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ABSTRACT

The contribution of particle-particle (hole-hole) and of particle-hole ring diagrams to the

nuclear level density parameter at finite temperature is calculated. We first derive the corre-

lated grand potential with the above ring diagrams included to all orders by way of a finite

temperature RPA equation. An expression for the correlated level density parameter is then

obtained by differentiating the grand potential. Results obtained for the 40Ca nucleus with

realistic matrix elements derived from the Paris potential are presented. The contribution

of the RPA correlations is found to be important, being significantly larger than typical

Hartree-Fock results. The temperature dependence of the level density parameter derived

in the present work is generally similar to that obtained in a schematic model. Comparison

with available experimental data is discussed.

!.Introduction

Collective and pairing vibrations are known to be important for the ground state

properties of nuclei [I]. The first are conveniently described by the particle-hole

random phase approximation ( RPA ). the second being obtained by the particle-

particle (hole-hole) RPA. Indeed, the amplitudes of these vibrations are provided

together with their energies by solving the respective RPA equations using either

empirical or realistic residual interactions. For a 40Ca nucleus at zero temperature,
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the correlation energies due to core polarizations are of the order of 10 MeV. The

extension of RPA equations to finite temperature systems allows us to extract the

grand potential and hence relevant thermodynamical observables. Since particles and

holes overlap around the Fermi surface, one should expect a gradual disappearance

of the correlation contribution from polarizations as temperature increases.

The level density around the Fermi surface is among the key quantities in the

statistical model for the de-excitation of hot nuclei. It can be characterized by an

effective level density parameter aejj = g(r),~g(0) where T is the temperature and

E the total energy [2]. The empirical value for aef/ is about ~ at low temperature,

A being the mass number. On the other hand, recent experimental studies seem

to indicate a transition of afjj from j to |̂ in the temperature range between 2

and 5 MeV [3]. In Hartree-Fock calculations, this level density parameter at finite

temperature has been obtained from the grand potential after subtraction of the

continuum [4]. As a matter of fact, solutions of the finite temperature Hartree-Fock

problem for temperatures exceeding 8-10 MeV seems to have not been carried out.

Below this temperature range, the semi-classical calculations of ref [5] show that the

level density parameter does vary slightly with temperature from ^ at T=I MeV

to JY a* T=5 MeV. This tiny dependence is due to the enhanced diffusivity of the

surface for increasing temperature.

The aim of this paper is to calculate the RPA contributions to the effective level

density parameter with a realistic effective interaction. More specifically we want

to study the correlation effect to the level density parameter ce//, generated by the

particle-particle (hole-hole) , to be denoted from now on as pphh, ring diagrams and

the particle-hole (ph) ring diagrams. Previous calculations [6,7,8] have studied these

diagrams either with schematic forces or in the framework of a schematic model.

Their qualitative conclusion is that the ph RPA contribution to the level density is

small. It vanishes for temperatures larger than 4 MeV. The pphh RPA contribu-

tion is much larger with a weaker temperature dependence. On the other hand, the

contributions from 2p-lh and lp-2h correlations have also been calculated in ref[9],

and are found to be significant. A comparison between the result of ref[10] and the
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schematic model results of ref[8] is hard to establish because the approximations and

technical methods employed are too different. Nevertheless, as pointed out in ref

[11,6,12], one should expect from collective and pairing vibrations an enhancement

of the effective mass near the Fermi level. Since the level density parameter is pro-

portional to the effective mass [13],« an increase of the level density parameter above

the Hartree-Fock value is expected at low temperature. At high temperature, the

particles and the holes being less and less distiusuiahable the extra-contribution from

the correlations should disappear. A precise microscopic calculation was highly desir-

able from a two-fold point of view. Firstly, new experimental data about hot nuclei

properties become available with intermediate energy heavy ion facilities.. Secondly,

the effective level density provides us with the heat capacity of nuclear systems. It

is of prime importance in the collapse and the eventual bounce-off of stars since the

removed thermal energy is no longer available as mechanical energy [14,15].

Our philosophy to perform these calculations is to make:

i) An exhaustive account of the contribution of bubble and ladder diagrams to the

grand potential for hot nuclei, carried out in a Green's function framework. This

allows us to sum up the ring diagrams for pp(hh) and ph excitations at finite tem-

perature to all orders[16,17]. This procedure has already been applied to nuclear

matter properties, and was found to be very powerful. [18]

ii) A realistic calculation of the residual interaction matrix elements. In the present

work, we use Brueckner reaction matrix elements derived from the Paris nucléon-

nucléon potential using harmonic oscillator basis wave functions. The model-space

projection operator involved in the G-matrix calculation will be treated accurately.

[19]

iii) A determination of the ring-diagram summation via the solution of the RPA

equations. The grand potential is in turn deduced from the ring diagram expression.

A differentiation with respect to the inverse temperature allows us to obtain the total

energy at finite temperature and hence the level density parameter.

In the following we shall first describe, in Section II, the formalism involved in the

summation of the finite tempérât are ring diagrams. Some details of the G-matrix



C.Grégoire et al. /Level density parameter of nuclei at finite temperature 4

calculations of the residual interaction will also be given. The expressions for the

effective level density parameter are derived. Section III presents our first results. As

an illustration, we discuss the temperature dependence of the level density parameter

for the 40Ca nucleus up to 7 MeV.

•

s

II. Formalism.

In this section, we wish to describe our formalism fo? calculating the level density

parameter with the correlation effect from the pphh and ph ring diagrams included to

all orders. We start from the thermodynamic potential Sl. A first step is to calculate

fi with the inclusion of the above ring diagrams. A general and rather powerful

framework for doing so has already been worked out by several authors [20,8,16,17],

and we will follow it closely in the present work. In order to explain our calculation

with adequate detail , especially to explain some subtle differences between the pphh

and the ph ring- diagram contributions, we need to repeat first some of its essential

steps, in particular with respect to the so-called eigenvalue (EV) method which we

will employ in the present work in summing up the ring diagrams of fl.

The thermodynamic potential ÎÎ can be written as ÎÎ =fl0 +fl»-nt where fio is the

unperturbed part of fi corresponding to Hj, the non-interacting hamiltonian. We

write the nuclear hamiltonian as H=Ho+Hi=(T-Hi)+(V-u), where T and V denote

respectively the kinetic energy and the two-body nucléon-nucléon (NN) interaction

term and u is a chosen one-body potential such as that of a harmonic oscillator.

Consider for the time being that V is a well behaved effective NN interaction. (

As to be discussed later actual calculations will be carried out using a G-matrix

interaction. ) It is well known that the interacting thermodynamic potential flint

can be expressed as a linked diagram expansion in terms of Hj. We would like to

sum up certain classes of ring diagrams of n,-nt, and this can in fact be performed

rather conveniently as described in the following.

ILA. pphh ring diagrams
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Here we consider specifically the all-order sum of the pphh ring diagrams as

illustrated in Fig. 1. This sum is denoted as Q^4 and can be written as [16,17]

n?p = - V e"""int Q £^

where F is the pair propagator

_ ii-fifi - , - /( > } ' - l " «, fi + ej= O.

Here /* is the Fermi-Dirac distribution function and /^ = 1 — /&. As usual we define

et s e/j — ̂ , where et is the single-particle energy and p the chemical potential. The

Matsubara frequency is W1, = 2i/7r//3 with f = O, ±1,±2, ... and 0 — l/fc^T with kg

the Boltzmann constant and T the temperature. In Eq. 1, V stands for the antisym-

metrized matrix element of the interaction, Viju=-Vjiki, and the pp(or hh) labels are

to be summed over i > j and k > I.

The counting factors 1, 1/2, 1/3 and so forth in Eq. 1 play an important role

here and they are determined from the symmetry properties of the ring diagrams.

For example the third order term has a well-known factor 1/3! originated from

the linked diagram expansion of the thermodynamic potential. Using Hugenholtz

antisymmetrized vertices, there are two topologically equivalent thi^d order pphh

ring diagrams. Hence 2 times 1/3! gives 1/3. By virtue of these counting factors,

the series involved in Eq.l is a logarithmic series. To facilitate its calculation let us

rewrite it as

r1]) (3)
P V

where G™ is the finite-temperature Green's function

GW(Jw1,) = F(IW,,) - F(IW^VGW(JW1,). (4)

We now introduce a RPA-type equation

-- M|\n >= An < ZJlXn > (5)
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where Q(ij) stands for (fifj — fifj)- The x vectors are defined by the biorthonor-

mal relations < Xm\Xn >= Smn. In fact < xm|tj >= ± < x™\ij > /Q(U') with the

normalization £«j' I < iJ\Xn > IVQ(U') = il> where the upper (lower) sign refers to

states dominated by particle-particle (hole-hole) components. Let us consider the

case with e< + ê; 5^ O and An ^ O. 1 The Lehmann representation of G^ is then

(6)

where x» and An are given by Eq. 5

From Eqs.2 and 6 we have

With

(7)
n=l

» _ _ - i » « / »t - \ (9\

i(av — An '

For brevity we shall from now on use the abbreviated notation CM for ê* -f ëj. Note

that the total number of ij states (i > j ) is also N and similarly for kl. Hence the

above can be written in matrix form and we obtain

' 1 O ... Q\
O 1 ... O

• • • •

^ O O ... 1

(9)

where we have made use of the relation < \m\Xn >= ^mn. Substituting the above

into Eq. 3 and noting the identities

(» -W1,-q _ 1 fl (|

iuv — b 2 J-i iuv — %[(b
(10)

1THe calculations considered here are for finite nuclei and we employ a discrete single particle
spectrum. Thus the situation where I1 +13 and ^1, are precisely zero does not occur in actual
calculations.
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and
_ -,

we obtain the compact and rather useful result

iy 1 In n"(1 " 6^ (12)"*"/? IW* —•**)• ( '
In deriving the above, we have also used the relation /[a +bemx]~1dx =[ma — ln(a

-î-&e™)]/am. The above expression , which is rigorous, has been referred to as the

EV method [17] for calculating fi?£t. It has a rather transparent physical meaning;

it is the difference between the grand potential obtained with RPA bosons and that

obtained by treating unperturbed fermion pairs as bosons. This clearly gives the

effect of the ring diagram correlation.

It is well known that the level density parameter is related to the thermal exci-

tation energy E" = E(T) - E(O) where E(T) and E(O) are respectively the nuclear

internal energies at temperatures T and O. [8] The internal energy can be obtained

from the thermodynamic potential, namely E(T)= ̂ (/3fi). To separate out the cor-

relation effect, we write the internal energy as

E(T) = EHF(T) + Een(T) + E^H(T) (13)

where the subscripts refer, respectively, to Hartree-Fock, correlation from the pphh

ring diagrams and correlation from the ph ring diagrams. The ph ring diagrams will

be treated in the next section. The first-order pphh ring diagram, i.e. diagram (a) of

Fig.l, is intended to be contained in E^f(T). Hence it has to be removed from the

pphh ring-diagram sum of Eq. 12. This gives

which leads to
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where the B's are the Bose-Einstein distribution functions

The appearance of the B functions in Eq. 15 gives it a clear physical meaning; its

first term is just the thermal average energy of the RPA bosons while the second

term that of the noninteracting fermion pairs treated as bosons.

It must be pointed out that we have made an approximation in deriving Eq.15

from Eq.14. The approximation is that we have set <?An/9/3=0 and de;/#/?=0. These

derivatives can be calculated numerically. They are, however, found to be generally

small and thus we have chosen to neglect in Eq.15 the terms involving these deriva-

tives. We are doing finite nuclei calculations and employ a discrete single particle

spectrum. Futhermore we consider primarily temperatures which are low compared

with major shell separations. Under these circumstances these derivatives are in fact

expected to be small as we have numerically found.

In the limit of zero temperature Eq.15 becomes

^(O) = - E An+ £ q,- £ VW (17)

which is a familiar expression. With the above results, we can now calculate the level

density parameter a(T). We write it as

«W = ̂ P = aHF(T) + uepp(T) + a^(T). (18)

The correlation contribution from the pphh ring diagrams is then given in terms of

Eqs.15 and 17 as

ILB. p h ring diagrams

We now proceed to calculate the third term of Eq.18, the contribution from the

ph ring diagrams. Let us consider the seri-"-- "C *he> ph ring diagrams shown in Fig.2

and denote its all order sum as Sph. This series may be written as
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= - ^ tr{*V + (FV)' + (FV}* 4- s , .} (20)

where F is the particle-hole propagator
•

f _ Mi-Mi

The structure of Eq.20 is nearly identical to that of Eq.l; the essential difference

is the overall factor of 2 in front of the summation; This comes from the counting

of the topologically equivalent ph ring diagrams. T The all order sum of the ph

ring diagrams can be carried out in a way very similar to our treatment of the

pphh ring diagrams. Let us define the ph finite temperature Green function and the

corresponding RPA equation as:

v), (22)

and

£{(?.' - 2j)*«,w + ( - f i f i + fifoVyu} < MlXn >= Tn < IJJxn > . (23)

Eere V is the particle-hole matrix element, namely Vi JH = Vm, j. Using the above and

the procedures of the previous section we obtain

It may be pointed out that Sph is not yet the appropriate quantity for evaluating

of Eq.18. There is some overcounting in the sum Sph which needs to be

removed. In the linked diagram expansion of n,-nt there is only one first order diagram

'Consider for example the third order ph ring diagram. It can be enumerated that there aie
altogether 64 topologically equivalent such ring diagrams. We use antisymmetrized vertices and thus
there is a factor (1/4)3 from the three interaction <-.p-minrs in the second quantized representation.
Finally there is a factor 1/3! form the linked di I U M I U -%-pnnston of the thermodynamic potential.
Hence the net counting factor is 1/6 for the third order ph ring diagram as appeared in Eq.20.
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which has already been taken care of by diagram (a) of Fig.l as a pphh ring diagram.

The second order diagram (2) of Fig.2 is identical to diagram (b) of Fig.l which has

already been included in fi^j- Thus we should explicitly remove diagrams (1) and

(2) from Sph- These two diagrams can be evaluated using standard methods. The

resulting thermodynamic potential from the ph ring diagrams is then

= Sph -D1-D2 . (25)

with

and
f _A v.... T/....V.... f. f.f-A-ft+Afll r..^r..

(27)D = / -\ £«« ttoWi/jf-ff-ff*
2 \ -$XiiU%iuVkKififjfk?l

In the above ëy stands for ëi — ê,-. The internal energy Ecph(T) can be obtained

from fifnt. Then the corresponding contribution to the level density parameter is

given by

(28)

U.C. G — matrices and angular momentum coupling

To carry out the aforementioned ring-diagram summations involves first over-

coming several technical obstacles. First of all, there is the familiar problem that

the repulsive core of the nucleon-nurleon interaction is unsuitable for conventional

Hartree-Fock and diagrammatic calculations. We proceed by replacing the nucléon-

nucléon interaction V in the above formuli by a model-space Brueckner G-matrix.

This has a two-fold advantage in that it a) takes into account the summation over

high energy states and thereby allows us t<-> rarry out the calculations in a finite

dimensional model space, and b) its matrix t-1- i iu-nts are well-behaved. We note that
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it is important to treat the projection operator in the G matrix accurately so that

there will be no overcounling between the correlations included in the G matrix and

those included in the pphh ring diagrams.

The model-space G-matrix is defined as

GM = V + V Q*.G(u) (29)
u — J

where Q2p is the two-particle ( 2p ) projection operator for all such states outside

the the model space. Its complement projection operator is P2p, satisfying

. (30)
all

The model-space used in the present work is specified in fig.3, with (ni,n3,n3)

given by (6,15,28). [19] Note that the single-particle Hamiltonian is contained in the

definition of the G-matrix Eq.29. As the intermediate states involved in the G-matrix

are predominantly of high excitation energies, we make the reasonable physical choice

that the single-particle spectrum HO for the C-space may be replaced by the free

kinetic spectrum T. Thus, the G-matrix equation becomes

VQ2p
 l QapGrH- (31)

In practice, the solution of the G-matrix Eq.31 remains rather difficult, and there

are a host of approximations (e.g. angle average) designed to simplify its solution.

The basic difficulty resides in the fact that the nucléon-nucléon interaction V is

diagonal in the center of mass frame, while the lab frame Q-space projection operator

is nrtf , thus hampering the solution of Eq.31 . Rather than employ one of the standard

approximations,, we numerically solved the equation according to the formally exact

technique of Tsai and Kuo [21].

We sketch their derivation of the formula we used as follows. First one notes that

Eq.31 may be rewritten as

Gr(a;) = T + VQ,
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Next they proved the simple matrix identity [21]

QQÂQQ==Â~ÂPP(l/A)PPÂ' (33)

Applying this identity to Eq.32, we obtain

] ' (34)

where GTF is the free G-matrix defined with respect to the kinetic energy single-

particle Hamiltonian

W) is a correction term defined entirely within the P-spar e, given as

A = U- T(Ip] - V . (36)

Using the definition for GTF one readily obtains an expression more convenient for

calculation, namely

AG(o,) = -GTF(u]-P2F r(1,,,i\r /Tfiir-flfrferrH Ae p2p[(-) + (-^TF(inF2p e Ik
e = u- T(Ip] . ' (37) T

Thus we see that the G-matrix is now expressed as the sum of two terms; the

first term is the free G-matrix while the second is calculated using only some simple

model-space matrix operations involving the free G-matrix. The free G-matrix no

longer contains the troublesome Q-space projection operator and may be calculated

via momentum-space matri::-inversion methods [22]. Indeed the above formalism

provides a convenient and essentially exact method for calculating the model-space

G-matrix. Of course, one might question the validity of using the zero temperature

G-matrix in a finite temperature calculation. However, it should be clear that if the

nj cutoff is defined at an energy which i? l:<n;» r-'mpared to the temperature under

consideration, then the zero-temperature G-matrix should remain applicable in the
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finite temperature case as well. A more careful analysis [16] upholds this intuitive

assessment.

Accurate G-matrix calculations of the above type have been carried out in the

past only for light nuclei. For example, the calculation performed by Krenciglowa

et al. [19] was for the s-d shell nuclei and employed a model space of (rci,n2,ra3) =

(3,10,21). The model space of (6,15,28) used in the present work is much larger and

consequently the calculation involved is considerably more extensive. A number of

improvements have been implemented in our earlier G-matrix programs[19] in order

to carry out the present calculation.

Another point of technical interest is the calculation of the ph matrix, elements.

Our G-matrix elements are calculated in the form of particle-particle matrix elements.

To determine the ph-matrix elements we use the familiar relation [23]

(Od-1JM]G]Ci-1JM) = -£X2J/ + 1) x { * 6 JM (abJ'M'\G\cdJ'M') (38)

where { } is the six-j symbol. The matrix element on the left-hand side denotes the

ph matrix element while that on the right-hand side the particle- particle matrix

element.

!!!.Results and discussion

As a first application of the previous formalism, we consider a rather light nucleus,
4l"0a, for which computations can be performed relatively easily. Its single particle

spectrum at zero temperature can be deduced from the spectra of mass 39 and

mass 41 nuclei. The 2sld shell and the 2plf shell which are located just below and

above the Fermi level define our model space where particle-particle, hole-hole and

particle-hole configurations are built. As a matter of fact, the single particle energy

spectrum employed here is identical to the one given in figure 1 of ref[7]. Taking

advanta£>> of the very weak temperahir'- '!••'p-ndence of the single particle levels

which can be inferred from hot Hartree-Fock calculations [4], we have assumed that
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the spectrum at zero temperature is unchanged up to 6 MeV. On the other hand, the

chemical potential has been calculated for each temperature value in order to conserve

the particle number in the Hartree-Fock approximation. One should notice that a

correction should be applied when RPA correlations are included. Nevertheless, we

assume that the effective level density parameter should not be so sensitive to such a

correction. For the 40Ca calculation reported here, we have checked numerically that

small adjustments of the finite temperature chemical potential do not significantly

modify our results. Our calculations have been performed by including all the states

with positive and negative parities for J ranging from O to 5. In the particle-hole

case the 1" state with T=O which corresponds to'a spurious excitation was excluded

from our calculation.

The effective level density parameter calculated in the present work is displayed

in figure 4. Curve C shows the temperature dependence of the ph contribution

calculated according to Eqs.25 to 28. Curve B gives the pp(hh) contribution. And

finally, Curve A represents the total contribution of the RPA correlations to the

level density. One can observe a rather smooth temperature decrease of the ph

contribution, whereas the pp(hh) one is more pronounced. The absolute value of the

ph contribution is more than 3 times smaller than the pairing vibration one. This

later one is very large in magnitude. Below 3 MeV, its absolute value is of the same

order of magnitude as the Hartree-Fock one, which was estimated in a semi-classical

approximation to be equal to 4.5 MeV"1 at temperature 2 MeV [24]. In fact, the

experimental level density parameter is equal to 6-7 MeV"1 in the 40Ca region[25j.

In other words the sum of the Hartree-Fock plus correlations seems to overpredict

the absolute value of the level density parameter. Nevertheless the calculated values

have the same general temperature dependence as the experimental results of ref[3).

Since the experiments reported in this reference were performed for much heavier

nuclei with a mass equal to around 160, a direct comparison is not very meaningful.

For the particle-hole contribution, our calculation exhibits temperature dependence

similar to that given by the semi-classim! i n t i m a t e [9]. On the other hand, the

schematic model estimates exhibit a much sharper[26] temperature dependence. For
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the particle-particle (hole-hole) contribution, our results confirm those obtained for

the ïn*Pb nucleus in ref[8] as far as the temperature dependence is concerned. Our

comparatively larger results (after scaling by the nucleus mass number) have probably

their origin in the residual interaction. A detailed analysis would require a systematic

study along the nuclei chart which Is out of the scope of this first calculation.

rV.Conclusion

We have addressed the question of the temperature dependence of the level den-

sity parameter for nuclei. The summation of ring diagrams allows us to calculate the

grand potential and related thermodynamical quantities. In particular, correlation

energies at finite temperature are deduced. The procedure for performing these cal-

culations is as follows: i) the single- particle spectrum is determined for each nucleus

from experimental observations of levels for neighbouring nuclei, ii) matrix elements

of the residual interaction are determined from a realistic nucléon-nucléon potential

for every pp, hh or ph configuration, iii) the finite temperature RPA equations for

ph and pphh states with given quantum numbers are solved. The involved configura-

tions are those with a given angular momentum J and parity IT. iv) The correlation

energies are calculated from expressions obtained by way of the grand potential. It

was shown that these can be expressed as functions of the RPA eigenvalues, the sin-

gle particle energies and the temperature. For the first time, we have applied the

previous procedure using the realistic nucléon-nucléon Paris potential. The matrix

elements have been obtained in the relevant model space for a 40 Ca nucleus. It is

found that the pphh contribution is more than ihrr? times larger than the pli one. At

variance to the results of the schematic model [8], the temperature dependence of the

pphh contribution is rather violent between 3 and 5 MeV. The level density parame-

ter drops down in this domain. These findings, which should be firmly sustained by

systematic calculations, could have drastic consequences, as far as nuclear models are

concerned. Two examples can be given. The l i r « i ••!)(•• deals with collapse calculations
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in stars. The thermal pressure governs to a large extent the collapse process [14].

The propagation of the shock wave should be much affected by a strong temperature

dependence of the effective mass, i.e. of the effective level density parameter. The

second example is given by the studies of the multifragmentation decay of highly

excited nuclei [2]. Among the key ingredients of the statistical approaches is obvi-

ously the amount of thermal excitation energy stored inside the fragments. Results

obtained by various groups differ in a large extent because of different prescriptions

for the temperature dependence of the level density parameters. We hope that our

results will help to clarify the situation.
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FIGURE CAPTIONS

Fig.l Some low-order pphh ring diagrams of fijnt. Each dashed line represents a

G-matrix vertex.

Fig.2 Some low order ph ring diagrams of Sph-

Fig.3 G-matrix model-space used in the present work.

Fig.4 . Temperature dependence of the level density parameter for 40Ca, calculated

from the Paris potential. Line C: ph contribution (see text). Line B: pphh

contribution. Line A: sum of ph and pphh contributions.
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