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We present a detailed formalism allowing analytical calculations of the radiative properties of nanoantennas. This
formalism does not rely on dipole approximations and utilizes multipolar multiple-scattering theory. The im-
provement in both accuracy and calculation speeds offered by this formulation provides significant advantages
that are used in this work to study Yagi-Uda-type nanoantennas.We provide a study that questions the necessity of
the reflector particle in nanoantennas. © 2011 Optical Society of America
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1. INTRODUCTION
There is an increasing interest in using nanoantennas to ex-
tract [1–12] and redirect light [13–23] from quantum emitters
such as single molecule fluorophores and quantum dots.
Although the emission processes under consideration are in-
trinsically quantum phenomena, the decay rates of a quantum
system depend on the modifications of the local electromag-
netic environment induced by the antenna structure. Given
that the structures of typical optical antennas, although small,
are generally large with respect to the atomic scale (nan-
ometer to micrometer scales overall), semiclassical electro-
magnetic calculations are usually the most convenient
method available for calculating modifications to decay rates
and radiation patterns.

In semiclassical calculations, the quantum emitter is re-
placed by a radiating dipole, and one calculates the modifica-
tions to the emitted power, radiated power, and radiation
distribution that are induced by the antenna structure. These
properties in turn allow one to deduce the modifications to the
decay rate and radiation pattern of a quantum emitter. Such
calculations require precise information about both near and
far fields and generally tend to be quite time consuming, even
for modern computers. A notable exception to the previous
statement are Mie-type calculations of quantum emission
properties in the neighborhood of a single spherical particle.
In that case, the multipole approach of the Mie theory allows
one to formulate the physical quantities of interest in terms of
analytical formulas, which are both highly accurate and rapid
to calculate [24–27].

Generalized Mie theory [28–30] has well-established advan-
tages for studying the scattering by multiple-particle systems,
including orders of magnitude reductions in computation
times. Nevertheless, even in the mutlipole context, the calcu-
lation of nanoantenna properties previously required labor-
ious numerical integrations of the Poynting vector in both
the near and far field. In this work, we derive multipole for-
mulas for analytically evaluating theses integrals when a quan-
tum emitter is placed in the neighborhood of an antenna

structure. Although such multiple-scattering techniques can
be applied to systems in which the antenna components
are nonspherical [31], in this work, we restrict ourselves to
examples of antennas with spherical components where they
can be most readily applied.

In the interest of completeness, Section 2 presents a brief
overview of the Green function and multiple-scattering formu-
lations for treating electromagnetic sources and scattering.
Exact multipole formulas for decay rate enhancements and
directivity are derived in Section 3.

Despite their accuracy, the complexity of multipole techni-
ques can make it difficult to analyze their physical content.
Modeling the antenna particles as induced dipoles allows
more intuitive physics and, in certain situations, can provide
relatively good estimations of the electromagnetic response,
provided that the radiation damping effects are accurately
modeled. An alternative coupled dipole formulation incorpor-
ating new analytic formulas for the radiative properties of
nanoantennas is formulated in Section 4.

In Section 5, we use these multipolar and dipolar formula-
tions to study the influence of the number of particles and the
presence of reflector particles in nanoantenna designs of the
Yagi-Uda type. More precisely, we show that the negative role
of the reflector particle on both radiation properties and quan-
tum efficiencies is not always outweighed by gains in
directivity.

2. GREEN FUNCTION FORMULATION
Given the large quantity and variety of physical information
that one wishes to treat during antenna calculations, it proves
advantageous to formulate the problem in terms of Green
functions. The complexity of the antenna Green function is
the chief obstacle to such calculations. We see below and
in Section 3, however, that the multipole formulation makes
this problem tractable.

A fundamental assumption of this work (which can be re-
laxed) is that the quantum emitter is sufficiently small with
respect to both the antenna structure and the field variations
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to be approximated as a point dipole. The antenna is consid-
ered to consist of particles immersed in a homogeneous med-
ium described by a (possibly complex) relative dielectric
function εbðωÞ. With these assumptions, we model the cur-
rents in the quantum emitter, je, by a time harmonic point
dipole with strength pe, located at a point xe within the homo-
geneous media. The polarization current for such a point
dipole is given by jeðxÞ ¼ −iωpeδ3ðx − xeÞ.

The dyadic Green function, G
↔
, of the antenna contains

the information necessary for electromagnetic calculations
in that it yields the electric field everywhere via the integral
formula [28]

EðxÞ ¼ iωμ0
Z

dx0G
↔
ðx − x0Þjeðx0Þ: ð1Þ

We simplify matters by restricting G
↔
ðx − x0Þ to situations

where both the source current positions, x0, and “receptor”
positions, x, are located within the host medium. The Green
function can then be separated into an “unperturbed” Green
function of the homogeneous exterior medium Green func-
tion, G

↔
0, plus a “scattering” contribution, G

↔
s [28,32]:

G
↔
ðx; x0Þ ¼ G

↔
0ðx; x0Þ þG

↔
sðx; x0Þ: ð2Þ

The homogeneous unperturbed Green function is transla-
tionally invariant and satisfies the equation

∇ ×∇ ×G
↔

0ðx − x0Þ − k2bG
↔

0ðx − x0Þ ¼ I
↔
δ3ðx − x0Þ; ð3Þ

where kb ¼ ðω=cÞ ffiffiffiffiffiεbp
is the wavenumber of the exterior med-

ium. A technical difficulty is that G
↔

0 is singular at the origin,

but this has been studied in detail and one can show that G
↔

0

can be well defined provided that we treat it as a distribution

and take care in treating the limit x → x0 [28]. ExpressingG
↔

0 in
direct space with r≡ x�x0, one has [28,32]

G
↔

0ðrÞ ¼
eikbr

4πk2br3
P:V:fð1 − ikbrÞð3r̂r̂ − I

↔
Þ þ k2br

2ð I
↔
− r̂r̂Þg

−
I
↔

3k2b
δ3ðrÞ; ð4Þ

where P.V. stands for principal value and I
↔
is the unit dyadic.

As explained in [28], the three-dimensional (3D) delta function
term depends on the exclusion volume chosen for the princi-
pal value. The formula presented here corresponds to a prin-
cipal value chosen as either a spherical or cubic infinitesimal
volume around the source point. Replacing the total Green
function in Eq. (1) with the homogeneous Green function
of Eq. (4) yields the electric field, E0, produced by an isolated
point dipole:

E0ðxÞ ¼
eikbr

4πεbϵ0r3
fð1 − ikbrÞ½3r̂ðr̂ · peÞ − pe�

þ k2br
2½pe − r̂ðr̂ · peÞ�g −

pe
3εbϵ0

δ3ðrÞ: ð5Þ
The information coming from the antenna structure is em-

bodied in the scattering part of the total Green function, G
↔

s.

The scattering Green function, G
↔

s, must take into account the
multiple scattering of the emitter radiation from all the N

components of the antenna structure. For the purpose of cal-

culation, it is advantageous to express the scattering Green
function in terms of a multiple-scattering T matrix, which
we define in operator notation as

G
↔

s ¼ G
↔

0

� XN
i¼1;j¼1

T
↔ði;jÞ�

G
↔

0; ð6Þ

where i and j are particle labels. The multiple-scattering T

matrix in this equation has thus been split into N2 operators,

T
↔ði;jÞ

. From a multiple-scattering viewpoint, one can visualize

each T
↔ði;jÞ

as representing all multiple-scattering events in
which the first particle encountered by incident radiation is
j and the last particle encountered is i [29].

The T
↔ði;jÞ

can be manageably calculated in the vector partial
wave (VPW) basis:

T
↔ði;jÞ ¼

X2
q¼1;q0¼1

X∞
n¼1;n0¼1

Xm¼n

m¼−n

Xm0¼n0

m0¼−n0
jΨq;n;miT ði;jÞ

q;n;m;q0;n0 ;m0 hΨq0n0;m0 j;

ð7Þ
where jΨq;n;mi are the VPW states (see Appendix A.2 for ex-
plicit representations) and are specified by the three discrete
“quantum” numbers: q ¼ 1; 2; n ¼ 1; 2; :::∞; and m ¼ −n; :::; n
(which for the purpose of numerical computations can be
combined into a single discrete index [30,33]). The great ad-

vantage of the VPW basis is that the T
↔ði;jÞ

operator is deter-
mined as an infinite dimensional matrix in the VPW space
that can be calculated from the T matrices of the isolated par-
ticles, denoted tðjÞ (j ¼ 1; :::; N), and the pairwise translation-
addition matrices, Hði;jÞ, between particle centers [see
Eq. (8)]. The T ði;jÞ matrices, henceforth referred to as body-
centered T matrices, can be rendered finite by truncating
the orbital quantum numbers, n, to some finite dimension,
nmax (whose value depends on particle sizes and interaction
strengths).

A number of different methods for calculating the T ði;jÞ

matrices exist in the literature (generally formulated within
the Foldy–Lax framework [30,33,34]). Probably one of the
simplest methods (both conceptually and numerically) is to
extract the T ði;jÞ as the submatrices obtained after inversion
of the following system matrix, i.e.,2

666664

T
ð1;1Þ
N T

ð1;2Þ
N � � � T

ð1;NÞ
N

T
ð2;1Þ
N T

ð2;2Þ
N � � � T

ð2;NÞ
N

..

. ..
. . .

. ..
.

T
ðN;1Þ
N T

ðN;2Þ
N � � � T

ðN;NÞ
N

3
777775

¼

2
666664

½tð1Þ�−1 −Hð1;2Þ � � � −Hð1;NÞ

−Hð2;1Þ ½tð2Þ�−1 � � � −Hð2;NÞ

..

. ..
. . .

. ..
.

−HðN;1Þ −HðN;2Þ � � � ½tðNÞ�−1

3
777775

−1

; ð8Þ

where Hðj;lÞ ≡Hðkbðxj − xlÞÞ are irregular translation matrices
(analytical expressions for the matrix elements of HðkxÞ as
well as those of the regular translation matrix JðkxÞ are given
in [28,29,35]).

It should be noted that, for a long time, such direct matrix
inversions were disregarded in 3D calculations due to the fact
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that matrices like the one on the right-hand side of Eq. (8) were
numerically ill conditioned for matrix inversion. However, it
has been recently pointed out that such direct matrix inver-
sionswork quite well provided that one employs analytical ma-
trix balancing techniques [30]. In lieu of employing matrix
balancing, many multiple-scattering codes privilege iterative
techniques where the ill-conditioning of the problem can also
be handled via conjugate gradient techniques. Although nu-
merically performant, iterative techniques pose the disadvan-
tage of having an additional convergence parameter and not all
iterative formulations determine the T ði;jÞ matrices.

Once the on-shell T matrices have been determined using
Eq. (8) or an alternative technique, we can derive analytic ex-
pressions for the electromagnetic properties of the antenna
system, such as decay rates, local fields, and far-field emis-
sion. Notably, the total emitted power is evaluated by time
averaging Pt ≡ −Et · jsrc over a period where Et is the electric
field produced by the source current while taking into account
interactions with the antenna structure. Averaging this power
over a period, T ¼ 2π=ω, we obtain [32]

Γt ≡ −
1
T

Z
T

0
dt

Z
dxEtðx; tÞ · jeðx; tÞ

¼ ω3

2
μ0Imfp�eðxjÞ ·G

↔
ðxj ; xjÞ·peðxjÞg: ð9Þ

Some of the power emanating from the dipole emitter will
be dissipated by the antenna. The rest will be radiated off into
the far field where it can be detected. The calculation of the
radiated power proceeds by first taking the far-field limit of
the electric field given by Eq. (1). The electric field is trans-
verse in the far-field limit, and we can readily obtain the H
field from the electric field via the relation [36]

lim
r→∞

HtðrÞ ¼
kb

μ0ω
r̂ × Et: ð10Þ

In the r → ∞ limit, the time-averaged Poynting vector is thus

r → ∞lim
r→∞

hSi ¼ lim
r→∞

1
2
RefE�

t ×Htg ¼ 1
2

kb

ωμ0
r̂‖Et‖

2: ð11Þ

The far-field irradiance, Irðθ;ϕÞ, and total radiated power are
defined respectively by

Irðθ;ϕÞ≡ lim
r→∞

r2hSi · r̂ and Γr ≡

Z
dΩIrðθ;ϕÞ: ð12Þ

In order to determine the modifications to Γt, Irðθ;ϕÞ, and
Γr induced by the antenna, we will need to normalize these
values with respect to the corresponding quantities of an iso-
lated emitter placed inside the homogeneous background. In
this case, the analytical expressions for the field and homoge-
neous Green function of Eqs. (4) and (5) yield the textbook
results for dipole emission in a homogeneous medium. Nota-
bly, the power emitted in a homogeneous dielectric medium is

Γt;0 ¼
ω3

2
μ0Imfp�eðxjÞ ·G

↔
0ðxj ; xjÞ · peðxjÞg

¼ jpej2
ω3

12πϵ0c2
Refkbg: ð13Þ

The classic far-field radiation pattern and radiated power, Γ0,
are readily obtained from Eq. (5) applied to Eqs. (11) and (12):

Ir;0ðr̂Þ ¼
ω3kb

32π2ϵ0c2
ð1 − ðr̂ · p̂eÞ2Þjpej2;

Γ0 ≡

Z
dΩIr;0ðθ;ϕÞ ¼ jpej2

ω3kb

12πϵ0c2
: ð14Þ

This concludes the review of the background material neces-
sary to derive the multipole antenna formulas of Section 3.

3. MULTIPOLE FORMULAS FOR DECAY
RATE ENHANCEMENTS
The purpose of this section is to generalize the analytic ex-
pressions for emitted and radiated powers to the case in
which the emitter is located near a nanoantenna structure.
We saw in Section 2 that the multiple-scattering T matrix
of Eq. (8) determines the scattering Green function of Eq. (6).
The scattering Green function can then be expressed on the
VPW basis provided that we also express the homogeneous
Green function on the VPW basis. Taking advantage of the
translational invariance of G

↔
0ðx; x0Þ, it can be written as [28]

G
↔

0ðr; 0Þ ¼ ikb

X1
m¼−1

N1mðkb; rÞRgf~N1mð0Þg −
r̂ r̂
k2b

δðrÞ; ð15Þ

where N1;−1, N1;0, and N11 are the three outgoing electric di-
polar partial wave functions (N functions correspond to the
q ¼ 2 VPWs detailed in Appendix A.2). Employing this expres-
sion in Eq. (1), the unperturbed electric field created by an
isolated point dipole, denoted E0, is then expressed as

E0ðxÞ ¼ ω2μ0
Z

dx0G
↔

0ðx; x0Þ · peδ3ðx0Þ

¼ ikbω2pe

ϵ0c2
X1
m¼−1

N1mðkbxÞf 2;1;m; ð16Þ

where we define the outgoing dipole field coefficients,
f q¼2;n¼1;m, to be given by

f 2;1;m ≡ Rg

�
~N1mð0Þ

�
· n̂ ¼ hΨ2;n;mj0i · n̂; ð17Þ

where n̂ is the unit vector in the direction of the emitter dipole
moment, defined such that pe ¼ pen̂. All other emitter multi-
poles, n > 1 or q ≠ 2, are taken to be zero.

Utilizing the analytical expression for Rg

n
~N1mð0Þ

o
, we

obtain the following expressions for the emitter field
coefficients:

f q;n;0 ¼ δq;2δn;1
ffiffiffiffiffi
1
6π

r
ẑ · n̂; f q;n;1 ¼

δq;2δn;1
2

ffiffiffiffiffi
3π

p ð−x̂þ iŷÞ · n̂;

f q;n;−1 ¼
δq;2δn;1
2

ffiffiffiffiffi
3π

p ðx̂þ iŷÞ · n̂: ð18Þ

Employing Eq. (15) forG
↔

0 in Eqs. (6), (1), and (2) and invoking
the translation-addition theorem, we obtain an entirely multi-
polar expression for the field radiated by a dipole emitter in-
teracting with an antenna structure:

EtðrÞ ¼ E0 þ Es ¼
ipekbω2

ϵ0c2
½NðrÞf

þ
XN
j;l¼1

½MðkrjÞ;NðkrjÞ�T ðj;lÞHðl;eÞf �≡ ipekbω2

ϵ0c2
~EtðrÞ; ð19Þ
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where f denotes a column matrix containing the emitter coef-
ficients in the multipole space (with only electric dipole ele-
ments nonzero) and Hðl;eÞ ≡Hðkbðxl − xeÞÞ are the irregular
translation-addition matrices between the position of particle
l and the emitter position.

In the second line of Eq. (19), we defined a dimensionless
field, ~Et, proportional to the total electric field. This definition
of ~Et proves convenient when normalizing the antenna irradi-
ance, Irðθ;ϕÞ, with respect to Γ0=ð4πÞ of the isolated emitter.
Using the definition of Eq. (19) in Eqs. (11) and (12), the nor-
malized irradiance is given by

~Ir ≡
4πIrðθ;ϕÞ

Γ0
¼ 24π2 lim

r→∞
ðkbrÞ2‖~EtðrÞ‖2: ð20Þ

The electric field of Eq. (19) can then be utilized in Eq. (9) to
obtain the decay rate enhancement factor (valid even in an
absorbing host medium):

~Γt ≡
Γt

Γt; 0
¼ 1þ Ref6πkb

P
N
j;l¼1 f

†Hðe;jÞT ðj;lÞHðl;eÞf g
Refkbg

: ð21Þ

Likewise, for an absorption-free host medium, the enhance-
ment in radiative decay rate is obtained by inserting Eq. (19)
into Eqs. (11) and (12). Utilizing the translation-addition the-
orem and the orthogonality properties of the vector spherical
harmonics (VSHs), one obtains for the radiative decay rate
enhancement

~Γr ≡
Γr

Γ0
¼ 1þ 6π

XN
i;j;k;l¼1

½T ðj;iÞHði;eÞf �†Jðj;kÞT ðk;lÞHðl;eÞf

þ 12πRe
�XN
j;l¼1

f †Jðe;jÞT ðj;lÞHðl;eÞf
�
; ð22Þ

where we see that Eqs. (21) and (22) required the use of both
regular, J, and irregular, H, translation-addition matrices
[28,29,35].

The multiple-scattering results of Eqs. (21) and (22) simpli-
fy considerably when a single antenna particle is present:

~Γt ¼ 1þ Ref6πkbf †Hðe;jÞtHðj;eÞf g
Refkbg

; ð23Þ

~Γr ¼ 1þ 6π½Hðj;eÞf �†t†tHðj;eÞf þ 12πRe½f †Jðe;jÞtHðj;eÞf �; ð24Þ
where t is the single-particle T matrix. If the T matrix is that of
a spherical (Mie) scatterer, then Eqs. (23) and (24) are equiva-
lent to expressions that were derived previously for Mie
scatterers [24–27].

4. INDUCED DIPOLE FORMULATION FOR
YAGI-UDA DESIGNS
In the Yagi-Uda-type designs considered in Section 5, the emit-
ting dipole and spherical antenna elements are all positioned
along the same axis, henceforth denoted the x axis [see
Fig. 1(a)]. We furthermore consider the emitting dipole to
be perpendicular to the x axis, henceforth denoted the z axis.
For sufficiently small antenna particles and sufficiently large
separations, it is possible for electric dipole excitations to
dominate the antenna response. Dipole couplings have been

widely studied and can lead to more intuitive physics than
multipole couplings. Therefore, in this section, we derive
coupled dipole analogs to Eqs. (21) and (22) for the antenna
geometries studied in Section 5 in order to compare with
multipole calculations.

A. Coupled Dipole Formalism
We follow the terminology of dielectric polarizability usually
employed when dealing with dipole approximations. In this
context, the dipole moment induced in a material particle im-
mersed in a material medium of relative dielectric constant εb
is proportional to the excitation field via the relation

pðωÞ ¼ ϵ0εbαðωÞEexcðωÞ; ð25Þ

where αðωÞ is the frequency-dependent polarizability charac-
terizing the particle.

We denote the field strength of an arbitrary ẑ-polarized “in-
cident” field at each particle position as Einc;j ¼ Einc;j ẑ and the
excitation fields as Eexc;j ¼ Eexc;j ẑ. Using the dipole field ex-
pression of Eq. (5), the excitation field of the jth particle in the
finite chain of coupled dipoles can then be written as

Eexc;j ¼ Einc;j −
X
l≠j

eikbdj;l
a3l

d3j;l
ð1 − ikbdj;l − k2bd

2
j;lÞ~αlðωÞEexc;l

¼ Einc;j þ
X
l≠j

γj;l~αlðωÞEexc;l; ð26Þ

where, in order to simplify the notation, we defined
dimensionless “polarizability” functions ~αjðωÞ as

~αjðωÞ≡
αjðωÞ
4πa3j

ð27Þ

with aj as the radius of the jth sphere. We also define, for
Eq. (26) and formulas below, dimensionless field coupling fac-
tors, γj;l, between particles l and j and couplings, γj;e, between
the emitter and a particle j as

γj;l ≡ −eikbdj;l
�
al

dj;l

�
3
ð1 − ikbdj;l − k2bd

2
j;lÞ

γj;e ≡ −eikbdj;e
�
aj

dj;e

�
3
ð1 − ikbdj;e − k2bd

2
j;eÞ

ð28Þ

(a)

(b)

Fig. 1. (Color online) (a) Yagi-Uda antenna design with a silver re-
flector element 120nm in diameter and a collector array of eight silver
spheres 100nm in diameter. (b) Radiation pattern ~Iðθ;ϕÞ of this an-
tenna in the far field for an emitter operating at a vacuum wavelength
of λv ¼ 618nm.
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where dj;l ≡ jxj − xlj and dj;e ≡ jxj − xej are the distances be-
tween different particle centers and the distance of particles
from the emitter, respectively.

Also, defining quantities ~pj with the dimension of electric
field

~pj ≡ ~αjðωÞEexc;j ; ð29Þ

the coupled equations in Eq. (26) can then be solved via
matrix inversion:

2
64
~p1
..
.

~pN

3
75 ¼

2
666664

~α−11 −γ1;2 � � � −γ1;N
−γ2;1 ~α−12 � � � −γ2;N
..
. � � � . .

. ..
.

−γN;1 −γN;2 � � � ~α−1N

3
777775

−12
664
Einc;1

..

.

Einc;N

3
775: ð30Þ

The matrix inversion in Eq. (30) is the dipole analog of the
multipole T -matrix evaluation of Eq. (8). One can next define
“effective” dimensionless polarizabilities, ~αeffj , that contain all
multiple-scattering effects as

~αeffj ðωÞ≡ ~pj
Einc;j

: ð31Þ

The field incident on each particle from the dipolar emitter
in the absence of an antenna is

Einc;j ¼ −eikbdj;e
�

1
dj;e

�
3
ð1 − ikbdj;e − k2bd

2
j;eÞ

pe

4πϵ0εb
: ð32Þ

Once the ~αeffj of Eq. (31) have been calculated, the total
electric field can be written as

EtðrÞ ¼
1

4πϵ0εb
XN
j¼0

eikbrj

r3j
fð1 − ikbrjÞ½3r̂jðr̂j · pjÞ − pj�

þ k2br
2
j ðpj − r̂jðr̂j · pjÞÞg; ð33Þ

where rj ¼ rj r̂j ≡ r�xj are the relative positions with respect
to the particle centers, xj , with j ¼ 0 designating the dipole
emitter (i.e., x0 ≡ xe and p0 ≡ pe).

Utilizing the expressions of Eqs. (31)–(33) and invoking the
definitions of dimensionless fields and intensities of Eqs. (19)
and (20), we obtain relatively simple expressions for the far
field and irradiance:

lim
r→∞

~Etðr; θ;ϕÞ ¼
eikbr

4πikbr
sin θθ̂

�
1þ

XN
j¼1

γj;e~αeffj e−ikbdj;e sin θ cosϕ
�

~Irðθ;ϕÞ≡
4πIrðθ;ϕÞ

Γ0

¼ 3
2
sin2 θj1þ

XN
j¼1

γj;e~αeffj e−ikbdj;e sin θ cosϕj2; ð34Þ

where θ and ϕ are the angles with respect to the z and x axes,
respectively.

As with the multipole approach, the enhancement in the
radiative decay rate is obtained by inserting Eq. (33) into
Eqs. (11) and (12). We can calculate emission and radiative
enhancement factors in a manner analogous to that carried
out in Section 3. After some algebra and integrations, we

obtain the following formulas for the dipolar enhancement
factors:

~Γt ≡
Γt

Γt;0
¼ 1þ 3

2

XN
j¼1

Im
n�

γj;e
kbaj

	
2
~αeffj

o
Refkbajg

; ð35Þ

~Γr ≡
Γr

Γ0
¼ 1þ

XN
j¼1

j~αeffj γj;ej2 þ
XN
j¼1

3Re½~αeffj γj;e�

×
�ðkbdj;eÞ2 − 1

ðkbdj;eÞ3
sinðkbdj;eÞ þ

cosðkbdj;eÞ
ðkbdj;eÞ2

�

þ
XN
l>j

3Re

�
γ�l;e~αeff;�l ~αeffj γj;e

�

×

�ðkbdl;jÞ2 − 1

ðkbdl;jÞ3
sinðkbdl;jÞ þ

cosðkbdl;jÞ
ðkbdl;jÞ2

�
; ð36Þ

which are, respectively, the electric dipole analogs of Eqs. (21)
and (22).

B. Time Harmonic Polarizability
To evaluate the formulas in Eqs. (35) and (36), we need an
accurate model of the frequency-dependent dipole polarizabil-
ity αðωÞ of the plasmonic antenna components. The com-
monly adopted quasi-static approximation or even the more
sophisticated pointlike models [37–39] can introduce inac-
curacies associated with the model rather than actual defaults
of the dipole approximation per se. To avoid such problems,
we adopted the unconventional choice of using the dipole
polarizability prescribed by Mie theory.

Taking into account the differences in formalism between
the multipole framework and the polarizability picture, we
find that the electric dipole polarizability of a sphere is

αðωÞ ¼ 6π
ik3b

t2;1ðωÞ; ð37Þ

where tq¼2;n¼1ðωÞ is the electric dipole element of the (diag-
onal) Mie T matrix[36] (nondependent on m due to spherical
symmetry). This gives us a fully analytic frequency-dependent
polarizability corresponding to the electric dipolar response
from Mie theory:

~αðωÞ ¼ αðωÞ
4πa3 ¼

3
2iðakbÞ3

j1ðakbÞ
h1ðakbÞ

εsφ1ðakbÞ − εbφ1ðaksÞ
εbφ1ðaksÞ − εsφð3Þ

1 ðakbÞ
; ð38Þ

where εs and ks are the relative dielectric function and wave-
number associated with the spherical particle. The functions
φ1 and φð3Þ

1 are expressed in terms of first-order spherical
Bessel and Hankel functions:

φ1ðzÞ≡
½zj1ðzÞ�0
j1ðzÞ

; φð3Þ
1 ðxÞ≡ ½zh1ðzÞ�0

h1ðzÞ
: ð39Þ

It is important to underline the importance of using a
frequency-dependent polarizability like that of Eq. (39) to re-
liably include radiation damping effects in dipole simulations.
To date, radiative effects in dipole calculations were typically
handled by invoking the so-called “point-scatterer” model
[37–39]. Although one can arrange point scattering models to
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approximate the polarizability function of Eq. (39) for suffi-
ciently small values of akb, our choice of using Mie theory
to determine the polarizability seems to be more reliable
for larger values of the akb parameter.

Now that dipole and multipole simulations are in hand,
Section 5 aims to illustrate the utility of the dipolar and
multipolar modeling techniques by simulating a few realistic
antenna designs.

5. YAGI-UDA NANOANTENNA DESIGN
WITH SPHERICAL ELEMENTS
It has been shown that Yagi-Uda-type optical antenna designs
[10,14–16,18,22,23] can be achieved by a chain of plasmonic
spheres serving as a “collector” chain and a somewhat larger
sphere serving as a “reflector” element. A study of such Yagi-
Uda designs appeared as an interesting means for demonstrat-
ing the utility of the formulation derived in this work. The goal
of this section is to show how the formulas developed in the
previous sections provide insights into established nanoanten-
na designs and indicate possible design modifications. We also
argue that one must be careful in specifying “optimal” nanoan-
tenna characteristics.

Let us consider the design illustrated in Fig. 1(a) consisting
of a collector made of eight silver spheres 100 nm in diameter
combined with a silver reflector sphere 120nm in diameter.
The antenna is taken to be immersed in a dielectric medium
of index nb ¼ 1:5. The emitting dipole is positioned at d ¼
30 nm equidistantly between the reflector particle and the
collector chain. Its dipole moment is taken to be oriented per-
pendicular to the antenna axis. The radiation pattern of this
antenna, illustrated in Fig. 1(b) for a quantum dipole emitter
operating at a vacuum wavelength of λv ¼ 618 nm, clearly il-
lustrates the desired strong directivity along the collector di-
rection. We remark that the radiation pattern along the

collector axis is relatively axisymmetric, with little radiation
leaking into the backward hemisphere.

In order to quantitatively study antenna directivity, we in-
spired ourselves from analogous radiofrequency quantities
and chose a directivity parameter of D≡ 10log10ð4πIaxis=ΓrÞ
¼ 10log10ð~Iaxis=~ΓrÞ. In other words, directivity is measured
in decibels of the intensity along the collector axis divided
by the steradian average of total radiated power. Quantum ef-
ficiency was also calculated from its usual definition of η ¼
Γr=Γt (for perfect emitters). All multipole simulations in this
section were carried out with a multipole cutoff of nmax ¼ 10,
which proved amply sufficient for convergence in the studied
configurations.

An important design property is the number of particles ne-
cessary in the collector chain. We therefore begin with multi-
pole simulations of a Yagi-Uda design with a four-particle
collector chain in Fig. 2. The principal characteristic of this an-
tenna, as seen in Fig. 2(b), is that it becomes highly directive for
vacuum wavelengths λv ≳ 600nm. Because of the transverse
coupling, radiation enhancements are low and even inferior
to one at long wavelengths, as shown in Fig. 2(c). These low
radiative enhancements are a direct consequence of the fact
that this antenna design is optimized for directivity (if emission
enhancements are also required, one must add a superemitter
to the design (see [4,10,21]). Simulations were carried out both
with and without a reflector particle. Although it is clear from
Fig. 2(b) that the reflector does indeed enhance directivity, it
comes at a considerable cost to the radiative decay rate
and quantum efficiency, as can be seen by inspection of
Figs. 2(c) and 2(d).

Next, we carried out multipole simulations for the more
technically complex design of eight aligned collector particles
in Fig. 3 (all other properties are the same as those in Fig. 2).
The results were quite similar to those of the four-particle

Fig. 2. (Color online) (a) Antenna schematic: four silver spheres DAg ¼ 100nm in diameter with or without a DR ¼ 120nm reflector particle.
(b) Directivity parameter 10log10ð4πIaxis=ΓrÞ as a function of vacuum wavelength. (c) Radiative enhancement, Γr=Γ0. (d) Quantum efficiency,
η ¼ Γr=Γtot.
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collector Yagi-Uda except for a significant increase in direc-
tivity accompanied by additional losses in quantum efficiency.

In order to better visualize the net effect of a reflector par-
ticle, the emission power along the collector axis, normalized
by that of an isolated emitter, is plotted as a function of
wavelength in Fig. 4 for the four- and eight-particle collector
configurations studied earlier. It is clear from this figure that
the reflector particle decreases the radiation intensity along
the detector axis. The detrimental effect of the reflector par-
ticle could of course be decreased in this design by adopting
larger spacings, d, between the emitter and the antenna par-
ticles, as has been done in other antenna designs in the litera-
ture. For instance, if we increased the reflector–collector
separation from 60 to 100 nm, we would arrive at a design very
similar to that considered by Koenderink [10].

The quantum efficiency and radiative decay rate enhance-
ment with different reflector–collector separations is pre-
sented in Fig. 5 (for the sake of simplicity, the emitter is

always taken to lie in the center of the gap). The curve labeled
with diamonds is that of an emitter located at d ¼ 50nm from
the collector, but without a reflector element. As we can see

Fig. 3. (Color online) (a) Antenna schematic: same characteristics as in Fig. 2, but with an eight-particle collector array. (b) Directivity parameter
10 log10ð4πIaxis=ΓrÞ as a function of vacuum wavelength. (c) Radiative enhancement, Γr=Γ0. (d) Quantum efficiency, η ¼ Γr=Γtot.
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from this figure, increasing gap size does indeed improve the
radiative decay rates and quantum efficiency, but further
gains to both quantities can still be obtained by removing
the reflector. This behavior was expected and must be ba-
lanced against the advantage of a reflector element, which
is to enhance emission directivity. However, the issue of direc-
tivity (and how it is defined) is directly related to our choice of
reduced emitter–antenna separation distances, d, which we
discuss below.

Let us recall that, in this work, we chose to define directiv-
ity, D, as the radiation along the collector chain divided by the
average emitted power. Optimizing D differs from optimizing
the normalized radiated power along the collector axis, which,
unlike the directivity, has contributions from the radiation en-
hancement factor. Directivity enhancement and on-axis
power enhancement as functions of wavelength and emitter–
collector distance are plotted in Fig. 6 for both the four- and
eight-particle collector antennas (without reflectors). As we
can see in Fig. 6, optimizing directivity favors somewhat smal-
ler emitter–collector distances, d, than does an optimization of
the on-axis power enhancement, which explains the choices
in this work. One can perhaps better visualize the situation by
examining the radiation diagrams of the chains at their opti-
mum parameters for directivity and power respectively for
both four- and eight-particle chains, which are presented
in Fig. 7.

Another design consideration that seems appropriate to
mention is that of orienting the dipole emitter perpendicular
to the antenna chain. As can be seen from Fig. 8, the directivity
drops rapidly with variation of the emitter axis from the per-
pendicular orientation (falling by ≃3 dB at ≃10° from a per-
pendicular orientation). For randomly oriented dipoles, this
poses significant limitations to antenna properties. However,
dipole emissions perpendicular to the collector axis can be
privileged by an on-axis superemitter around the quantum
emitter [10,20,21] or off-axis longitudinal couplings of an emit-
ter to an antenna particle [16,19,23]. In such cases, the long-
itudinal couplings induce strong decay rate enhancements

that can largely outweigh the relatively modest decay rate
damping resulting from small emitter–collector separations.

The last issue that we wish to address in this section is the
feasibility of purely electric dipole modeling of these anten-
nas. Although it has already been pointed out that multipoles
are quite important in quantitative studies of the longitudinal
couplings of “superemitter” designs, the Yagi-Uda design
relies on the much weaker transverse couplings, and one ex-
pects the dipolar model developed in Section 4 to be approxi-
mately valid in this case.

The results obtained using the coupled dipole formulas of
Subsection 4.A coupled with the Mie-based polarizability of
Subsection 4.B are compared with multipole calculations in
Fig. 9 for an eight-particle collector antenna. Although there
are significant differences between the dipolar and multipolar
results at shorter wavelengths, the coupled dipole calcula-
tions correspond rather well to the quasi-exact results at

Fig. 8. (Color online) Directivity, in decibels, plotted as a function of
the angle of the emitter with the direction perpendicular to the col-
lector chain for a four- and eight-particle collector chain (without re-
flector) and emitter–collector separations of d ¼ 30nm (respective
operating wavelengths of λ ¼ 615nm and λ ¼ 626nm selected
respectively for high directivities).
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the larger wavelengths, i.e., λv ≳ 600 nm, for which the anten-
na is designed. Of course, there are some differences between
the coupled dipole calculations and the exact multipole result
at all wavelengths, but these can largely be attributed to the
proximity of the emitter to plasmonic antenna particles, a
situation that excites higher-order modes in neighboring
plasmonic particles.

6. CONCLUSIONS
An important result of this work was to derive analytic multi-
pole formulas for calculating the quantum emission properties
of nanoantennas in a manner that avoided numerical integra-
tions of energy flow. The gain in speed and accuracy provides
significant advantages to nanoantenna design. We also de-
rived new analytical formulas in the coupled dipole approxi-
mation, which permit the integration-free calculation of
quantum decay rates of quantum emitters in Yagi-Uda-type
designs.

In Section 5, we performed an in-depth study of the radia-
tive and directive properties of Yagi-Uda antennas. We studied
therein a variety of antenna design properties, including the
number of particles in the collector chain, the quantum emit-
ter’s orientation and position, and the utility of a reflector par-
ticle in optical Yagi-Uda antennas. Concerning this last point,
we showed that the improvements in beam directivity pro-
vided by a reflector particle come at a considerable expense
to the radiative decay rate and quantum yield. We propose that
reflector-free antennas may prove to be an interesting alterna-
tive design.

APPENDIX A

1. VSHs
VSHs are described in a number of works [35,40–42], but the
notations and definitions vary with authors. They form a com-
plete orthogonal basis set for describing the angular variations
of any vector field. We define the spherical VSHs as follows:

Ynmðθ;ϕÞ≡ r̂Ynmðθ;ϕÞ; ðA1Þ

Znmðθ;ϕÞ≡
r∇Ynmðθ;ϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðnþ 1Þp ; ðA2Þ

Xnmðθ;ϕÞ≡ Znmðθ;ϕÞ × br: ðA3Þ

All VSHs are mutually orthogonal in the sense that taking
WðiÞ

nm (i ¼ 0; 1; 2) to respectively denote the VSHsYnm,Xnm, or
Znm, we have

hWðiÞ
nm∣W

ðjÞ
νμ i≡ ð−Þm

Z
4π

0
WðiÞ

n;−m ·WðjÞ
νμdΩ ¼ δijδnνδmμ: ðA4Þ

2. VPWs
The VPWs are often referred to as regular spherical vector
waves, RgfMnmðkrÞg and RgfNnmðkrÞg[35], which are
respectively the direct space representations of the VPWs
hrjΨq¼1;n;mi and hrjΨq¼2;n;mi. Their analytical expressions
are given by

hΨ1;n;mjri≡ Rgf ~Mn;mðkrÞg≡ ð−ÞmjnðkrÞXn;−mðr̂Þ
hΨ2;n;mjri≡ Rgf~NnmðkrÞg; n ¼ 1; 2; :::∞; m ¼ −n; :::; n

≡
ð−Þm
kr

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

p
jnðkrÞr̂Yn;−mðr̂Þ

þ ½krjnðkrÞ�0Zn;−mðbrÞg: ðA5Þ

The total field in the antenna problem satisfies outgoing
boundary conditions. Consequently, when evaluating the total
fields, e.g., in Eq. (19), the fields were developed in terms of
VPWs satisfying the outgoing boundary conditions, tradition-
ally labeled Mnm and Nnm [35], which are analogous to the
regular waves of Eq. (A5) with the spherical Bessel functions
being replaced by spherical Hankel functions:

NnmðkrÞ≡
1
kr

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

p
hnðkrÞr̂Ynmðr̂Þ þ ½krhnðkrÞ�0ZnmðbrÞ

�
;

MnmðkrÞ≡ hnðkrÞXnmðr̂Þ: ðA6Þ
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