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The momentum- and frequency-dependent T-matrix operator for the
scattering of electromagnetic waves by a dielectric/conducting and para- or
diamagnetic sphere is derived as a Mie-type series, and presented in a
compact form emphasizing various symmetry properties, notably the
unitarity identity. This result extends to magnetic properties one previously
obtained for purely dielectric contrasts by other authors. Several situations
useful to spatially-dispersive effective-medium approximations to one-body
order are examined. Partial summation of the Mie series is achieved in the
case of elastic scattering.

1. Introduction

The transition operator, or T-matrix, of a scatterer is a basic building block of time-

harmonic theories of single or multiple scattering [1]. It embodies information about

the overall polarization-dependent response of a finite object, in terms of the incident

and scattered momenta. A recent bibliographical review devoted to the use of T-

matrices in electromagnetism [2] (mostly of the ‘‘on-shell’’ variety, see definition

below) illustrates its key importance in the treatment of the response of heteroge-

neous media of various natures. Excepting scatterers of the simplest forms, however,

the T-matrix is generally a painstaking object to compute, and often leads to systems

of equations that can be numerically problematic (e.g. [3] and references therein).

In the vast majority of treatments, the T-matrix is computed on-shell. This

terminology, borrowed from particle physics, indicates that the incident and

scattered momenta have their norms fixed by the dispersion relation of the host

medium. To be precise, the on-shell case corresponds to taking jk1j ¼ jk2j ¼ km with

km ¼ ð!=cÞ ffiffiffiffiffiffiffiffiffiffiffiffi

"m�m
p

, where k2 (resp. k1) stands for the arriving (resp. departing)

wavevector, ! the angular frequency of the incident wave, c the velocity of light in

vacuum, and "m and �m are, respectively, the complex relative (frequency-dependent)

dielectric permittivity (including conduction) and the para- or diamagnetic
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permeability in the embedding medium. These latter quantities are assumed

homogeneous and isotropic. With on-shell T-matrices, a scattering system can

only be examined ‘‘from outside’’, i.e. by sending and receiving signals from the host

medium [4]. However, the modern developments of multiple scattering theory (e.g.

[5,6]) have made it clear that a fully general solution of the scattering problem in the

bulk of a heterogeneous system requires that the T-matrix be computed off-shell, that

is, with norms of the arriving and departing momenta, k2� jk2j and k1� jk1j,
respectively, being arbitrary (not being constrained to equal km). The full generality

provided by the off-shell formalism allows one to study arbitrary fields in bulk

heterogeneous media, and also to deal with interface problems for which approx-

imate techniques are available; see references in [7].

Moreover, off-shell computations are the proper context for discussing spatial

non-locality (also referred to as spatial dispersion) in bulk response of heterogeneous

random media [8]. This allows for theoretical investigations of the various

propagation modes that can arise as a direct consequence of the finite size of

heterogeneities. Information on these modes (most of them strongly attenuated) can

be obtained either by direct computation of such ‘‘leaky modes’’, or by computing

the density of states using the imaginary part of the Green’s function [9].

Although spatial dispersion in the electrodynamics of crystals is an old sub-

domain of solid-state physics [7,10], heterogeneity-induced spatial dispersion in

random media is a less understood matter, for which many points remain to be

clarified [8]. More importantly, while being for a long time a pure theoretical

preoccupation [9,11–18], it has now acquired some experimental substance in

acoustics [19], electromagnetism in random media [20], and for electromagnetic

metamaterials, e.g. [21,22].

Given the complexity of off-shell T-matrices as compared to their on-shell

counterparts, we restrict ourselves to the simplest three-dimensional case of a single

sphere. Analytical results for off-shell transition operators in classical physics are the

scalar T-matrix for acoustic scattering [6,23,24] and the tensor electromagnetic T-

matrix for a purely dielectric sphere [5]. To our knowledge, however, an explicit

expression similar to that in [5] for a sphere with both dielectric and magnetic

contrast with respect to its embedding medium has not previously been available in

the literature. Since spatial dispersion implies the existence of an effective magnetic-

like response even in dielectric media, as has been observed by a number of authors

(e.g. [8,25]), the dielectric and magnetic case is a necessary milestone on the road

towards a realistic frequency-dependent self-consistent effective-medium theory.

Indeed, despite the considerable amount of work having addressed this issue (see

[8,9] and references therein) the latter question remains unsettled.

This paper is devoted to presenting the expression of the off-shell T-matrix

operator of a sphere with arbitrary dielectric and magnetic contrast, in the form of a

Mie series expansion. This result was derived more than a decade ago [26] but

remained unpublished, although it was announced in [17,27]. It should be mentioned

that by about the same time, Tip independently considered this same off-shell case in

an abstract mathematical framework [28], but gave explicit results for a vacuum

background only, and it is unclear how his result compares to ours. In the following,

we exclude the situation of a nonzero applied constant magnetic field. An extension
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of the off-shell T-matrix formalism in this case has recently been put forward and

exploited in connection with electromagnetic wave propagation in magnetochiral

media [29].

The direct demonstration of our result can be found in [26]. However, it uses the

approach of [5,6] and requires a great deal of preliminary work besides being

particularly tedious. The calculation goes in three steps.

. Step I: compute in real space the Green’s function G of the electric field in a

medium containing a single sphere, for arbitrary positions of the source and

observer points, inside or outside the sphere. This Green’s function is

obtained as a sum of four complementary parts, each one addressing a

typical situation for the emission and observation points, which can be

independently located inside or outside the scatterer. Each of these parts is

expanded on a basis of vector spherical harmonics (VSH) and the elements

of this expansion involve multiplicative combinations of spherical Bessel or

Hankel functions as is the rule with spherical scatterers. A crucial aspect of

this calculation is that it appeals to longitudinal-electric components of the

field, as in [5], in contrast with older approaches to the problem of wave

scattering by spheres [30] where these components are ignored. They have

since been recognized as playing an important part in source regions [31],

being responsible for evanescent modes originating from the scatterers.

. Step II consists in taking bivariate Fourier transforms of this Green’s

function with respect to the source and observer positions, before applying

manipulations that allow one to extract from it the off-shell T-matrix, see

Equation (7) where Gm denotes the dipolar Green’s function in free space.

This step is the most difficult one, since it involves non-trivial definite

Fourier integrals on separate ranges, 05 r5 a and a5 r51, where a is

the sphere radius and r is a radial coordinate. We could not express these

definite integrals in closed form, but instead reduced them to a lengthy sum

of explicit terms, added to a residual definite integral of simple form. The

latter fortunately cancels out with an identical term arising from the VSH

expansion of the Dirac singularity at the origin of Gm, to be subtracted from

the G in the process of extracting the T-matrix according to Equation (7).

Hence, the result can be expressed in closed form as in [5], without any non-

evaluated integrals.

. In Step III, some tedious re-organizations of terms are carried out to bring

the result into a more usable form that displays all symmetry properties of

interest.

The complications make it problematic to present a concise exposition of this

direct approach in the case of dielectric and magnetic contrast, so it will not be

pursued here. Instead, we outline hereafter a new and shorter – albeit non-deductive

– proof of the result, which bypasses most of the difficulties of the direct approach.

The proof consists in showing that the T-matrix satisfies a defining relation of the

T-matrix, namely Equation (8). This verification only requires carrying out integrals

by a method that can be explained relatively easily. Moreover, these integrals only
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involve simple poles whose residues can almost be read by inspection. Carrying out

such a check remains a cumbersome task, but is a straightforward thing to do with a

minimum amount of preliminary technical material.

The paper is organized as follows. Our Fourier transform conventions are

explained in Appendix 1. After setting up our formalism in Section 2, the coefficients

of the Mie series of the off-shell T-matrix are given in Section 3.2, formulated in such

a way that important symmetry and conservation properties [32] (among which the

unitarity identity [33,34]) are made conspicuous. These properties are discussed in

Sections 3.3 and 3.4. The principle of a proof of our result is detailed afterwards in

Section 3.5. For purposes of clarity and further physical insight into the structure

of the T-matrix, we use an intermediate decomposition of the T-matrix in

intermediate partial ‘‘dielectric’’ and ‘‘magnetic’’ parts, which originate from similar

decompositions of the scattering potential. Before concluding in Section 5, some

limiting cases of particular interest are examined, and new expressions relevant to

applications to spatially-dispersive effective-medium approximations are obtained in

Section 4.

Henceforth, the sign� stands for the three-dimensional vector product, unless

otherwise indicated.

2. Green’s function associated with the electric field and scattering potential
operator

The T-matrix is most easily expressed in the time-harmonic domain and space

Fourier representation. The dipolar Green’s function G associated with the

electromagnetic field in an infinite medium of relative isotropic permittivity and

permeability "m and �m (the index m referring to the embedding matrix) is the

retarded solution of the inhomogeneous wave-propagation equation [31]

�ÿ1
m J� J�ÿð!=cÞ2"m

� �

Gmðrjr0Þ ¼ I �3ðrÿ r0Þ: ð1Þ

In the Fourier representation, it reads

GmðkÞ ¼ �m

Iÿ k̂k̂

k2 ÿ ðkm þ i0þÞ2
ÿ k̂k̂

k2m

" #

, ð2Þ

where k2m ¼ ð!=cÞ2"m�m, the angular frequency ! being considered as a mere

parameter hereafter. In Equation (1) the permeability �m is introduced so as to

make the source term a pure (permeability-independent) electric current. This set-up

allows for a consistent treatment of media with heterogeneous magnetic

permeability.

Because of translation invariance, Gm(rjr0)�Gm(rÿ r0) so that Gm(kjk0)�
Gm(k)�(kÿ k0), which defines Gm(k). In Equation (2), I stands for the identity

matrix, and Gm is expressed in terms of the transverse and longitudinal projectors

with respect to the direction k̂ ¼ k=k of the Fourier mode k.

4 Y.-P. Pellegrini et al.
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Consider now the one-body inhomogeneous problem in the presence of a

spherical scatterer of radius a centered at the origin. With our above convention for

the permeability, the constitutive properties of the medium are specified by

"ðrÞ ¼ "m þ ð"s ÿ "mÞ�ðrÞ,
1

�ðrÞ ¼
1

�m

þ 1

�s

ÿ 1

�m

� �

�ðrÞ, ð3Þ

where "s,�s are the relative permittivity and permeability of the sphere, of

characteristic function �(r)¼ �(aÿ jrj) (� denotes the Heaviside step function). The

scattering potential operator U between points r and r0 is [17]

Uðrjr0Þ ¼ �ðrÿ r0Þ J0 � 1

�m

ÿ 1

�s

� �

�ðr0ÞJ0 � þ !

c

� �2

"s ÿ "mð Þ I�ðr0Þ
� �

, ð4Þ

where the prime denotes a derivative with respect to r0; or in Fourier form [17]:

Uðk1jk2Þ ¼
1

ð2�Þ3=2

"

1

�s

ÿ 1

�m

� �

k1 � k2 � þ !

c

� �2

ð"s ÿ "mÞ I
#

�ðk1 ÿ k2Þ: ð5Þ

The Green’s function G associated with the electric field in the medium now obeys

the integro-differential equation

1

�m

J� J�ÿð!=cÞ2"m
� �

Gðrjr0Þ ¼ I �3ðrÿ r0Þ þ
Z

d3r1 Uðrjr1ÞGðr1jr0Þ: ð6Þ

In formal operator notation [5], and with the help of Gm, this equation takes the

Lippmann–Schwinger form G¼GmþGmUG.

3. The T-matrix

3.1. Definitions and derivation

The T-matrix operator is introduced so that G¼GmþGmTGm, hence by definition

T¼U(1ÿGmU)ÿ1. This operator inversion is difficult to perform directly. Thus, we

computed the T-matrix following Tsang and Kong [5], i.e. by first solving the one-

body problem in real space for G(rjr0) with arbitrary positions of the source r and of

the observation point r0 inside or outside the scatterer; then, by going to Fourier

transforms; and eventually by extracting T via the relationship

T ¼ Gÿ1
m ðGÿ GmÞGÿ1

m : ð7Þ

The drawbacks of this direct approach have been recalled in the Introduction (see

[26] for details). Thus, a much shorter albeit non-deductive proof is provided in

Section 3.5, which consists in proving that the following equation for T holds:

T ¼ UþUGmT: ð8Þ

The T-matrix is obtained as an expansion over vector spherical harmonics

defined in Appendix 1. We depart from other authors [5,30,31] by using

the orthonormalized VSH basis {Nln,Zln,Xln} as found in the book by

Waves in Random and Complex Media 5
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Cohen-Tannoudji et al. [35]. The number l� 0 is the multipole index while ÿl� n� l

is the angular number. With 
k as the solid angle in direction k, Nln(
k) has the

character of a longitudinal electric component, aligned with k, whereas Zln

and Xln are of transverse electric and magnetic character, respectively, and are

orthogonal to k. Both Zln and Xln are nonzero for l� 1 only. As recalled in

the Introduction, longitudinal terms built on Nln are necessary in any source

region [31].

The following variables related to dielectric and magnetic contrast are

introduced:

D" ¼ ð"s="mÞ ÿ 1, D� ¼ ð�m=�sÞ ÿ 1, �" ¼ ð"m="sÞD", �� ¼ ð�s=�mÞD�:

Also, we introduce suitably normalized derivatives of the Ricatti–Bessel and Ricatti–

Hankel functions, standard in this context, defined as the product of x by the

spherical Bessel or Hankel functions jl(x) or h
ð1Þ
l ðxÞ, respectively [36]. They read:

’l,� � ’l ðak�Þ ¼
½ak�jl ðak�Þ�0

jl ðak�Þ
, ’

ð1Þ
l,� � ’

ð1Þ
l ðak�Þ ¼

½ak�hð1Þl ðak�Þ�0

h
ð1Þ
l ðak�Þ

ðl 6¼ 0Þ: ð9Þ

These ’ functions simplify the evaluation of our forthcoming results in the static

limit where !! 0. In the above expressions, the index � stands either for m, s, k, 1

or 2 depending on the argument k� being km¼ (!/c)("m�m)
1/2, ks¼ (!/c)("s�s)

1/2, k,

or the outgoing or incoming momenta k1 or k2, respectively. Finally, let

Sl,�� � ’l,� ÿ ’l,�

k2� ÿ k2�
, Rl,�� �

k2�’l,� ÿ k2�’l,�

k2� ÿ k2�
, Jl,12 �

jl ðak1Þ
ak1

jl ðak2Þ
ak2

: ð10Þ

Useful limiting behaviors are ’l(x)¼ (lþ 1)ÿx2/(2lþ 3)þO(x4), so that Sl,��’ÿa2/

(2lþ 3) and Rl,��’ lþ 1 when a! 0, and ’
ð1Þ
l ðxÞ ¼ ÿlþ x2=ð2lÿ 1Þ þOðx4Þþ

O ððixÞ2lþ1Þ.1

3.2. Off-shell components

Our VSH expansion of the T-matrix, which is the main result of this paper

(see Introduction), reads

Tðk1jk2Þ ¼
X

l� 0
A,B¼N,Z,X

TAB
l ðk1jk2Þ

X

l

n¼ÿl

Alnð
k1ÞB�
lnð
k2Þ, ð11Þ

where TNX
l ðk1jk2Þ ¼ TXN

l ðk1jk2Þ ¼ TZX
l ðk1jk2Þ ¼ TXZ

l ðk1jk2Þ ¼ 0 due to spherical

symmetry, and

TNN
l ðk1jk2Þ ¼

2a3

�

k2m
�m

�"

"

l ðlþ 1Þ�"
ð"m="sÞ’l,s ÿ ’

ð1Þ
l,m

þ Rl,12 ÿ 1

#

Jl,12, ð12aÞ

6 Y.-P. Pellegrini et al.
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TNZ
l ðk1jk2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l ðlþ 1Þ
p ¼ TZN

l ðk2jk1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l ðlþ 1Þ
p ¼ 2a3

�

k2m
�m

�"

"

�"Rl,2s þ ��k22Sl,2s

ð"m="sÞ’l,s ÿ ’
ð1Þ
l,m

þ 1

#

Jl,12, ð12bÞ

TZZ
l ðk1jk2Þ ¼

2a3

�

k2m
�m

"

ð�"Rl,1s þ ��k21Sl,1sÞð�"Rl,2s þ ��k22Sl,2sÞ
ð"m="sÞ’l,s ÿ ’

ð1Þ
l,m

þ ��
k21k

2
2

k2m

ðk21 ÿ k2mÞSl,1s ÿ ðk22 ÿ k2mÞSl,2s

k21 ÿ k22

þ �"

k2m

k22ðk21 ÿ k2mÞRl,1s ÿ k21ðk22 ÿ k2mÞRl,2s

k21 ÿ k22

#

Jl,12, ð12cÞ

TXX
l ðk1jk2Þ ¼

2a3

�

k1k2

�m

"

ðD�Rl,1s þ k2mD"Sl,1sÞðD�Rl,2s þ k2mD"Sl,2sÞ
ð�m=�sÞ’l,s ÿ ’

ð1Þ
l,m

ÿ �s

�m

ðD�k21 ÿ k2mD"ÞðD�k22 ÿ k2mD"Þ
Sl,1s ÿ Sl,2s

k21 ÿ k22

ÿ ðD�Rl,12 þ k2mD"Sl,12Þ
#

Jl,12: ð12dÞ

The elements TNN
l are defined for l� 0, whereas the other types are defined for

l� 1. At the price of additional algebraic manipulations, we checked that in the

absence of magnetic contrast (�s¼�m), these compact and symmetric expres-

sions are equivalent to those of Tsang and Kong [5] (who use non-

orthonormalized VSH). The equality of TNZ
l ðk1jk2Þ and TZN

l ðk2jk1Þ is a consequence

of reciprocity [31].

3.3. Basic properties

Briefly, the main properties enjoyed by these matrix elements are as follows. First,

TNN
l , TZZ

l and TXX
l are symmetric under interchange of k1 and k2, and are non-

singular for all finite values of (k1, k2) (possibly complex). With respect to this

property, note that at a zero of jl(ak�), �¼ 1, 2, the product ’l,� jl(ak�) is always

finite. In addition, the triple limit k1! 0, k2! 0, !! 0 is uniquely defined, because

the limits commute. Also, the limit

lim
k1!km

lim
k2!km

TAB
l ðk1jk2Þ ¼ lim

k!km
TAB
l ðkjkÞ, ð13Þ

uniquely defines the so-called ‘‘on-shell’’ elements (a concept relevant to transverse

components only, see below).

The denominators identify the NN, NZ, ZN and ZZ terms as electric multipole

contributions, and the XX terms as magnetic multipoles. The prefactor k1k2 in

TXX
l ðk1jk2Þ results from the operator k1�k2� in the potential expressed by

Equation (5). As in classical Mie scattering (i.e. for the on-shell T-matrix,
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see Section 4.2), transverse electric and magnetic polariton resonances [10,37,38]

arise at complex frequencies for which denominators vanish, namely when:

"m

�m

�

’l ðaksÞ ÿ
"s

�s

�

’
ð1Þ
l ðakmÞ ¼ 0 ðl � 1Þ: ð14Þ

3.4. Unitarity identity as a consistency check

In the non-dissipative case, all constitutive parameters and U(rjr0) are real. Imaginary

parts of the T-matrix elements, rooted in the outgoing-wave prescription þi0þ in

Equation (2) that defines Gm(k), arise solely from the ’
ð1Þ
l,m. The fact that these

imaginary parts are separable in the momenta k1 and k2, see Equations (12a–d),

is deeply connected with the well-known unitarity identity [32–34]. This identity

is a generalization of a well known statement of energy conservation in scattering

theory, [43], wherein the scattering �s cross-section is equal to the extinction

cross-section of the scatterer �e in the absence of absorption. As relationships (17)

below show, this identity is deeply connected with the fact that the sum of the

second and third terms enclosed in braces in Equations (12c) or (12d) reduce to the

left or right factor in the numerator of the first term in the same expressions, when

k1¼ km or k2¼ km, respectively. This provides an easy consistency check for

expressions in Equations (12a–b). For definiteness and further reference, this

unitarity identity is derived in Appendix 3 in the vector case. Its generic operator

form reads

1

2i
ðTÿ T y� ¼ Ty ImðGmÞT ¼ T ImðGmÞT y: ð15Þ

For spherical scatterers, it takes the form (see Appendix 3)

ImTðk1jk2Þ ¼
�

2
�mkm

Z

d
q Tðk1jkmq̂Þ Iÿ q̂q̂
ÿ �

T
�ðkmq̂jk2Þ: ð16Þ

Ensuing identities for matrix components are obtained as follows. Since for a sphere

TNX¼TXN¼TNX¼TXN¼ 0, the sums over n in Equation (11) are purely real

(see Appendix 2 for their explicit value). Then T*(k1jk2) is expressed by Equation

(11) provided that TAB
l ðk1jk2Þ is replaced by TAB�

l ðk1jk2Þ in this expression.

Then, expanding the identity in Equation (16) on the VSH basis and identifying

mutually orthogonal components leads to the following relations, to be obeyed for

each l:

ImTXX
l ðk1jk2Þ ¼

�

2
�mkmT

XX
l ðk1jkmÞTXX�

l ðkmjk2Þ, ð17aÞ

ImTZZ
l ðk1jk2Þ ¼

�

2
�mkmT

ZZ
l ðk1jkmÞTZZ�

l ðkmjk2Þ, ð17bÞ

ImTZN
l ðk1jk2Þ ¼

�

2
�mkmT

ZZ
l ðk1jkmÞTZN�

l ðkmjk2Þ, ð17cÞ

8 Y.-P. Pellegrini et al.
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ImTNZ
l ðk1jk2Þ ¼

�

2
�mkmT

NZ
l ðk1jkmÞTZZ�

l ðkmjk2Þ, ð17dÞ

ImTNN
l ðk1jk2Þ ¼

�

2
�mkmT

NZ
l ðk1jkmÞTZN�

l ðkmjk2Þ: ð17eÞ

For l¼ 0, the last equation must be replaced by ImTNN
0 ðk1jk2Þ ¼ 0. These relations

can be explicitly checked on the matrix elements themselves with the help of the

formulas (the second equality stems from the Wronskian [36] Wð jl, hð1Þl Þ ¼ i=x2):

Im’
ð1Þ
l ðxÞ ¼ ½xjhð1Þl ðxÞj2�ÿ1, ð18aÞ

’l ðxÞ ÿ ’
ð1Þ
l ðxÞ ¼ ½ixhð1Þl ðxÞ jl ðxÞ�ÿ1: ð18bÞ

We close this section with the following remark. Combined with the symmetry

properties of the matrix elements, Equations (17a), (17b) and (17e) imply, for real k

and non-dissipative media, the positivity of ImTNN
l ðkjkÞ, ImTZZ

l ðkjkÞ and

ImTXX
l ðkjkÞ. Moreover, setting �l(k1jk2)¼ (�/2)�mkmTl(k1jk2) where Tl stands for

either TZZ
l or TXX

l , it is easily seen that the identities in Equations (17a) and (17b)

imply the existence of real symmetric functions tl(k1jk2) such that

�l ðk1jk2Þ ¼ tl ðk1jk2Þ þ 2i
tl ðk1jkmÞtl ðkmjk2Þ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1ÿ 4t2l ðkmjkmÞ
q , jtl ðkmjkmÞj �

1

2
, ð19Þ

a choice of sign in front of the square root having been made. In words, the real part

of TXX or TZZ fully determines the latter quantities as functions of k1 and k2. The

!-dependence of T is closely tied to its k-dependence, as shown by the way km occurs

in the imaginary part of Equation (19). Finally, the inequality in Equation (19)

allows one to define phase shifts �l (real in the absence of dissipation) different for

the ZZ and XX components, such that �l(kmjkm)¼ sin(�l)exp(i�l) [33,39,40]. Both tl
and �l are analytically continued as functions of "s, "m, �s and �m in the dissipative

case.

3.5. Sketch of a proof of Equations (12)

We prove Equations (12) by verifying relationship (8), taken as a definition of T.

To proceed, and anticipating further applications to heterogeneous media with

spherical inclusions, it is convenient to split up the scattering potential U into its

‘‘dielectric’’ and ‘‘magnetic’’ parts, U" and U�, defined from Equation (5) by

alternately suppressing the magnetic or the dielectric contrast: U" ¼ Uj�s¼�m
and

U� ¼ Uj"s¼"m
[27]. Our aim is to show explicitly that

T ¼ ðU" þU"GmTÞ þ ðU� þU�GmT Þ, ð20Þ

which is equivalent to proving Equation (8).

From this perspective, VSH representations of U" and U� are obtained from the

T-matrix components of Equations (12) by keeping only their lowest-order term in

an expansion in powers of the dielectric and magnetic contrasts D" and D�,2 since

Waves in Random and Complex Media 9
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U",� are proportional to these quantities. The following nonzero elements are

obtained:

U"NN
l ðk1jk2Þ ¼

2a3

�

k2m
�m

D"ðRl,12 ÿ 1Þ Jl,12, ð21aÞ

U"NZ
l ðk1jk2Þ ¼ U"ZN

l ðk2jk1Þ ¼
2a3

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l ðlþ 1Þ
p k2m

�m

D" Jl,12, ð21bÞ

U"ZZ
l ðk1jk2Þ ¼

2a3

�

k2m
�m

D"Rl,12 Jl,12, ð21cÞ

U"XX
l ðk1jk2Þ ¼ ÿ 2a3

�

k1k2

�m

k2mD"Sl,12 Jl,12, ð21dÞ

U
�ZZ
l ðk1jk2Þ ¼

2a3

�

k21k
2
2

�m

D�Sl,12 Jl,12, ð21eÞ

U
�XX
l ðk1jk2Þ ¼ ÿ 2a3

�

k1k2

�m

D�Rl,12 Jl,12: ð21fÞ

Next, one must compute U"GmT and U�GmT. The calculation goes as follows: first,

expand for instance
R

U
"(k1jq1)Gm(q1jq2)T(q2jk2) d3q1 d3q2 on the VSH basis. Using

the orthonormalization properties, we arrive at expressions such as

ðU"GmTÞZZl ðk1jk2Þ ¼ 4�

Z 1

0

dq q2
h

gTðqÞU"ZZ
l ðk1jqÞTZZ

l ðqjk2Þ

þ gLðqÞU"ZN
l ðk1jqÞTNZ

l ðqjk2Þ
i

,

where gT and gL are the transverse and longitudinal parts of Gm that we have written

GmðkÞ � gTðkÞð Iÿ k̂k̂ Þ þ gLðkÞk̂k̂. Such expressions only involve products of the

form gTðqÞU"AZ
l ðk1jqÞTZB

l ðqjk2Þ, or gTðqÞU"AX
l ðk1jqÞTXB

l ðqjk2Þ or gLðqÞU"AN
l

ðk1jqÞTNB
l ðqjk2Þ, where A,B¼N,Z,X. Upon going back to definition (9) of the

function ’l(x), one observes that these integrals over q all reduce to generic

contributions of the type

I ¼
Z 1

0

dqf ðq2Þ
n

�ðq2Þ jl ðaqÞ þ �ðq2Þ½ aq jl ðaqÞ �0
on

ðq2Þ jl ðaqÞ þ �ðq2Þ½ aq jl ðaqÞ �0
o

,

where f, �, �,  and � are rational functions of q2. These integrals are computed by

the following standard method in the presence of trigonometric or Bessel functions

[41]. Splitting up I into two equal parts by writing I¼ I/2þ I/2, then performing

alternately the substitution jl ðaqÞ ¼ ½hð1Þl ðaqÞ þ h
ð2Þ
l ðaqÞ�=2 in the right-hand factor (in

the first instance of I/2) and in the left-hand one (in the second instance), and

10 Y.-P. Pellegrini et al.
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appealing next to the change of variable q!ÿq, with h
ð2Þ
l ðÿaqÞ ¼ ðÿ1Þlhð1Þl ðaqÞ,

yields the equivalent form

I ¼ 1

4

Z 1

ÿ1
dqf ðq2Þ

�n

� jl ðaqÞ þ � ½ aq jl ðaqÞ �0
on

 h
ð1Þ
l ðaqÞ þ � ½ aq hð1Þl ðaqÞ �0

o

þ
n

� h
ð1Þ
l ðaqÞ þ � ½ aq hð1Þl ðaqÞ �0

on

 jl ðaqÞ þ � ½ aq jl ðaqÞ �0
o�

: ð22Þ

To be precise, we indicate that this transformation turns products Rl,1q jl(aq) and

Sl,1q, jl(aq) in the original integral into the following new quantities:

Rl,1q jl ðaqÞ !
q2’l,1 ÿ k21’

ð1Þ
l,q

q2 ÿ k21
h
ð1Þ
l ðaqÞ, ð23aÞ

Sl,1qjl ðaqÞ !
’
ð1Þ
l,q ÿ ’l,1

q2 ÿ k21
h
ð1Þ
l ðaqÞ: ð23bÞ

Once cast in the form of Equation (22) the integral can be computed by contour

integration, closing the integration path on the real axis using a half-circle of infinite

radius in the upper half-plane. Since the transformation generates products of jl and

h
ð1Þ
l functions, the contribution of this half-circle vanishes. Besides poles �km due to

the transverse part of the Green’s function (if present), the transformation endows

the integrand with a single pole at q¼ 0 due to products jl ðaqÞhð1Þl ðaqÞ, and double

poles among �ks, �k1 or �k2 because the functions R and S have been modified

according to Equations (23a) and (23b). The pole q¼ 0 must be handled by a

principal value prescription, whereas in the pairs of poles of opposite sign that of

minus (resp., plus) sign is shifted in the lower (resp., upper) half-plane by an

infinitesimal amount. In this way only poles with plus sign contribute. Most often in

these integrals the associated residues can be read by inspection. Extensive use is

made of the Wronskian identity (18b) in subsequent reorganizations to reduce

residue contributions coming from terms such as Equations (23a) or (23b). For

instance, the pole q¼ k1 generated by (23b) gives rise to a residue proportional to

ð’l,1 ÿ ’
ð1Þ
l,1 Þh

ð1Þ
l ðak1Þ, equal to 1/[iak1jl(ak1)] by virtue of Equation (18b). In general,

the remaining function jl(ak1) in this denominator cancels with a similar factor

present in the numerator of the multiplying term within braces in the integrand of

Equation (22), in which the jl have not been transformed. Albeit lengthy, the

calculation is thus straightforward.

Adding, respectively, the contributions of potentials U", U� read from

Equation (21) to the matrix elements of U"GmT and U�GmT computed by this

procedure yields:

U" þU"GmTð ÞNN
l ðk1jk2Þ ¼ TNN

l ðk1jk2Þ, ð24aÞ

U" þU"GmTð ÞNZ
l ðk1jk2Þ ¼ U" þU"GmTð ÞZNl ðk2jk1Þ ¼ TNZ

l ðk1jk2Þ, ð24bÞ

Waves in Random and Complex Media 11
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U" þU"GmTð ÞZZl ðk1jk2Þ ¼
2a3

�

k2m
�m

"

�"Rl,1sð�"Rl,2s þ ��k22Sl,2sÞ
ð"m="sÞ’l,s ÿ ’

ð1Þ
l,m

þ �"

k2m

k22ðk21 ÿ k2mÞRl,1s ÿ k21ðk22 ÿ k2mÞRl,2s

k21 ÿ k22

#

Jl,12, ð24cÞ

U" þU"GmTð ÞXXl ðk1jk2Þ ¼
2a3

�

k1k2

�m

"

k2mD"Sl,1sðD�Rl,2s þ k2mD"Sl,2sÞ
ð�m=�sÞ’l,s ÿ ’

ð1Þ
l,m

þ �s

�m

k2mD"ðD�k22 ÿ k2mD"Þ
Sl,1s ÿ Sl,2s

k21 ÿ k22
ÿ k2mD"Sl,12

#

Jl,12,

ð24dÞ

U� þU�GmTð ÞZZl ðk1jk2Þ ¼
2a3

�

k2m
�m

"

��k21Sl,1sð�"Rl,2s þ ��k22Sl,2sÞ
ð"m="sÞ’l,s ÿ ’

ð1Þ
l,m

þ ��
k21k

2
2

k2m

ðk21 ÿ k2mÞSl,1s ÿ ðk22 ÿ k2mÞSl,2s

k21 ÿ k22

#

Jl,12, ð24eÞ

U� þU�GmTð ÞXXl ðk1jk2Þ ¼
2a3

�

k1k2

�m

"

D�Rl,1sðD�Rl,2s þ k2mD"Sl,2sÞ
ð�m=�sÞ’l,s ÿ ’

ð1Þ
l,m

ÿ �s

�m

D�k21ðD�k22 ÿ k2mD"Þ
Sl,1s ÿ Sl,2s

k21 ÿ k22
ÿ D�Rl,12

#

Jl,12,

ð24fÞ
other matrix elements being zero. Identity (20) can now be checked by mere

inspection by comparing these expressions to the matrix elements in Equations (12).

4. Limits and values of interest

Some particular limits and values of interest are now examined. The sphere volume is

v¼ (4�/3)a3.

4.1. Point-like limit

In the mathematical ‘‘point-like’’ limit where the sphere radius a goes to zero, the

matrix elements in (12) reduce to

T
NN pt
l ðk1jk2Þ ¼

4�v

ð2�Þ3
!

c

� �2

"m
"s ÿ "m

"s þ 2"m
�l1, ð25aÞ

T
XX pt
l ðk1jk2Þ ¼

8�v

ð2�Þ3
k1k2

�m

�s ÿ �m

�s þ 2�m

�l1, ð25bÞ

12 Y.-P. Pellegrini et al.
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and T
NZ pt
l ðk1jk2Þ ¼ T

ZN pt
l ðk1jk2Þ ¼

ffiffiffi

2
p

T
NN pt
l ðk1jk2Þ while T

ZZpt
l ðk1jk2Þ ¼ 2T

NN pt
l

ðk1jk2Þ. To lowest order in the sphere radius, the T-matrix thus reads

T
ptðk1jk2Þ ¼

1

ð2�Þ3
ð!=cÞ2"m�"Iÿ

��

�m

k1 � k2�
� �

, ð26Þ

where �� and �" are the quasi-static electric and magnetic polarizabilities of a

sphere [36]:

�" ¼ 4�a3
"s ÿ "m

"s þ 2"m
�� ¼ 4�a3

�s ÿ �m

�s þ 2�m

: ð27Þ

The quasi-static expression for electric polarizability is too crude to obey the

unitarity identity, and a variety of prescriptions have been developed in recent years

to include finite frequency corrections to the point-like model that satisfy unitarity

[42]. Corrections to the quasi-static limit that satisfy both unitarity and causality

were developed in [17].

4.2. Transverse on-shell elements

For scatterers immersed in a homogeneous background medium, the calculation of

physical quantities proceeds via T-matrices sandwiched between the homogeneous

media Green’s function Gm (e.g. GmTGm), the poles of which select the ‘‘on-shell’’

T-matrix elements with k1¼ k2¼ km. In the scattering and extinction cross-section

calculations of Equation (45), the on-shell T-matrix elements are proportional to the

Mie coefficients classically obtained by solving the exterior problem where the source

and the observer both lie outside the sphere [37]. Specialization to this case of

expressions (12c), (12d) after a few reorganizations that involve the Wronskian

identity (18b), yields the standard values of these coefficients, which in our notation

reads (see also [17])

i
�

2
�mkmT

ZZ
l ðkmjkmÞ ¼

jlðakmÞ
h
ð1Þ
l ðakmÞ

"s’l,m ÿ "m’l,s

"m’l,s ÿ "s’
ð1Þ
l,m

, ð28aÞ

i
�

2
�mkmT

XX
l ðkmjkmÞ ¼

jlðakmÞ
h
ð1Þ
l ðakmÞ

�s’l,m ÿ �m’l,s

�m’l,s ÿ �s’
ð1Þ
l,m

: ð28bÞ

The right-hand sides of these equations are the dimensionless T-matrix elements

typically manipulated in on-shell theories. The factor ��mkm/2 arises from

slightly different conventions and normalizations that are generally practiced

between off- and on-shell theories.

4.3. Equal momenta

The case of forward scattering k1¼ k2¼ k is particularly important for applications

to random media, since it is the one relevant to the computation of the first

correction in the volume density of scatterers, to the non-local effective permittivity

Waves in Random and Complex Media 13
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and permeability of the medium [8,26]. In this case, the Mie series that defines T can

be partially re-summed. Only the result is presented here; the calculation is carried

out in Appendix 4.

Symmetry considerations allow us to decompose T(kjk) into longitudinal and

transverse parts as

TðkjkÞ ¼ TLðkÞ k̂k̂þ TTðkÞ ð Iÿ k̂k̂ Þ, ð29Þ

where TT(k)¼TZ(k)þTX(k), and where TL, TZ and TX are defined by:
X

l�0

TNN
l ðk1jk2Þ

X

n

Nlnð
k1 ÞN�
lnð
k2Þ � TLðkÞ k̂k̂, ð30aÞ

X

l�1
TZZ
l ðkjkÞ

X

n

Zlnð
kÞZ�
lnð
kÞ � TZðkÞð Iÿ k̂k̂ Þ, ð30bÞ

X

l�1
TXX
l ðkjkÞ

X

n

Xlnð
kÞX�
lnð
kÞ � TXðkÞð Iÿ k̂k̂ Þ: ð30cÞ

The sums over n are given by formulas (39), from which we deduce that:

TLðkÞ ¼
X

l�0

ð2lþ 1Þ
4�

TNN
l ðkjkÞ, T

Z
Xf ðkÞ ¼

X

l�1

ð2lþ 1Þ
8�

T
ZZ
XXf

l ðkjkÞ ð31Þ

where the matrix elements, read in Equations (12) at unequal momenta, can by

evaluated in the limit k1, k2! k by means of Equations (50). Introduce now the

function

SðxÞ � 3

2

X

l�1
ð2lþ 1Þ’l ðxÞ

jl ðxÞ
x

� �2

¼ 3
1ÿ j0ð2xÞ

2x2
, ð32Þ

which is such that SðxÞ ¼ 1ÿ 1
5
x2 þOðx4Þ. Appendix 2 shows how part of the sums

over l that result from the above limiting process can be expressed using S. One ends

up with:

ð2�Þ3

v
TLðkÞ ¼ k2m

�m

�"

(

X

l�1

3l ðlþ 1Þð2lþ 1ÞD"
’l,s ÿ ð"s="mÞ’ð1Þl,m

jl ðakÞ
ak

� �2

þ1

)

, ð33aÞ

ð2�Þ3

v
TZðkÞ ¼ k2m

�m

�"þ "s

"m

ð�"ÿ ��Þ2k4

ðk2ÿk2s Þ
2

" #

SðakÞ

þ 1

2�m

ð��k2ÿ �"k2s Þ
k2ÿk2m
k2ÿk2s

� �

½SðakÞÿ 1�

þ 3

2

k2m
�m

"s

"m

X

l�1
ð2lþ 1Þ

"

ð�"Rl,ksþ ��k2Sl,ksÞ2

’l,sÿð"s="mÞ’ð1Þl,m

ÿð�"ÿ ��Þ2k4

ðk2ÿksÞ2
’l,s

#

jl ðakÞ
ak

� �2

,

ð33bÞ

14 Y.-P. Pellegrini et al.
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ð2�Þ3

v
TXðkÞ ¼ k2

�m

ÿD�þ �s

�m

ðD�k2 ÿ D"k2mÞ
2

ðk2 ÿ k2s Þ
2

" #

SðakÞ

þ 1

2�m

ð��k2 ÿ �"k2s Þ
k2 ÿ k2m
k2 ÿ k2s

� �

½SðakÞ ÿ 1�

þ 3

2

k2

�m

�s

�m

X

l�1
ð2lþ 1Þ

"

ðD�Rl,ks þ k2mD"Sl,ksÞ2

’l,s ÿ ð�s=�mÞ’ð1Þl,m

ÿ ðD�k2 ÿ k2mD"Þ
2

ðk2 ÿ k2s Þ
2

’l,s

#

jl ðakÞ
ak

� �2

: ð33cÞ

Expression (33a) is the frequency-dependent counterpart of the static momentum-

dependent expression obtained by Diener and Käseberg [14], to which it reduces

when !! 0 (see also equation (48) of [8]). Apart from the occurrence of different

magnetic permeabilities in km and ks that enter the definitions of ’
ð1Þ
l,m and ’l,s,

this longitudinal term has the same form as in the case with no magnetic contrast.

In [8], the expression of TT(k) provided in the case �m¼�s involves integrals that are

left unevaluated. Instead, the present result is fully explicit: the transverse part at

�s¼�m follows from using this equality and setting ��¼D�¼ 0 in the above

expressions.

Though this is not obvious from the above, expressions for TZ(k) and TX(k) are

regular in the limit k! ks. This can be shown by using Taylor expansions, more

particularly expansion (53). In this case, it is actually easier to check regularity term-

by-term in each individual term of the non-resummed Mie series; see Equations (51a)

and (51b), to which one can always go back in case of problems in numerical

evaluations near this limit.

It should finally be noted that the right-hand side of Equation (33a)

goes to infinity in the limit where "s! 0 (which is almost the case at the plasma

frequency in the high-frequency limit of dielectric response [36]), unless k¼ 0.

Then indeed

TLðkÞ ’ v

ð2�Þ3
k2m
�m

"m

"s
3
X

l�1
l ð2lþ 1Þ jl ðakÞ

ak

� �2

ÿ1

( )

¼ v

ð2�Þ3
k2m
�m

"m

"s

3

4ðakÞ2
2akSið2akÞ þ j0ð2akÞ þ cosð2akÞ ÿ 2½ � ÿ 1

� �

, ð34Þ

and the function within braces, which arises from formulas taken from [14] and

where Si(x) is the sine-integral function, has no real zero other than k¼ 0 near which

it behaves as ÿ(ak)2/15.

5. Concluding remarks

We derived the off-shell T-matrix of a dielectric and magnetic sphere, provided

relatively simple means to check this result, and some particular limits of physical
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importance were examined. Leaving applications to further work, we close with the

following remarks.

First, the introduction of the intermediate functions ’l, Rl and Sl was found to be

a quite useful device in trying to put some order in the structure of our results, and in

helping display physical symmetries of interest.

Second, it is observed that only the magnetic extension allows one to recover the

limiting case of perfectly conducting inclusions: as is explained in [43] (p. 790), this

ideal case corresponds to formally taking the joint limit "s!1 and �s! 0 in the

scatterer. Such limiting values allow one to retrieve from Equations (45b), and (28a),

(28b) the well known Mie–Debye low-frequency scattering cross-section of a

perfectly conducting sphere obtained from Leontovich’s boundary condition with

surface impedance Z¼ 0 (e.g. [36], formula 16.159). This cross-section is larger by a

factor 1.25 than that found for "s¼1 but �s¼�m. Similar limits can easily be taken

in the off-shell expressions.

It should be remarked that even though the most useful physical quantities are

obtained from either on-shell matrix elements, k1¼ k2¼ km (e.g. cross-sections) or

forward scattering, k1¼ k2¼ k, for effective-medium approaches in random media, it

was only by computing first the T-matrix at unequal momenta that we can currently

reach in explicit form these quantities of interest. This should be clear from the

definition T¼UþUGmT, that involves an integration over arbitrary momenta.

In the purely dielectric case, an alternative method has been recently proposed [8] to

directly obtain the relevant elements at equal momenta, but the outcome involves

integrals to be done numerically, and the method has not yet been extended to

magnetic contrast. In this respect, an appealing perspective might consist in

comparing our results in the absence of magnetic contrast to that of [8] for the

purpose of deriving identities for these integrals. This might ultimately lead to a

shorter path to obtaining T-matrices at equal momenta in other cases of interest

beyond dia- or paramagnetism.

Finally, the behavior in the limit "s! 0 emphasized at the end of the previous

section indicates that in this case for k 6¼ 0, the perturbative approach that consists in

computing the effective longitudinal dispersion relation of a composite medium to

one-body order [8] would fail, since the longitudinal part of the T-matrix goes to

infinity. Singularities also arise at polariton resonances. In situations of the sort, it

has sometimes been found that in effective constitutive parameters, the first

correction to the homogeneous matrix changes its usual proportionality to f, the

volume fraction of inclusions, into a proportionality to some lesser power of f (e.g.

[44]). Such cases therefore deserve special attention when considering applications of

the present results to effective-medium theories.

Notes

1. For this reason, slightly different normalizations, in the form of alternative functions
Ql(x)¼ ’l(x)/(lþ 1) and Q

ð1Þ
l ðxÞ ¼ ÿ’

ð1Þ
l ðxÞ=l were used by us in [17].

2. This requires Taylor-expanding �" and �� in powers of these quantities, too.

16 Y.-P. Pellegrini et al.
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Appendix 1. Fourier transform conventions

Our Fourier transform conventions are as follows. This work makes use of generic operators,
say A(rjr0), which may contain derivatives, with ‘‘input’’ point r0 and output point r. By
convention, their space Fourier transform is taken up by multiplying on the right by a factor
eÿik�r/(2�)3/2, and on the left by eþik0�r0=ð2�Þ3=2, and by carrying out the integrals over r and r0 in
the infinite volume to obtain the transform A(kjk0). This use of a normalized plane-wave basis
is standard when dealing with operators.

However, whenever A(rjr0)�A(rÿ r0) is translation invariant (we use the same A by abuse
of notation), we write A(kjk0)¼ �(kÿ k0)A(k), which follows from computing A(k) as the
transform of the one-entry function A(r) by multiplying the latter by eÿik�r and by integrating
over r. This is the standard practice of solid-state physics.

In the present context, this use of two conventions is necessary to spare us from dragging
factors (2�)3/2 in translation-invariant expressions of interest expressed as Fourier transforms.
No confusion will result since the use of the operator convention is indicated by the vertical
bar between two variables.

Appendix 2. Vector spherical harmonics

The vector spherical harmonics used in this work are defined for l� 0 and ÿl� n� l as [35]

Nlnð
kÞ ¼ k̂Ylnð
kÞ, ð35aÞ

Zlnð
kÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l ðlþ 1Þ
p r
k

Ylnð
kÞ, ð35bÞ

Xlnð
kÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l ðlþ 1Þ
p k̂�r
k

Ylnð
kÞ, ð35cÞ

where the Yln(
) are the usual scalar spherical harmonics [36], and where r
k
is the angular

part of the differential operator r ¼ k̂ @=@kþ ð1=kÞr
k
in spherical coordinates. Another

standard notation for the VSHs is Y
ð0Þ,ðeÞ,ðmÞ
ln (see e.g. [39]). However, the present notation,

already employed by us in [17], alleviates the need for superscripts.
The VSH are such that Xlnð
kÞ ¼ k̂� Zlnð
kÞ and Zlnð
kÞ ¼ ÿk̂� Xlnð
kÞ. Observe that

X00 and Z00 are identically zero. Under parity, Xlnðÿk̂Þ ¼ ðÿ1ÞlXlnðk̂Þ, Nlnðÿk̂Þ ¼ ðÿ1Þlÿ1Nlnðk̂Þ
and Zlnðÿk̂Þ ¼ ðÿ1Þlÿ1Zlnðk̂Þ. These VSH are orthonormalized:

Z

d
kA
�
lnð
kÞ:Bl0n0 ð
kÞ ¼ �A,B�l,l0�n,n0 , ð36Þ

where A,B stand indifferently for N, X or Z. The closure relationship reads:
X

ln

�

Nlnð
1ÞN�
lnð
2Þ þ Zlnð
1ÞZ�

lnð
2Þ þ Xlnð
1ÞX�
lnð
2Þ

	

¼ I �ð
1 ÿ
2Þ: ð37Þ

Introducing u ¼ k̂1 � k̂2 and the Legendre polynomial Pl(x) defined by the generating function

(1ÿ 2txþ t2)ÿ1/2¼
P

l�0Pl(x) t
l, the following sums are obtained (e.g. [17]):

X

n

Nlnð
k1 ÞN�
lnð
k2 Þ ¼

2lþ 1

4�
Pl ðuÞk̂1k̂2, ð38aÞ

X

n

Nlnð
k1 ÞZ�
lnð
k2 Þ ¼

2lþ 1

4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l ðlþ 1Þ
p P0

l ðuÞk̂1ðk̂1 ÿ uk̂2Þ, ð38bÞ
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X

n

Zlnð
k1 ÞN�
lnð
k2 Þ ¼

2lþ 1

4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l ðlþ 1Þ
p P0

l ðuÞðk̂2 ÿ uk̂1Þk̂2, ð38cÞ

X

n

Zlnð
k1 ÞZ�
lnð
k2 Þ ¼

2lþ 1

4�l ðlþ 1ÞP
00
l ðuÞðk̂2 ÿ uk̂1Þðk̂1 ÿ uk̂2Þ

þ 2lþ 1

4�l ðlþ 1ÞP
0
l ðuÞðIÿ k̂1k̂1 ÿ k̂2k̂2 þ uk̂1k̂2Þ, ð38dÞ

X

n

Xlnð
k1 ÞX�
lnð
k2 Þ ¼

2lþ 1

4�l ðlþ 1ÞP
00
l ðuÞðk̂1 � k̂2Þðk̂2 � k̂1Þ

þ 2lþ 1

4�l ðlþ 1ÞP
0
l ðuÞðuIÿ k̂2k̂1Þ: ð38eÞ

Since Pl(1)¼ 1 and P 0
l ð1Þ ¼ l ðlþ 1Þ=2, the only nonzero sums at equal angles 
k1 ¼ 
k2 are:

X

n

NlnN
�
ln ¼

2lþ 1

4�
k̂k̂, ð39aÞ

X

n

ZlnZ
�
ln ¼

X

n

XlnX
�
ln ¼

2lþ 1

8�
ðIÿ k̂k̂Þ: ð39bÞ

Appendix 3. Unitarity identity

Let A* be the complex conjugate of the operator A; AT its transpose; and Ay its Hermitian
conjugate, in the direct or Fourier representations. Since A

T

ijðr1jr2Þ ¼ Ajiðr1jr2Þ, AT
ijðk1jk2Þ ¼

Ajiðk1jk2Þ, Ay
ijðr1jr2Þ ¼ A�

jiðr2jr1Þ, and A
y
ijðk1jk2Þ ¼ A�

jiðk2jk1Þ, the operators T and y commute
with Fourier transforms. Our first step is to express by a condition on U the reality of the
constitutive parameters. The potential U, as a generalized response function, is subject to
Onsager’s symmetry principle for kinetic coefficients that translates here into the principle of
inverse propagation of light (or reciprocity). Assuming the absence of a constant external
magnetic field, this reads: U(r1jr2)¼U

T(r2jr1), or U(k1jk2)¼U
T(ÿk2j ÿ k1). Meanwhile, the

absence of dissipation translates as U(r1jr2)¼U
*(r1jr2), or U(k1jk2)¼U

*(ÿk1j ÿ k2).

Combining both sets of equalities implies that U¼Uy. Therefore, G obeys

Gÿ1
m ÿ Gÿ1 ¼ Uy ¼ Uy

y ¼ Gyÿ1
m ÿ Gyÿ1, so that using G¼GmþGmTGm provides:

GmðTþ TGy
mT

yÞGy
m ¼ GmðTy þ TGmT

yÞGy
m: ð40Þ

The desired unitarity identity on the T-matrix follows [33,34]: Tÿ Ty ¼ TyðGm ÿ Gy
mÞT ¼

TðGm ÿ Gy
mÞTy. Noticing that Gy

m ¼ G�
m, one ends up with Equation (15). With (2), we have

for real km:

ImGmðkÞ ¼
�

2

�m

km
ð Iÿ k̂k̂ Þ �ðkÿ kmÞ,

ImGmðrÞ ¼
km�m

16�2

Z

d
kð Iÿ k̂k̂ Þeikmk̂:r: ð41Þ

Since Ty also obeys Onsager’s principle, relations (15) can be rewritten as

ImTðr1jr2Þ ¼
Z

d3x1 d
3x2 Tðr1jx1ÞIm Gmðx1 ÿ x2Þð ÞT�ðx2jr2Þ, ð42aÞ
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1

2i
Tðk1jk2Þ ÿ T

�ðÿk1j ÿ k2Þ½ �

¼ �

2
�mkm

Z

d
q Tðk1jkmq̂Þð Iÿ q̂q̂ ÞT�ðÿkmq̂j ÿ k2Þ:
ð42bÞ

Scatterers for which the origin of coordinates is a symmetry center obey the property,
inherited from U, that T(ÿk1j ÿ k2)¼T(k1jk2). Equation (42) then entails Equation (16) in the
main text.

To retrieve the unitarity relations in their usual form, let the incident field be of the form
EiðrÞ ¼ eiðki :rÿ!tÞEi, with jkij ¼ km. The scattered field at large distances from the scatterer, Es, is
such that:

EsðrÞ
ð2�Þ3�m

¼
Z

d3x d3y

ð2�Þ3�m

Gmðrÿ xÞTðxjyÞEiðyÞ ’
eiðkmrÿ!tÞ

4�r
ð Iÿ k̂fk̂f ÞTðkf jkiÞEi ð43Þ

where kf ¼ kmr̂. The total field reads Etot(r)¼Ei(r)þEs(r). Accordingly, the total complex
Poynting vector is the sum of its incident, scattering, and extinction parts: StotðrÞ ¼ EtotðrÞ�
H�

totðrÞ ¼ SiðrÞ þ SsðrÞ þ SeðrÞ, with SiðrÞ ¼ EiðrÞ �H�
i ðrÞ, SsðrÞ ¼ EsðrÞ �H�

s ðrÞ, and SeðrÞ ¼
EsðrÞ �H�

i ðrÞ þ EiðrÞ �H�
s ðrÞ. Denoting the time-average of the real incident Poynting vector

by hSiiðrÞ ¼ 1
2
ReSiðrÞ, the scattering and extinction cross-sections are, respectively,

�s ¼
1

jjhSiiðrÞjj

Z

S1

dS
1

2
ReSsðrÞ, �e ¼ ÿ 1

jjhSiiðrÞjj

Z

S1

dS
1

2
ReSeðrÞ, ð44Þ

where the surface integrals are performed on a sphere whose radius goes to infinity, centered
on the scatterer [36]. The outer medium being lossless, we find after some algebra that

�s ¼
4�4�2

m

E
2

i

E
�
i �

Z

d
f T
yðkijkf Þð Iÿ k̂fk̂f ÞTðkf jkiÞEi, ð45aÞ

�e ¼
ð2�Þ3�m

kmE
2

i

E
�
i �

1

2i
TðkijkiÞ ÿ T

yðkijkiÞ
� �

Ei: ð45bÞ

Hence, Equation (15) implies the weaker conservation statement �e¼ �s where the T-matrix is
evaluated on-shell with ki¼ kf¼ km.

Appendix 4. Simplifications: partial summations of the Mie series

Part of the terms in the Mie series of the T-matrix can be explicitly summed. These are terms
with no explicit frequency dependence. The calculation consists in identifying and reducing
them, appealing to well known sums that involve spherical Bessel functions to produce closed-
form expressions.

A4.1. Longitudinal part

Observe that the longitudinal part TNN involves the frequency-independent terms

X

l�0

k21’l,2 ÿ k22’l,1

k21 ÿ k22
ÿ 1

� �

jl ðak1Þ
ak1

jl ðak2Þ
ak2

X

l

n¼ÿl

Nlnð
k1 ÞN�
lnð
k2 Þ

¼
X

l�0

k1jl ðak1Þ jl 0ðak2Þ ÿ k2jl ðak2Þ jl 0ðak1Þ
aðk21 ÿ k22Þ

X

l

n¼ÿl

Ylnð
k1 ÞY�
lnð
k2 Þk̂1k̂2: ð46Þ
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Since

X

ln

jl ðak1Þ jl 0ðak2ÞYlnð
k1 ÞY�
lnð
k2 Þ ¼

1

ð4�Þ2
@

@ ðak2Þ

Z

d
xe
iax̂:ðk1ÿk2Þ

¼ 1

4�

@

@ ðak2Þ
j0ðajk1 ÿ k2jÞ

¼ ÿ 1

4�
j1ðajk1 ÿ k2jÞ

k2 ÿ k1k̂1:k̂2
jk1 ÿ k2j

, ð47Þ

the sum in Equation (46) evaluates to

1

4�

j1ðajk1 ÿ k2jÞ
ajk1 ÿ k2j

ðk̂1:k̂2Þk̂1k̂2: ð48Þ

With u ¼ k̂1:k̂2 and on account of Equation (38a), this longitudinal part reduces to

T
NNðk1jk2Þ �

X

l�0
TNN
l ðk1jk2Þ

X

n¼ÿl...l

Nlnð
k1 ÞN�
lnð
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¼ 3v

ð2�Þ3
k2m
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�"

"
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l ð2lþ 1Þ�"Pl ðuÞ
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ak1

jl ðak2Þ
ak2

þ j1ðajk1 ÿ k2jÞ
ajk1 ÿ k2j

u

#

k̂1k̂2, ð49Þ

whence the expression in Equation (33a) for k1¼ k2¼ k.

A4.2. Transverse part

For arbitrary k1 and k2, contributions involving VSHs Z and X do not simplify as easily. Still,
for k1¼ k2¼ k, some partial evaluations of contributions to the Mie series are possible. Let us
first write down a few useful limits, making use of the following derivatives:

@Sl,ks

@k2
¼ ÿ 1

k2 ÿ k2s
Sl,ks ÿ

@’l,k

@k2

� �

,
@Rl,ks

@k2
¼ k2s

k2 ÿ k2s
Sl,ks ÿ

@’l,k

@k2

� �

:

Thus,

lim
k1,k2!k

Sl,12 ¼
@’l,k

@k2
, ð50aÞ

lim
k1,k2!k

Rl,12 ¼ ÿk4
@

@k2
’l,k

k2
¼ ’l,k ÿ k2

@’l,k

@k2
, ð50bÞ

lim
k1,k2!k

ðk21 ÿ k2mÞSl,1s ÿ ðk22 ÿ k2mÞSl,2s

k21 ÿ k22

¼ lim
k1,k2!k

Sl,12 þ ðk2s ÿ k2mÞ
Sl,1s ÿ Sl,2s

k21 ÿ k22

� �

¼ @’l,k

@k2
þ ðk2s ÿ k2mÞ

@Sl,ks

@k2

¼ Sl,ks ÿ
k2 ÿ k2m
k2 ÿ k2s

Sl,ks ÿ
@’l,k

@k2

� �

, ð50cÞ
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lim
k1,k2!k

k22ðk21 ÿ k2mÞRl,1s ÿ k21ðk22 ÿ k2mÞRl,2s

k21 ÿ k22

¼ lim
k1 ,k2!k

k2sRl,12 þ ðk2s ÿ k2mÞ
k22Rl,1s ÿ k21Rl,2s

k21 ÿ k22

� �

¼ ÿk2sk
4 @

@k2
’l,k

k2
þ ðk2s ÿ k2mÞk4

@

@k2
Rl,ks

k2

¼ k2mRl,ks þ k2k2s
k2 ÿ k2m
k2 ÿ k2s

Sl,ks ÿ
@’l,k

@k2

� �
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The above limits allow us to write the transverse elements at equal momenta as:
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TXX
l ðkjkÞ ¼ 2a3

�
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The second and third terms of both these expressions depend on l only via ’l,k, @’l,k/@k
2 and

’l,s. The last step consists in appealing to S(x) defined in Equation (32), and to the following
result:

X

l�1
ð2lþ 1Þ @’l ðxÞ

@x2
½ jl ðxÞ�2 ¼

1

3
SðxÞ ÿ 1½ � ¼ ÿ 1

15
x2 þO x4

ÿ �

, ð52Þ

whereas the evaluation of
P

l�1(2lþ 1)’l,s[jl(ak)]
2 by means of elementary functions is most

probably not feasible (this function should admit, for all l, all the zeros of jl(aks) as poles
relative to the variable ks). Using S(x) and Equation (52) to sum up the terms of Equation (51)
that are independent of ’l,s, one eventually arrives at Equations (33).

Finally, from S(x) and Equation (52) one deduces the expansion

X

l�1
ð2lþ 1Þ’l,s

jl ðakÞ
ak

� �2

¼ 2

3
SðaksÞ

þ 1

3k2s
1ÿ SðaksÞ þ 2k2s

@S
@k2s

ðaksÞ
� �

ðk2 ÿ k2s Þ þO ðk2 ÿ k2s Þ
2

ÿ �

,

ð53Þ

which is useful to investigate the limit k! ks alluded to in Section 4.3.
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