination.
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If we neglect the influence of the numerator in Eqs. (6a)
and (6b), and define KT ≡ |γT |, KL ≡ |γL|, 
T ≡ arg(γT ),
and 
L ≡ arg(γL), we deduce from Eqs. (6a)–(6d)

|αeff,T ,k‖ |2 ∼= |α|2
|1 − (KT ei
T )2|2 = |α|2

1 + K4
T − 2K2

T cos(2
T )
,

(11a)

|αeff,T ,k⊥|2 = |α|2
|1 − KT ei
T |2 = |α|2

1 + K2
T − 2KT cos 
T

,

(11b)

|αeff,L|2 = |α|2
|1 − KLei
L |2 = |α|2

1 + K2
L − 2KL cos 
L

.

(11c)

Let us now show that this set of equations can predict
which nanogap separations and wavelengths produce scatter-
ing efficiencies maxima. We begin by casting the “resonant”
values, 
R , of the coupling phase [i.e., those that minimize
the respective denominators in Eqs. (11a)–(11c)]:


R,T ,k‖ = 0[2π ] or π [2π ], (12a)


R,T ,k⊥ = 0[2π ], (12b)


R,L = 0[2π ]. (12c)

The argument of γ , 
, corresponds to the argument of
the sphere’s polarizability (arg α), plus the argument of the
interparticle scattering (e.g., arg[eikd (k2d2 + ikd − 1)] for
transverse couplings). Equation (12) implies that when the
dimer is illuminated perpendicularly to its axis [Eqs. (12b) and
(12c)], the scattering from one sphere to the other must result
in a dephasing of 2π , while when the dimer is illuminated
along its axis [Eq. (12a)], it can be either equal to π or to 2π .
Hence, the round trip of the scattered light (from one sphere
to the other, and back to the first one, for a total dephasing
of 2
) must be constructive (2
 = 0[2π ]) with the field of
the first sphere; for illuminations perpendicular to the dimer
axis, there is an additional condition in that the coupling from
one sphere to the other is not destructive (
 �= π ) because
they have the same excitation field by symmetry arguments.
This is why the T ,k‖ illumination has two possible phases,
0 or π , for 
 [Eq. (12a)] while the other configurations have
only one possibility for a resonant coupling, 
 = 0 [Eqs. (12b)
and (12c)]. The effect of the interparticle scattering term has
been largely neglected in previous works since the involved
distances are much smaller than the incident wavelength but
the terms k2d2 + ikd − 1 and 1 − ikd in Eqs. (5a) and (5b)
will be seen to be of fundamental importance. From Eqs. (5a)
and (5b), the argument (phase) of the polarizability of the
particles can be expressed as

arg(α) = 
T − kd − arg(k2d2 + ikd − 1), (13a)

arg(α) = 
L − kd − arg(1 − ikd). (13b)

As we see in Eq. (11), the effective polarizabilities,
which are directly linked to the scattering efficiencies, are
proportional to both the polarizability of the monomer α

and to a denominator whose resonance conditions are given
in Eq. (12). For a passive particle (the material is not a
gain medium), the possible values of the argument of the

FIG. 4. (Color online) Left: Phase of the polarizability fulfilling
the respective coupled resonance conditions: T ,k‖ illumination (red
triangles), T ,k⊥ or T ,k‖ illuminations (black circles), and longitudinal
illumination (blue squares). Right inset: Scattering efficiency (solid
black line, left scale) and phase of the polarizability (dashed blue line,
right scale) of a 2a = 110 nm silver sphere embedded in a dielectric
medium of refractive index nm = 1.5. Vertical lines are plotted for a
phase equal to that of point A (dashed line) and points B and C (full
line) in the left figure.

polarizability lie between 0 and π (α has a positive imaginary
part). The resonance of the polarizability of the monomer under
study (see the inset in Fig. 4) occurs at a vacuum wavelength
λ0 = 575 nm, and at this wavelength the argument of the
polarizability has a value ≈ 0.42π , close to the quasistatic
predicted value of π/2. For wavelengths blueshifted from this
resonance, the argument increases toward π , and reciprocally
it decreases to 0 for redshifted wavelengths. There is no
direct link between the resonance of the polarizability and
that of the coupling. Hence, usually the resonance of the
scattering efficiencies will consist in a compromise between
the (monomer) polarizability resonance and the coupling
resonance. To illustrate this, let us plot (Fig. 4) the evolution
of arg(α) as a function of kd [using Eq. (13)] required so that

 = 
R .

This figure is of fundamental importance for the un-
derstanding of the aforementioned results: it represents the
argument that the polarizability should have in order to obtain
a resonance of the coupling term, for a given parameter kd.

Let us first look at in-phase modes under the quasistatic
approximation, i.e., kd → 0. We remark that the redshift of
the (longitudinal) bonding mode and the blueshift of the
(transverse) antibonding modes (correctly predicted by the
hybridization model) are also described by the nonquasistatic
model presented in this study. Maximizing the scattering
couplings in the kd → 0 limit requires a polarizability phase
tending toward zero for the longitudinal (bonding) mode and π

for the transverse (antibonding) mode. While both those condi-
tions cannot be achieved simultaneously at a resonance of the
polarizability [which requires arg(α) ≈ π/2], a compromise
between the coupling resonance and the polarizability of the
monomer results in the wavelength of the resonance shifting
toward red (bonding) or blue (antibonding) wavelengths,
respectively, compared to the resonance of the monomer.

For the more dephased excitations obtained with a T ,k‖
illumination, a study of point A in Fig. 4 shows that the
coupling term can be optimized near kd = √

2 ≈ π/2, i.e.,
near the contact situation (contact being described at λ ∼=
615 nm by kd ≈ 1.68 ≈ π/2) if the polarizability phase is
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≈ π/4 (which implies a redshift compared to the monomer
resonance). From the inset, we can see that the polarizability
amplitude at this phase remains non-negligible. As predicted,
we do indeed remark in Fig. 3 a redshifted resonance under
the T ,k‖ illumination. In general, the scattering efficiency of
the T ,k‖ configuration is expected to produce local maxima
when either the black or red curves in Fig. 4 pass through the
dotted line because the polarizability and the coupling are thus
simultaneously optimized. Counting the point A as the first
local maxima, we can see that this condition is satisfied with a
period of approximately π respective to kd, which explains the
λ/2 periodicity of the scattering efficiency maxima in Fig. 3.

Similar considerations also predict that the T ,k⊥ and
longitudinal illuminations will be brightest around kd ≈ 3π/2
and kd ≈ 2π (points B and C), respectively. In these respective
cases, when kd increases, the required arg(α) for a resonant
coupling will vary from π to 0, inducing blue then redshifts of
the scattering efficiency maximum when kd increases around
its optimum value. Let us recall that the coupling term is rapidly
decreasing with respect to d [see Eqs. (5a) and (5b)] so that
its influence on the wavelength of the scattering efficiency
maximum will be small when compared to the resonant
polarizability of the particles. The values we obtained in Fig. 3
(λ ∼= 569 nm, d ∼= 290 nm, i.e., kd ∼= 1.53π for the T ,k⊥
illumination, and λ ∼= 571 nm, d ∼= 387 nm, i.e., kd ∼= 2.03π

for the L illumination) agree with these predictions. The dimer
illuminated upon the T ,k⊥ and longitudinal illuminations will
be brightest when black and blue lines, respectively, cross the
0.42π ordinate, explaining the twice larger periodicity of the
scattering efficiency observed in Figs. 3(a) and 3(b) than that
observed in Fig. 3(c) for the T ,k‖ illumination.

IV. CONCLUSION

This study highlights the optical properties of nanogap
antennas involving strongly scattering dipolar particles. In
particular, we showed that the maximum scattering efficiency
for nearly touching spheres occurs when the dimer is illumi-
nated along its axis. This bright mode corresponds to strongly
dephased dipoles. This bonding transverse mode, which is dark
in the quasistatic approximation, is rendered “bright” by the
interparticle scattering term, which plays a crucial role even
with tiny nanogaps. A study of its phase allowed us to fully
predict these optical properties.

ACKNOWLEDGMENTS

The authors would like to thank Sébastien Bidault for his
interest and pertinent comments.

APPENDIX A: EFFECTIVE POLARIZABILITIES

Using Eq. (3), the field scattered by the sphere j = 1,2 at
the center of the sphere i = 2,1 is

E(j )
scat(ri) = eikd

4πεmε0d3
{k2d2(r̂i × p(j )) × r̂i

+ (1 − ikd)[3(r̂i · p(j ))r̂i − p(j )]},
where r̂i is the unit vector pointing from sphere j to sphere i. In
the transverse case, r̂l · p = 0 and (r̂l × p) × r̂l = p, whereas

in the longitudinal case, r̂l · p = p and r̂l × p = 0 (hence there
is no “far field,” i.e., ∝ k2d2 term in the longitudinal case), and
we have

E(j )
scat,T (ri) = eikd

4πεmε0d3
(1 − ikd + k2d2)p(j ),

E(j )
scat,L(ri) = eikd

4πεmε0d3
(ikd − 1)p(j ).

Using the notation γ as defined in Eqs. (5a) and (5b),
we then deduce Eqs. (4a) and (4b) from the definition of
the excitation fields (E(j )

exc ≡ [Einc(xj ) + E(i)
scat(xj )] · ẑ). Those

coupled equations can also be written as

E(1)
exc = E(1)

inc + γ
(
E(2)

inc + γE(1)
exc

)
,

E(1)
exc(1 − γ 2) = E(1)

inc

(
1 + γE(2)

inc/E
(1)
inc

)
,

E(1)
exc = E(1)

inc
1 + γE(2)

inc/E
(1)
inc

1 − γ 2
,

E(2)
exc = E(2)

inc
1 + γE(1)

inc/E
(2)
inc

1 − γ 2
.

We define the “effective” polarizabilities as

p(j )(ω) = ε0εmα(ω)E(j )
exc(ω)ẑ

= ε0εmα(ω)E(j )
inc

E
(j )
exc

E
(j )
inc

(ω)ẑ

≡ ε0εmα
(j )
eff (ω)E(j )

inc(ω)ẑ,

to obtain

α
(j )
eff = α

1 + γE(i)
inc/E

(j )
inc

1 − γ 2
, (A1)

from which we deduce Eqs. (6a)–(6d).

APPENDIX B: SCATTERING CROSS SECTIONS

To obtain an analytical expression of the scattering cross
section, we now have to find an expression of the fields in
the far-field limit. Figure 1 defines the spherical coordinate
notations together with the different illuminations considered
in this paper. Using

ẑ = cos(θ )r̂ + sin(θ )θ̂ ,

|r − x(j )| = [(x − x(j ))2 + y2 + z2]1/2

≈ (r2 − 2xx(j ))1/2 = r

(
1 − 2xx(j )

r2

)1/2

≈ r − x(j ) sin(θ ) cos(φ) ≡ r − β
(j )
T ,

|r − z(j )| ≈ r − z(j ) cos(θ ) ≡ r − β
(j )
L ,

we obtain30

lim
r→∞ E(j )

scat(r) = (ω/c)2 eik|r−x(j )|

4πε0r
(ẑ − r̂ cos θ )p(i)

= (ω/c)2 eikre−ikβ(j )

4πε0r
(ẑ − r̂ cos θ )p(i)

= (ω/c)2 eikre−ikβ(j )

4πε0r
p(i) sin θ θ̂ ,
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which yields the total scattered electric and magnetic fields
E(r) and H(r) in the far-field,

E(r) = (ω/c)2 eikr

4πε0r

(
2∑

j=1

p(j )e−ikβ(j )

)
sin θ θ̂ ,

H(r) = ωk
eikr

4πr

(
2∑

j=1

p(j )e−ikβ(j )

)
sin θφ̂.

We then have the time-averaged far-field Poynting vector P(r),

P(r) = 1

2
Re[(E)∗ ∧ H]

= sin2(θ )ω3k

32π2ε0c2r2
[|p(1)|2 + |p(2)|2

+ 2Re[p(1)(p(2))∗eik(β(2)−β(1))]]r̂.

Given the incident field irradiance Pinc =
1
2 |E0|2(εmε0/μ0)1/2ẑ, we can now write the differential
scattering cross section (see Ref. 15 for example),

d2σ

d2
(θ,φ) ≡ lim

r→∞ r2r̂ · P(r)

|Pinc|
= k4

16π2E2
0

sin2 θ
{∣∣α(1)

eff E
(1)
inc

∣∣2 + ∣∣α(2)
eff E

(2)
inc

∣∣2

+ 2Re
[
α

(1)
eff E

(1)
inc

(
α

(2)
eff E

(2)
inc

)∗
eik(β(2)−β(1))

]}
,

σscat =
∫

d2σ

d2
(θ,φ)d

=
∫ ∫

S

d2σ

d2
(θ,φ) sin θ dθ dφ

= k4

16π2E2
0

[
2π

(∣∣α(1)
eff E

(1)
inc

∣∣2 + ∣∣α(2)
eff E

(2)
inc

∣∣2)
×

∫ π

0
sin3 θ dθ + 2

∫ ∫
S

sin3 θ dθ dφ

× Re
[
α

(1)
eff E

(1)
inc

(
α

(2)
eff E

(2)
inc

)∗
eik(β(2)−β(1))

]]
,

where S denotes the solid angle space (θ ∈ [0,π ], φ ∈ [0,2π ]).
Let us consider the term

B =
∫ ∫

S

sin3 θ Re
[
α

(1)
eff E

(1)
inc

(
α

(2)
eff E

(2)
inc

)∗
eik(β(2)−β(1))

]
dθ dφ.

At this point, we must calculate separately the B term for the
three different illuminations. We first derive the T ,k‖ term,

BT,k‖ =
∫ ∫

S

sin3 θ Re
[
α

(1)
eff,T ,k‖E

2
0e−ikd

(
α

(2)
eff,T ,k‖

)∗

× eikd sin θ cos φ
]
dθ dφ

= E2
0

∫ π

0
sin3 θ Re

[
α

(1)
eff,T ,k‖e

−ikd
(
α

(2)
eff,T ,k‖

)∗

×
∫ 2π

0
eikd sin θ cos φdφ

]
dθ.

Here we use the ordinary regular Bessel function of zeroth
order J0 and the fact that it is an even function:

J0(x) = J0(−x) = 1

2π

∫ 2π

0
eix cos φdφ,

BT,k‖ = 2πE2
0

∫ π

0
sin3 θ Re

[
α

(1)
eff,T ,k‖e

−ikd
(
α

(2)
eff,T ,k‖

)∗

× J0(kd sin θ )
]
dθ

= 4πE2
0Re

[
α

(1)
eff,T ,k‖e

−ikd
(
α

(2)
eff,T ,k‖

)∗]
×

∫ π/2

0
sin3 θJ0(kd sin θ )dθ.

Despite our efforts, we did not find the above integral
calculated “as is” in the literature. We thus used a handbook
formula from Ref. 31, equation 11.4.10,

∫ π/2

0
Jμ(z sin t) sinμ+1 t cos2ν+1 tdt = 2ν�(ν + 1)

zν+1
Jμ+ν+1(z),

which is correct as long as Re(μ) > −1 and Re(ν) > −1.
Using z = kd, μ = 0 with ν = −1/2 and 1/2, the formula
yields

C ≡
∫ π/2

0
sin3 θJ0(kd sin θ )dθ

=
∫ π/2

0
sin θJ0(kd sin θ )dθ

−
∫ π/2

0
sin θ cos2 θJ0(kd sin θ )dθ

= �(1/2)

(2kd)1/2
J1/2(kd) −

√
2�(3/2)

(kd)3/2
J3/2(kd)

= j0(kd) − j1(kd)

kd
,

where we used j0 and j1 for the spherical Bessel functions of
order 0 and 1, which have analytical formulas in terms of usual
functions:

j0(x) = sin x

x
,

j1(x) = sin x

x2
− cos x

x
.

We obtain

BT,k‖ = 4πE2
0Re

[
α

(1)
eff,T ,k‖e

−ikd
(
α

(2)
eff,T ,k‖

)∗]
×

[
sin(kd)

(
1

kd
− 1

(kd)3

)
+ cos(kd)

(kd)2

]
.

The calculus is identical for the T ,k ⊥ case,

BT,k⊥ = 4πE2
0 |αeff,T ,k⊥|2

×
[

sin(kd)

(
1

kd
− 1

(kd)3

)
+ cos(kd)

(kd)2

]
.
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FIG. 5. Nanogap sizes (d − D): 25 nm (left) and 100 nm (right)
(see Fig. 2). Extinction efficiencies per particle. Full circles: T ,k ‖;
open circles: T ,k ⊥ illuminations; open squares: L illumination; full
lines: values for the monomer [σext/(πa2)].

The integration of the B term for the longitudinal illumination
is easier,

BL =
∫ ∫

S

sin3 θ Re
[
α

(1)
eff,LE2

0

(
α

(2)
eff,L

)∗
eikd cos θ

]
dθ dφ

= 2πE2
0 |αeff,L|2

∫ π

0
sin3 θ cos(kd cos θ )dθ

= 2πE2
0 |αeff,L|2

∫ 1

−1
(1 − u2) cos(kdu)du

= 2πE2
0 |αeff,L|2

{
−

[
u2

kd
sin(kdu)

]1

−1

+
∫ 1

−1

2u

kd
sin(kdu)du +

[
sin(kdu)

kd

]1

−1

}

= 2πE2
0 |αeff,L|2

{[−2u cos(kdu)

(kd)2

]1

−1

−
∫ 1

−1

−2

(kd)2
cos(kdu)du

}
,

BL = 8πE2
0 |αeff,L|2

(
sin(kd)

(kd)3
− cos(kd)

(kd)2

)
.

Using ∫ π

0
sin3(θ )dθ = 4

3
,

FIG. 7. (Color online) Complex refractive index of silver: real
part (full black line, left scale) and imaginary part (dashed blue line,
right scale).

σscat = k4

16π2E2
0

[
2π

(∣∣α(1)
eff E

(1)
inc

∣∣2 + ∣∣α(2)
eff E

(2)
inc

∣∣2)4

3
+ 2B

]
,

we finally obtain

σscat,T ,k‖ = k4

6π

[∣∣α(1)
eff,T ,k‖

∣∣2 + ∣∣α(2)
eff,T ,k‖

∣∣2

+ 2Re
[
α

(1)
eff,T ,k‖

(
α

(2)
eff,T ,k‖

)∗
e−ikd

]
AIF,T

]
, (B1)

σscat,T ,k⊥ = k4

3π

∣∣α(1)
eff,T ,k⊥

∣∣2
(1 + AIF,T ), (B2)

σscat,L = k4

3π

∣∣α(1)
eff,L

∣∣2
(1 + AIF,L), (B3)

which are Eqs. (9a)–(9c).

APPENDIX C: EXTINCTION CROSS SECTIONS

For the sake of completeness, we derive the formulas of the
extinction cross section. With S̄ the scattering matrix defined
by32

(
Escat,θ (r)
Escat,φ(r)

)
= E0

eikr

−ikr
S̄(r,kinc)

(
Einc,θ

Einc,φ

)
,

FIG. 6. (Color online) Relative error, in percentage, between the dipolar approximation and multipolar results. Left: longitudinal
illumination; center: T ,k ⊥ illumination; right: T ,k ‖ illumination.
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the optical theorem states that the extinction cross section σext

can be expressed in terms of the field scattered in the same
direction as the incident field.32 Specifically,

σext = 4π

k2
Re[ ˆe∗

incS̄( ˆkinc, ˆkinc) ˆeinc],

which, in our case, yields

σext,T ,k‖ = 2k Im

(
α

1 − cos(kd)γ T

1 − (γ T )2

)

= k Im
(
α

(1)
eff,T ,k‖ + α

(2)
eff,T ,k‖

)
, (C1)

σext,T ,k⊥ = 2k Im

(
α

1 + γ T

)
= 2k Im

(
α

(1)
eff,T ,k⊥

)
, (C2)

σext,L = 2k Im

(
α

1 + γ L

)
= 2k Im

(
α

(1)
eff,L

)
. (C3)

Figure 5 displays the extinction efficiencies as a function of
the wavelength for the same nanogaps as in Fig. 2.

APPENDIX D: RELATIVE ERROR WHEN USING THE
DIPOLAR MODEL

In this appendix, we present the relative error between the
dipolar approximation of Eqs. (9a)–(9c) and the generalized
multipolar Mie method (see Fig. 3). This error, expressed as
|σscat,dip−σscat,Mie|

σscat,Mie
in percentage, is presented in Fig. 6.

For all three illuminations, one can see that the error is
below 2.5% in large regions. At short wavelengths (λ0 <

550 nm), the quadrupolar and multipolar responses of the
sphere are non-negligible, hence the error becomes significant.
At very small distances, the multipoles are more predominant,
and the error becomes larger. However, the average error for all
distances, at wavelengths 550 < λ0 < 750 nm, is kept under
2%.

APPENDIX E: COMPLEX REFRACTIVE INDEX
OF SILVER

Figure 7 displays the real and imaginary parts of the refrac-
tive index of silver that we use, as a function of the vacuum
wavelength. Those values are based on an extrapolation from
the experimental values of Palik and Ghosh.13
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