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We demonstrate that the reflecting properties of a single particle nanoantenna can be extremely sensitive to its
distance from a quantum emitter at frequencies lower than the plasmon resonance. The phenomenon is shown
to arise from rapid phase variations of the emitter field at short distances associated with a phase of the antenna
particle polarizability lower than π=4. © 2011 Optical Society of America
OCIS codes: 290.5850, 260.3910, 240.6680.

Optical antennas have been widely studied in this past
decade for their ability to “focus” incident light into tiny
volumes [1–3]. Reciprocally, the large amplification of
the local electromagnetic density of states provoked
by the antenna can increase the decay rates of nearby
quantum emitters [3–10]. More recently, attention was fo-
cused on the ability of optical antennas to shape the ra-
diation pattern of single quantum emitters to optimize
light collection. With this goal in mind, different designs
of unidirectional antennas have been introduced over the
past four years [10–17]. Metallic nanoparticles can either
reflect or attract the electric field radiated by the emitter.
It is widely regarded that the reflecting/collecting nature
of the particle depends solely on the polarizability of the
nanoparticle: i.e., when the frequency of the emitter is
larger than a particle’s plasmon frequency, the particle
will act as a reflector and when it is lower, the particle
will act as a collector. The distance, d, between the ex-
citing dipole and the center of the induced dipole is
considerably smaller than the emission wavelength,
λ ¼ 2π=k, and one thus expects the phase of the particle
polarizability to dominate the phase shift, kd, originating
from the field propagation.
We study the directional property of a metallic particle

of diameter 2a ¼ 80 nm made of silver (refractive index
taken from [18]) transversely coupled with a single dipo-
lar emitter (λem ¼ 600 nm in vacuum) in a polymer-like
embedding medium of index n ¼ 1:5 [Fig. 1(a)]. For that
purpose, we plot first the reflected power efficiency de-
fined as the ratio of the Poynting vector integrated over
the left half-space (cosφ < 0) with respect to its integra-
tion over all directions, as a function of the separation
distance between the two dipoles. The calculations were
performed using the generalized Mie theory with a multi-
pole order nmax ¼ 30. We recently improved the formal-
ism to analytically calculate the flow of the Poynting
vector over a spherical surface [19], which significantly
decreases the calculation time of the decay rates. The
redshift of the emission frequency with respect to the
plasmon resonance (around 500 nm; see inset in Fig. 2)
predicts a collector behavior as observed with a mini-
mum of 28% reflected power when d ¼ 78 nm. This col-
lector behavior is lost entirely at a distance d ¼ 59 nm

where the particle neither reflects nor collects the emis-
sion (50% reflected/collected power). But even more re-
markably, at a distance of d ¼ 49 nm (i.e., 9 nm from the
metal surface), it acts as a good reflector (91% reflected
power). We note that the reflection efficiency is well pre-
dicted by a dipolar approximation, even when the emitter
approaches the metallic surface to within a few nano-
meters. The contribution of higher order multipoles is
significant when the emitter is 20 nm or less away from
the metallic surface. However, the dissipation of multipo-
lar modes mostly occurs by the Joule effect, with minimal
far-field radiation compared to the dipolar component
[7]. Consequently, the dipolar model introduces only a 2%
relative error for d ¼ 49 nm and this error becomes neg-
ligible as soon as d > 59 nm. This is not the case for the
fluorescence decay rates that clearly require higher mul-
tipolar terms for d < 60 nm with an order of magnitude
discrepancy at d ¼ 45 nm. The radiation patterns re-
constructed with the rigorous generalized Mie theory,
without any dipolar approximation (multipole order

Fig. 1. (Color online) (a) An electric dipole emitter oriented
along the z axis is coupled to a sphere whose center is at a dis-
tance d along the x axis. (b) Reflected power efficiency Pref (left
scale, top full lines) and total decay rates Γtot (right scale, loga-
rithmic scale, bottom full lines) with respect to the separation d:
crosses, dipolar approximation; squares, multipolar calcula-
tions. (c), (d) Radiation patterns with separation distances,
equal to (c) d ¼ 59nm and (d) d ¼ 49nm.
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nmax ¼ 30), respectively for d ¼ 49 nm and d ¼ 59 nm
[Figs. 1(c) and 1(d)] confirm the drastic modification
of the radiation directionality with a minute modification
of only 10 nm in the distance between the emitter and the
metallic surface.
These results are of crucial importance for nanoanten-

na applications, and we now aim to analytically explain
the physical mechanisms involved in this extreme posi-
tion sensitivity of the emission directivity when the emit-
ter is separated by a few nanometers from the metallic
surface. Therefore, we focus on the interaction between
a single metallic particle and a dipolar emitter, and we
only consider the transverse coupling geometry that pro-
vides significant emission directionality. In this case,
fluorescence decay rates are weakly enhanced compared
to longitudinal interactions [7]. However, more complex
antenna geometries can be designed to combine rate en-
hancements and directionality by longitudinally coupling
the quantum emitter to a nanogap antenna (“super emit-
ter”) [4,13,16] or the feed element of a Yagi–Uda antenna
[15]. In all these examples, emission directionality is
governed by phase differences between transversely
coupled dipoles, as in this demonstrative study.
We consider a unit dipole placed at origin, oriented

along the z axis (pem ¼ ẑ) and a spherical scatterer
whose center is located at a distance d along the x axis.
The excitation field produced by a dipole emitter at this
position is written [20]:

EðdÞ ¼ eikd

4πεmϵ0d3
½k2d2ðx̂ × pemÞ × x̂

þ ð1 − ikdÞð3ðx̂ · pemÞx̂ − pemÞ�

¼ −
eikd

4πεmϵ0d3
ð1 − ikd − k2d2Þẑ; ð1Þ

and the induced dipolar moment in the sphere is thus

pin ¼ −α eikd

4πd3 ð1 − ikd − k2d2Þẑ:

The polarizability, α, of a spherical scatterer is calculated
analytically using the Mie theory [21]. The dipolar model
studied here is not limited to spheres but can be extended
to other geometries as long as the dipole plasmon mode
dominates. This is particularly true for rod-shaped parti-
cles (often used in Yagi–Uda antennas) for which the
longitudinal dipolar mode is strongly redshifted with
respect to higher multipoles. In order to quantify the in-
fluence of the induced dipole moment of a metallic nano-
particle on the emission pattern of the emitter, we
calculate for cosφ > 0 and r ≫ d, the Poynting vector
of the field emitted by two transversely coupled dipoles
(denoted p1 and p2), and then we add the Poynting vector
symmetric with respect to the origin [16]:

ΔPðr;θ;φÞ¼Pðr;θ;φÞþPðr;π−θ;πþφÞ

¼ω3kjp1jjp2j
8π2ϵ0c2r2

fsinϕsin½kdsinθcosφ�gsin2θer;

where ϕ ¼ argðp1=p2Þ is the relative phase of the two
dipoles. This expression confirms that for small kd, the

directivity is directly linked to the sign of sinðϕÞ, i.e.,
to the capacitive or inductive behavior of the dipolar
metallic particle [11]. For emissions along the x axis,
sin θ ¼ cosφ ¼ 1, and the last expression simplifies to

ΔPðx; dÞ ¼ ω3kjp1jjp2j
8π2ϵ0c2x2

sinϕ sinðkdÞx̂:

If the relative phase, ϕ, of the two dipoles was simply
equal to kd as far-field reasoning would suggest, this last
expression would predict that the collector/reflector be-
havior of the nanoparticle oscillates with separation dis-
tance as sin2ðkdÞ. In this case, the strong changes in
emission directivity for minute distance variations ob-
served in Fig. 1 would remain unexplained. However,
the phase difference, ϕ, between the emitter (pem · ẑ ¼ 1)
and the induced dipole (pin · ẑ ¼ −α eikd

4πd3 ð1 − ikd − k2d2Þ)
is a nonlinear function of kd:

ϕðkdÞ≡ arg

�
pin · ẑ
pem · ẑ

�
¼ arg½−αeikdð1 − ikd − k2d2Þ�:

The phase due to the distance between the dipoles is

ϕd ≡ ϕ − argðαÞ ¼ arg½−eikdð1 − ikd − k2d2Þ�: ð2Þ

Two different terms determine ϕd: the well-known propa-
gative or “far-field” phase term, kd, in the exponential,
and the phase of the dipolar field term (i.e., the argument
of k2d2 þ ikd − 1). The plots in Fig. 2 of ϕd, together with
the dipolar (dashed curve) and far-field (circles) contri-
butions, as a function of the dimensionless parameter,
kd, show that for small distances, i.e., kd ≤ π=4, the dis-
tance dependent phase difference is dominated by the
dipolar contribution. When kd → 0, ϕd → π due to the
minus sign in Eq. (2). This is the expected phase differ-
ence for a near-field electrostatic interaction dominated
by the 1=d3 term in Eq. (1). Consequently, sinϕ →

− sin½argðαÞ�,

Fig. 2. (Color online) Triangles, ϕd for an emitter transversely
coupled to a spherical scatterer as a function of kd; dashed line,
dipolar field contribution; circles, far-field term contribution.
Vertical line marks the kd ¼ 0:93 abscissa. Inset (circles, left
scale), polarizability phase, ArgðαÞ, and (squares, right scale)
scattering efficiency, Qscat ¼ σs=πa2, of a 80nm diameter silver
sphere, both as a function of the vacuum wavelength.
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which is negative (see inset in Fig. 2) and thus ΔP < 0,
meaning that the particle behaves as a reflector.
Let us now discuss the situation where kd is small but

not vanishing. The phase contribution from the dipolar
field term decreases rapidly with respect to kd while the
far-field term increases linearly. Consequently, for small
distances, ϕd decreases with respect to kd. One can see in
Fig. 2 that a minimum of ϕd ≃ 3π=4 occurs at kd ¼ ffiffiffi

2
p

.
This means that the particle can behave as a collector,
ΔP > 0, provided that ϕα ≡ argðαÞ < π=4. This condition
is generally fulfilled for wavelengths significantly larger
than the particle plasmon resonance frequency. This
combination (kd≃

ffiffiffi
2

p
, ϕα < π=4) is the only possibility

for a transversely coupled metallic particle to act as a
collector at “small” distances (kd < 3π=4). In other
words, for a metallic particle with argðαÞ > π=4 at small
distances (kd < 3π=4), the condition ΔP ¼ 0 cannot be
achieved and thus the directional property cannot be re-
versed by varying the phase of the dipolar term (the par-
ticle can only be a reflector). In such cases, tuning the
behavior of a single particle from reflecting to collecting
requires working with larger separations for which the
far-field term kd of Eq. (2) dominates. In practice, Fig. 2
demonstrates a clear transition between the electrostatic
approximation (kd → 0, ϕd ¼ π) and the far-field approx-
imation (circles in Fig. 2). In this transition region, the
dipolar field phase term strongly influences the antenna
behavior around kd ¼ π=4, where its slope versus kd is
highest. For this distance range, the emitter–particle
coupling depends strongly on the ik=d2 term of Eq. (1)
and is thus dominated by a phase-dependent dipole–
dipole interaction.
Using this dipolar model, we are able to explain the

surprising phenomena shown in Fig. 1. With λem ¼
600 nm and d ¼ 59 nm, we have kd ≅ 0:93, which gives
ϕd ¼ 2:64 rad (see the vertical line in Fig. 2). The phase
of the polarizability of the silver particle at this wave-
length is 0:50 rad (see inset). The total relative phase be-
tween the exciting and induced dipoles is then ϕ ¼
3:14 rad ≅ π rad, which results in sinϕ ≅ 0, i.e., a sym-
metric emission pattern. Starting from d ¼ 59 nm, when
d decreases, ϕd increases, resulting in sinϕ < 0, thus ex-
plaining the strong reflecting behavior of the sphere
placed at a distance of 49 nm. Respectively, a slight in-
crease of d results in sinϕ > 0 and a collecting behavior
for the sphere.
We have shown that one can finely tune the directional

behavior of optical antennas by engineering the relative
phases of the emitting and induced dipoles. For emission
wavelengths larger than the particle plasmon frequen-
cies, the phase of the particle polarizability can drop

below π=4 and the radiation pattern becomes strongly de-
pendent on the emitter position at a λ=60 scale. We have
shown that this phenomenon is due to rapid variations of
the phase of the dipole–dipole coupling term when the
ik=d2 term of the electric field expression is non-
negligible. This result provides new insights into the
conception of ultracompact optical antennas and should
inspire experimental investigations to fully unravel the
dephasing effects that govern the interaction between
single emitters and metallic nanostructures.
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