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Abstract: A unified and relatively simple linked-diagram expansion for performing microscopic calcula- 
tions of the nuclear transition matrix T,, is derived. We first review a folded-diagram effective 

interaction theory, based on which, the model-space effective hamiltonian can be calculated from 

realistic nucleon-nucleon interactions. An important ingredient of this theory is the wave-function 

decomposition theorem which provides a convenient connection between the true and model-space 

wave functions. By directly making use of this theorem, a folded-diagram expansion of T,, is 

readily obtained. Using a partial summation method, the folded diagrams of r,, are then eliminated, 

leading to a considerably simpler expression for Tf,_ Our formalism requires that Tr, must be 

calculated in strict consistence with the derivation of the model-space effective hamiltonian H’“. 

The model-space wave function normalization factor contained in our 1;, may play an important 
role in “quenching” the calculated nuclear transition matrix. A simple method for evaluating this 

normalization factor is derived, namely it can be obtained readily from the energy derivative of 

the respective self-consistent eigenvalue of !-fr”. 

1. Introduction 

In studying nuclear transitions such as electromagnetic radiations and beta decays, 

the basic quantity to be calculated is the transition matrix r,i = ( lyf/ T/ ~ii> where !Pr 

and !Pi denote respectively the final and initial wave functions of the nucfear system 

under consideration, and T is the physical transition operator. As is well known, 

the calculation of 7;i is in fact a rather difficult undertaking. 

The nuclear wave functions !Pf and 9”‘; are complicated many-body wave functions; 

it is impossible to calculate them exactly. Even if they could be exactly determined, 

they would be too complicated to be of physical interest. For example, the complete 

shell-model wave function for the nucleus of “0, a frequently used example for 

nuclear structure theories, will have 2pOh, 3plh, all the way up to 18p16h com- 

ponents. To say the least, it is certainly not convenient to use such wave functions 

in calculating rfi. To avoid the above difficulty, a commonly used procedure is to 

employ some model-space wave functions xf and xi in place of ‘P, and ‘Pi, and 

then calculate the effective transition matrix Tfeff = (XflTefflXi)a 

The model-space wave functions are generally not equal to the true nuclear wave 

functions. For example, a typica model-space wave function for “0 has onIy 2pOh 
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components. We formally define Te” by requiring T&@ = Tfi for certain chosen nuclear 

states f and i (not all). It is clear that the effective transition operator Te’ is in 

general not equivalent to the original (bare) transition operator, but contains renor- 

malization corrections. The derivation of Teif has long been an important yet difficult 

problem in nuclear theory. Many authors I-“) have studied this problem and made 

progress, but much remains to be done in order to make the basic theory for deriving 

and calculating Teff more satisfactory and simplified. 

We wish to study in the present work a unified, relatively simple, and practical 

method for calculating the transition matrix TrF starting from a realistic many-body 

nuclear hamiltonian. Our method is basically a simplification and extension of the 

folded diagram approach of Krenciglowa and Kuo “). In their approach, the effective 

transition matrix TFF was expressed in a form of N/ 13 where both N and D contain 

folded diagrams. The derivation of T$ as well as the calculation of N and D were 

both rather involved. In the present work, we also express Tpr in a form of N/D, 

but we have found a considerably simpler derivation. In addition, we shall show 

that the folded diagrams contained in N and D can each be summed up using a 

partial summation method so that no folded diagrams appear in our final result, 

thus simplifying the calculation of N and D. A somewhat interesting byproduct of 

the present work is that we have derived a fairly simple method for evaluating the 

normalization of the model-space wave functions. As to be described later, this 

normalization can be conveniently calculated from the energy derivative of the 

respective self-consistent eigenvalue. This makes it feasible to actually evaluate the 

normalization of the model-space wave functions of nuclear structure calculations 

using a realistic nucleon-nucleon interaction. In this way, we are in a position to 

examine the validity of the commonly adopted practise of always normalizing the 

shell-model wave functions to unity. In microscopic nuclear structure calculations, 

it is likely that the normalization of the model-space wave function is generally less 

than unity as we will later discuss. 

Before presenting our method, let us first introduce our notations. The nuclear 

hamiltonian is divided into two parts H = H,,+ V where H, is a one-body hamil- 

tonian, HO=Cy ~~a&, and V is the remaining interaction, typically taken to be 

two-body. The many-body eigenfunctions for N particles, and the eigenenergies of 

H and Ho are defined respectively by 

(1.1) 

(1.2) 

As usual, we introduce a model-space with projection operator P and conjugate 

projection operator Q defined in terms of the eigenfunctions of Ho, i.e. 

P = j, lKx#;ztl , Q=l-P (1.3) 
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where d is the dimension of the model-space. One calls states within the model-space 

the active states. Correspondingly, Q projects onto all states outside the model-space, 

henceforth known as passive states. 

In this work, we divide the set of all the single-particle (s.p.) states {a} into two 

disjoint subsets {a} and {ti} and call them active and passive, respectively. They are 

chosen such that {(Y} = {a} u { ti} and {a} n {a} = 0. We denote the elements contained 

in{a}bya,,a,,u, ,..., and those in {a} by a,, ciz, ii,, . . . . 

Our model-space will always be chosen to consist of an A-particle closed core 

state Ic) (&lc)= W,“lc)), with nP active valence particles and nh active holes. That 

is, the model-space states are of the form 

It+$;u; ,“,. .“.U,IC) 

5 nh 

with N=A+n, where n,=n,-n,. 

(1.4) 

A familiar example is the model-space consisting of two neutrons in the Odls 

shell with a closed I60 core, commonly used in nuclear structure calculations of 

“0 (see fig. la). When writing diagrams, particles and holes outside the model-space 

will be denoted by railed lines (see fig. lb). Thus states outside the model-space 

will always contain at least one railed line. In the present work, we shall frequently 

use the example of the “0 nucleus to illustrate our formulae. 

As discussed earlier, exact solutions of the general many-body problem of (1.1) 

are practically not possible. Consequently one only looks for some of its approximate 

e } s-d shell 

16 
0 

closed 

(a) 0 

shell 

a 

s-d > 4 (a, ,a2 ,03...) 

______________-__------- 

P 

Ib) s 

Fig. 1. (a) ‘so two valence nucleons outside a closed “0 core. (b) Definition of active (a,, a?, a3, .) 
and passive (ti,,a,,a,...d;.ti~,a: ,... ) single-particle states for the “0 model-space. 
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solutions. This is usually done by first rewriting (1.1) as a model-space secular 

equation 

PH’“Pxa” = E,Njy:, CY=l,d, (1.5) 

and then solving this reduced many-body problem. Note that (1.5) reproduces only 

d eigenvalues of (1.1). Heff is the effective hamiltonian which operates only within 

the model-space P, and a systematic derivation of it can be carried out using, for 

example, a folded diagram method ‘-I’). xt is usually chosen to be the projection 

of P,” onto the model-space, namely 

xc” = PV," . (1.6) 

In almost all n&ear structure calculations such as the well known shell-model 

calculations, one calculates only EF and xi;’ of (1.5) and (1.6). 

In calculating the transition matrix T,,, = ( W,“/ T/ ty?‘) we need to know, however, 

the true eigenfunctions ?P. This poses a major difficulty as (1.5) only calculates x, 

and furthermore it does not determine the norm of x. To overcome this difficulty, 

we first need to carefully investigate the effective interaction theory from which the 

effective hamiltonian of (1.5) is derived. Then, we may understand the precise 

connection between xN and ?F”. It will then be possible to calculate T,,, starting 

from the model-space wave functions x: and x,“‘. 

In the next section, we shall first outline the effective interaction theory on which 

we base our calculation of the transition matrix for open shell nuclei. Then in sect. 3, 

we shall derive and discuss a linked-diagram expansion for the transition matrix. 

A relatively simple method for determining the normalization of the model-space 

wave functions will also be presented there. 

2. Effective interaction 

Nuclear wave functions are almost always calculated from a model-space secular 

equation, and they are usually only the projection of the nuclear eigenstates onto 

the respective model-space. To carry out a consistent calculation of the nuclear 

transition matrix using these model-space wave functions, it is essential to know 

precisely how these model-space wave functions are derived. In this section, we 

describe briefly a folded-diagram effective interaction theory formulated by Kuo, 

Lee, and Ratcliff (KLR) ‘2-‘4); it provides a general framework for deriving the 

model-space effective interaction as well as the model-space wave functions. 

A basic step in almost all microscopic effective interaction theories is the formal 

construction of a true eigenstate of the many-body system starting from an unpertur- 

bed wave function. This can be carried out using either the adiabatic approach of 

Gell-Mann and Low 14) or the complex time approach of Thouless r5). To outline 

how it works, let us consider the open shell nucleus 180. The eigenfunctions and 

energies of this nucleus are denoted respectively by Pt” and Et+?. The ground 
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state energy and wave function of the core nucleus I60 are denoted by Et and ly$ 

respectively. The starting point of the KLR method is that true eigenstates !Pe can 

be constructed ‘4V’5) from model-space wave functions pU 

(2.1) 

where U, is the time evolution operator. The subscript r] indicating that an 

“adiabatic” damping factor r5) has been introduced in switching on the interaction 

from time --CO to 0. To obtain the above result, we assume that our model-space 

can be chosen in such a way that Plyu, (Y = 1, d, are linearly independent. The states 

pa, which are contained entirely within the model-space (i.e. Ppa = p,), may be 

referred to as the parent states. As we shall see shortly, in our formalism we never 

actually need to know pm. 

We note that the state lim,,O U,,Ip,)/(p,IU,Ip,) is only proportional to the 

eigenstate W,. Furthermore, the denominator (~~1 U&) plays a very important 

role. U,,(O, t)lp,) is by itself undefined in the limit of t + -CO, r] + 0; only the ratio 

indicated above is well defined in the limit lo). Henceforth, the n + 0 limit will be 

understood and we shall no longer explicitly write it. 

We have from (2.1) that 

H UJlPm) 4lPJ 

(P~Iu,lP,)=E,(P,/u,lP~)’ 
(2.2) 

where for brevity we have used U, to denote U,,(O, -CO); this notation will be used 

from now on unless specified otherwise. 

To facilitate the later derivation of transition matrices, it is useful to describe and 

analyse in some detail the so-called decomposition theorem derived in ref. I’). The 

result is that the wave function U,lk) can be factorized as 

V,lk)= C u,,l~)<lluv,lk)(c)u,Ic)xl~p), (2.3) 
ItP 

where for simplicity we denote the model-space states 14~ as Ik). The structure of 

the various terms of (2.3) for “0 is explained in fig. 2. (cl u,,[c) is the sum of the 

vacuum fluctuation diagrams, both linked and unlinked (fig. 2a). 1~:) is the 160 

eigenfunction U,Jc)/(clU,( ), c . some of its components are shown in fig. 2b. (11 U,,lk) 

represents all the diagrams starting from the model-space valence state k and ending 

with the model-space valence state 1, with all interaction vertices linked directly or 

indirectly to the valence lines. These diagrams may be grouped into a Q(ck)-box 

series as indicated, with the intermediate active lines between adjacent Q( &,)-boxes 

summed over P (fig. 2~). Each Q( Sk)-box (fig. 3) is irreducible in the sense that we 

may never separate any of its diagrams into two by cutting only model-space lines 

at equal time. We also point out each Q( ek) is off energy shell; that is, they depend 

on the initial unperturbed energy, ek( H,Ik) = Eklk)). 
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<clU7Jc> = 1 + a---e+ 
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Fig. 2. Diagrams contained within the decomposition theorem for the “0 model-space. 

The initial state Ik) of (2.3) belongs to the model-space I? Upon operating on Ik) 

with U,,, the valence particles can of course be scattered outside l? This transition 

is included in the term Uo,lZ) of eq. (2.3). Diagrammatically, the structure of this 

term is displayed in fig. 2d. The first term is the free propagation of the initial state 

k. The remaining terms which all undergo at least one nuclear interaction must end 

up in a passive state (state containing at least one passive line) at time t = 0. The 

circular boxes are the Q-boxes mentioned earlier. The curved lines joining neighbor- 

ing Q-boxes are folded “) active lines, marked by small circles. For convenience, 

we rewrite the graphical expression of fig. 2d as 

W(Q- w Q(&k)+ w 

I 

Q(&k)+.” IV, 

I 

(2.4) 

Fig. 3. Typical irreducible diagrams contained in an “0 Q-box 
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Fig. 4. Typical diagrams contained in an “0 W-box. 

where the symbol j represents a generalized folding 13). W, referred to as a wavefunc- 

tion box, is irreducible and scatters active valence particles into a state which has 

at least one passive line (see fig. 1). Some example diagrams of W are displayed 

in fig. 4. 

Using the above decomposition theorem, one obtains from (2.2)-(2.4) a model- 

space secular equation 12) 

; (rlHefflk)b; = (Et+“-E,A)b; , (Y=l,d, (2.5) 
k=l 

Wff=Ho+ Veff,(zIVefflk)=(IIVUQLIS *p, (2.6) 

where d is the dimension of the chosen model-space, and n, is the number of 

valence particles outside the core. Veff is the effective interaction which can be 

systematically constructed using a folded diagram method ‘2313316). The wave function 

b” is 

(2.7) 

which is proportional to the projection of the eigenstate ?Pf+“v onto the model-space 

I? 

Let us discuss the above results a little more, as they will play an important role 

in our derivation of the transition matrix elements. Starting from a given realistic 

nuclear hamiltonian and a chosen model-space, (2.6) enables us to calculate d 

eigenenergies and eigenfunctions of the (A+ n,) nuclear system, where d is the 

dimension of the model-space. The calculated energy is not the total energy; it is 

the separation energy (Et+“, - Et). We notice that the parent state pm is not present 

in (2.6), so we never need to calculate it. We shall see that the parent state is absent 

in the transition matrix formula as well. 

One can apply the partial summation technique of Krenciglowa and Kuo “) to 

perform the folding operation to all orders to obtain from (2.6) the useful result 

krP 

Another way of writing this is 

(2.8) 

[Ho+ C?WL)IPKJ= AEc#‘W (2.9) 
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where P denotes the projection onto the model-space and AE, = Ef+“v- Et. This 

partial summation technique will prove useful in obtaining a convenient linked- 

diagram expression for the transition matrix. 

3. Transition matrix 

With the results of the preceding section, we are now ready to derive a relatively 

simple linked-diagram expansion for calculating the transition matrix element 

in a way which is consistent with the model-space secular equation (2.6). 

We first rewrite (3.1) as 

with 

(3.1) 

(3.2) 

(3.3) 

Inserting the decomposition theorem of (2.3) for U,(O, -oo)lj), we find 

(3.4) 

where b is the model-space eigenfunction of (2.7). This is an essential step as it 

relates Tfi directly to the model-space eigenfunctions b of (2.6). Replacing the 

eigenfunctions !P’; and 9: in (3.2) by the expansion of (3.4), we obtain immediately 

T. = c bf*bi (k W:I ~-@-UQ& 9:) 
fl h I 

k,ltP Df Di 
(3.5) 

where 

It is clear that the numerator and the denominator of Tfi both contain the core wave 

function overlap ( PPI P$‘). These diagrams are not linked to either T or any valence 

line. However, the ( YPPI PF) of the numerator cancels entirely with that contained 

in the denominator. Thus, we need only consider the linked portion of (3.5) and 

(3.6). Henceforth we will denote this by adding a subscript L. 

It is important to note that in (3.5), Tfi is independent of the normalization of 

the b eigenvectors. Hence we may without loss of generality choose to normalize 
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each b vector to unity, i.e. 

(3.7) 

Clearly the denominators Dr and Di play an important role in the calculation of 

Tri as we shall later discuss. 

To understand the above results, we need to study in some detail their diagram- 

matic structures. For simplicity, let us consider the case of one valence nucleon 

outside a closed core, such as “0. We also restrict ourselves for the moment to the 

case where the final state (f) is different from the initial state (i), and T is a one-body 

operator with its vertex denoted by ---x. An example is ( !PflTIWi), where T is the 

E2 transition operator, and 9r and Vi are different states of the nucleus “0. 

We note that (3.4) is in fact a rather useful and remarkable result. It states that 

the wave function !P& , which is proportional to the true wave function !Pa, can be 

rigorously expressed as a linear combination of basis functions of the form “valence 

wave function” x “core wave function”. In terms of diagrams, the structure of the 

initial state Pi is displayed in fig. 5. The structure of the final state 9i_ is basically 

identical. Let us use ( ui, ci) and (ur, cr) to denote the various building blocks of the 

wave functions Pi and ?Pi, respectively, as indicated in fig. 5. With their aid we 

can now readily visualize the diagrammatic structure of Tfi. 

Some typical diagrams contained in Tfi are displayed in fig. 6. We divide 

these diagrams into two categories, (k, !P?I U&,TUQ,II, ?Pp)- IV,, and 

(k, !PFl U&, Uo,ll, Wp) = &. We first consider Nk,. Clearly, diagram (i) of fig. 6 

belongs to N,, and originates from (u,(l)lTlui(l))( yIpI~‘p), and similarly diagram 

(ii) comes from (u,(2)ITlui(2))(~Pllup). A s iscussed earlier, the factor (YJPIvP) d’ 
is common to both N,, and Dk, and they cancel with each other. Therefore, from 

now on we will omit this factor for both Nk, and Dk,. Diagram (iii) is a twice folded 

diagram coming from (u,(4)IT(ui(4)). There are also mixed terms such as diagram 

(iv) coming from (u,-(I)ITl~i(3)). 
The structure of the diagrams belonging to &, is identical to N,, except for the 

replacement of T by the unit operator 1. For example, diagram (v) which belongs 

Ui(l) Ui(2) U,(3) ui(4) 

x 1 I+ + v v +u V&+... > _--- _-__ 

ci (1) Ci(2) C;(3) 

Fig. 5. Typical diagrams involved in the linked expansion of ) P’,) 
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to Dk, comes from (U,(2)111Ui(2)), the horizontal line in the middle denotes the unit 

transition operator and it has the consequence that the energy denominators just 

above and below the line are identical to each other. It is clear that (v) is a 

wavefunction overlap diagram. 

In general, there are also diagrams with T attached to the core wave functions. 

An example is diagram (vi) of fig. 6 which originates from (c,(2)/TIci(2)). Diagrams 

of this type are, however, non-zero only when T is a scalar operator and f = i, i.e. 

such diagrams are non-zero only when evaluating the expectation value of scalar 

operators. Finally, there are also valence-core mixed diagrams as shown by diagram 

(vii). This diagram comes from (U,(2)1 Tlui( l)ci(2)). 

It may be helpful to describe some physical interpretations. Diagram (ii) for 

instance may be referred to as a core polarization correction. It means that the 

eigenstate of “0 has also 2plh admixtures in addition to the 1pOh component. 

Diagram (ii) represents the contribution of these admixtures to Tfi. Note that the 

T vertex is always located at time t = 0. As an illustration, the contribution of this 

diagram is 

d(ii) = 03 (k31 V~12)(4~T~3)(12~ V1T4) 

2 I,?5 [El,-(Cl+tE2--Fj)l[e,-_(F,+F~--F,)l’ (3.8) 

3,+-k: 

where V denotes the NN interaction. Diagram (iii) is a twice-folded diagram. As 

E --_x 

(i) 

1-I -4% 

(IV) 

4 

(ii) (iii) 

--- 
F 

------ 
00 _--x 

------ --- 

(VI (vi) 

n--X 

__ 
I” -3 

(vii) 

Fig. 6. Typical diagrams contained in (klUoLTUQLI/), = N,, and (k~L~&,U,,I/), - D,,. 
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Fig. 7. General structure of N,, = (kl UQLTUQLII), 

we shall see shortly, this type of diagram has the effect of “renormalizing” the 

starting energies of the non-folded diagrams such as diagram (ii). 

In fig. 7, we display the genera1 structure of Nk,. As shown, it can have any 

number of L- and R-folds. It would seem to be rather cumbersome to calculate 

these folds. Fortunately, considerable simplification can be achieved by applying 

the partial summation method of Krenciglowa and Kuo “) to Nk, and Dk,. Using 

this method, it is straightforward to show that the transition matrix formula becomes 

(3.9) 

with 

I 
‘/2 

1+ C b;*bY(k, ?P:I W+(AE,) W(AE,)Il, ?P,Q), , a =f,i. (3.10) 
k,lEP 

Note that in the above, we have used the normalization of (3.7). 

The above results are considerably simpler for calculation than (3.5) and (3.6). 

We no longer have to calculate any folded diagrams. In (3.9) and (3.10) we just 

calculate the non-folded wave function box at the eigenenergies AEi and AE, 

obtained from the model-space secular equation (2.6) or (3.8). (As an example, 

diagram (ii) of fig. 6 is given presently also by (3.8) except for the replacement of 

.ak by AEf and E, by AEi.) We note that the diagrams chosen to be contained in the 

wave function box W should be consistent with those included in the calculation 

of the effective interaction Veff used in (2.6). This is because the operator Uo, which 

enters the calculation of Tfi also enters the calculation of VCR [ref. I’)]. 

The calculation of D,, may be simplified. By inspection, one sees that the wave 

function overlap diagrams, (k, qp( W+(AE,) W(AE,)Il, P:),, have the same topo- 

logical structure as those in the Q-box. Numerically, they are however different as 

every diagram of (k, !P:I W+(AE,) W(AE,)Z, ?Pp), contains one propagator squared. 

An example is diagram (v) of fig. 6 as discussed earlier. In fact it is straightforward 

to verify that 

(k, P,QI W’(AE,)W(AE,)\l, !P?),=-$(klQ(o)~l)1 , a =f,i. (3.11) 
W=AEm 
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From (2.9) we may define an energy-dependent function 

which has the property 

with AE,“+“v = E:+‘s - Et. We then obtain from (3.10) and (3.11) 

(3.12) 

(3.13) 

(3.14) 

From the above we have our final expression for the transition matrix as 

Trj = (~~~~)I/* C b;bj(k, 1ypI{l+ W~(A~~)}~{l+ W(AEi)}jl, @>, , (3.15) 
kle P 

where L signifies that only the valence-linked diagrams are retained. (3.15) is the 

principal result of this work. It is directly analogous to the reduction formula of 

field theory I’). As in the reduction formula, (3.15) contains only (non-folded) linked 

diagrams. The N factors are the renormalization factors of the “external” lines, 

while the partial summation of the folded diagrams allows us to calculate diagrams 

at the physical energies of the initial and final states i.e. the initial and final states 

are on-shell. This similarity with the reduction formula in field theories is both 

interesting and surprising considering that (3.15) is derived for bound-state transition 

amplitudes, while the reduction formula is derived within the context of collision 

theory. 

The K factors may play an important role in the calculation of the transition 

matrix element Tri of (3.15). It is of interest that we can actually use this equation 

to study the physical meaning of the X factor itself. The above formulation is valid 

for operators which do not conserve the number of particles. An example is T = a,aj, 

i and j E P. Let us consider the transition matrix element of this operator between 

the states !Pff and !Pt+‘. This transition matrix element can be derived following 

essentially the same steps which lead to (3.15). The initial state now has two valence 

particles and its wave function corresponding to (3.4) is written as 

/C&4+2))= ,Z_ U&n, ++??C,, (3.16) 

where M and n denote single-particle states for the valence particles. The final state 

is a closed-core state, i.e. 

(3.17) 

which is just the state 9:. Here c denotes the unperturbed core state. Substituting 

the above into (3.2) readily leads to a result similar to (3.9). Clearly it does not 
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contain the factors JV”‘, b,- and W’(A&) because the final state is a closed-core state. 

Since i and j are within P while W always leads to states outside P, we have 

(qi]aia,{ 1-t W( AEi)}lmny ‘P.P)L= S,,, . Thus this matrix element is obtained as 

( ?&‘~uiaj~ 9;“) = b&N;” (3.18) 

where i and j belong to the model space. Since in our formalism the b vector is 

normalized to 1, the above implies 

+:, I(~,Al"iu,I~~+~)l'=~~~ (3.19) 

This is a rather interesting result. It tells us that JV~, which can be evaluated using 

(3.14), is a direct measure of the overlaps (~Z’$]U,U,]~~~‘). The need of having 

wave-function normalizations in the calculation of transition matrix elements has 

been emphasized by a number of authors ‘-‘I), but a systematic prescription for 

calculating them in strict consistency with the underlying effective interaction theory 

seems to have not been given before the present work. Brandow has considered the 

normalization of the entire wave function, such as ( ~~+‘I~Y~+‘), and has given 

similar expressions I’), but here our normalization is specifically for the transition 

amplitudes as indicated by eq. (3.19). Our present result is probably most similar 

to that of ref. “) where the normalization of the transition amplitudes involving 

both the (A +2) and (A -2) system was studied jointly, using a Green function 

approach. 

From (3.14), we see that the JV factors may be calculated from the slope of ge(w). 

It should be of interest to actually perform a calculation for such normalization 

factors, to have a feeling for their importance. We have carried out such a calculation 

for the low-lying states of “0 and “F, using a G-matrix effective interaction derived 

from the Paris nucleon-nucleon potential ‘O). Our main purpose is to determine the 

magnitude of the JV”~ factors for these states. The bare G-matrix is calculated using 

a momentum space matrix inversion method which treats the Pauli exclusion 

operator essentially exactly; in fact, we used a Pauli exclusion operator specified 

by (n,, a, n3) = (3,6,21) [ref. “)I. In the Q-box, we include the two- and one-body 

diagrams first- and second-order in the G-matrix, namely the two-body diagrams 

(G, Gjp”,, GXp, GZh) and the one-body ones (G, GZplhr GZhlp). The calculation of 

these diagrams was described for example in ref. “). In figs. 8 and 9, we plot go(w) 

for the low-lying states of “0 and “F, respectively. The self-consistent energies are 

given by the positions of the intersection points between the curves and the 45” line. 

Now, however, we note that the slopes at the self-consistency point also carry 

physical significance and they allow us to determine the corresponding X factor of 

(3.19). Actually these slopes turned out to be rather large. 

In figs. 10 and 11, we list the JV factors, in parenthesis, for the various low-lying 

states of “0 and “F. Their values are typically about 0.75. This is significant as 

this means according to (3.19), that the wave function IV:+‘) has a rather large 
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Paris ( 180) 

-12 -10 -8 
w (MeV) 

Fig. 8. g,(w) for “0 (see eq. (3.12)). 

portion which lies outside the model space P. In figs. 10 and 11 we also compare 

our calculated energy spectra with experiment. 

A word of caution to the reader here. Although our results achieve some success 

in reproducing the experimental spectrum, we should keep in mind that our calcula- 

tion is merely a low-order one. We include in our Q-box only diagrams first and 

Paris (‘aF) 

I 

-8 
w (MeV) 

Fig. 9. S,(w) for “F (see eq. (3.12)). 
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Paris (“0) 

-6 

z 
z -10 

2 

-12 

Calculated Experimental 

~ 0’ ( 72) 
-2* (76) -2* 

-4. (76) 
~ o* ~ 4* 

- 2* ( 74) ~ 2* 

~ o* ( 75) 

- 0’ 

Fig. 10. ‘so energy level; normalization factors in parentheses. 

-8 

-10 

Paris (“F) 

calculated Experimental 

-5’ (.7!3) 

~ 0’ (.75) 

- 3’ ( 75) 

~ 1’ (.74) 

- 1’ 

Fig. 11. “F energy levels; normalization factors in parentheses. 
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second order in the G-matrix interaction. Then a self-consistent calculation, see eq. 

(2.9), based on this Q-box is performed to determine the energies as well as the ,Ir, 

factors. This self-consistent calculation is equivalent 17) to a summation of the 

folded-diagram Q-box series to all orders using an iterative partial summation 

method. Higher order diagrams not included in the present work remain to be 

investigated. They may significantly affect our present results. But, nevertheless, our 

present low-order calculation does seem to indicate that the .Na factors can be 

significantly different from unity and thus may provide important normalization 

corrections to the calculated decay rates. Intruder states have played a central role 

in effective interaction and operator theories 23324). There is considerable evidence, 

see e.g. ref. ‘5), that the first excited 2+ and the first excited O+ states are “intruder” 

states with large 4p2h components. The energies of these states are, however, 

reasonably well reproduced by our present calculation and by earlier similar G- 

matrix calculations of Kuo and Brown 26) and Shurpin et al. ‘*). This is a puzzling 

situation and should be further investigated. Model calculations 16*17) have demon- 

strated that the energies given by the folded diagram partial summation method, 

which is basically the same as the method employed here, usually converge to the 

states with the largest P-space overlaps whether they are intruder states or not. A 

Taylor series expansion of Ve’ in powers of the coupling constant does not converge, 

in general, in the presence of intruder states, although model calculations have 

shown that Pad6 approximations may be useful in circumventing this divergence 

problem *‘). 

However, the Veff used here is not based on a Taylor series expansion. A likely 

scenario is that our present calculation may be able to reproduce the energies of 

the excited states reasonably well, but not so for their wave-functions and associated 

transition rates. For them, one probably must treat the intruder-state components 

explicitly. A further study along this direction should be most worthwhile. This is, 

however, beyond the scope of our present work and we hope to carry out such a 

study in the near future. In passing, we mention that Jorth-Jensen and Osnes *‘) 

have recently addressed the convergence problem of realistic effective interactions 

with emphasis on the third-order Q-box diagrams. 

For a general case with n,. valence particles (3.19) generalizes to 

(3.20) 

nh “P 

Finally we add that our formulation applies to expectation values as well, readily 

yielding 

(RtA~W=(~~~A~~% 

+.Na 1 b;*b;(k, @({l-c W’(AE,)}A{l+ W(AE,)}lk, ‘P.p)L. 
ksP 

(3.21) 
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If !Pa is the ground state PO, the above reduces to the well known linked-diagram 

expansion ( ‘PolAl PO) = (‘PpIAI !Pp) ,_ containing only linked-diagrams with one A 

vertex “). 

4. Conclusion 

The main result of the present work is (3.15) which provides a unified and relatively 

simple method for calculating the transition matrix element Tn. One first derives 

the effective interaction Veff and solves the model-space secular equation (2.6). This 

equation does not determine the normalization of the model-space eigenvectors 6”. 

We have shown that we can choose to normalize these vectors each to unity provided 

that in calculating Tn, the wave-function normalization factors Nr and .Ni are also 

included. 

The need of having such wave-function normalization factors has been studied 

in the past, but their calculation would be rather difficult. We have derived a much 

simpler way to evaluate these factors, within the framework of a linked-diagram 

formalism. As shown by (3.14), they are simply given in terms of the respective 

energy derivative of the self-consistent model-space eigenvalue. Our result is in fact 

rather similar to the normalization of the Green function transition amplitudes of 

ref. 19). 

It should be of much interest to calculate matrix elements with this formalism, 

which we plan to do in the near future. It is likely that these factors will turn out 

to be significantly smaller than one, which would considerably suppress the transition 

matrix element. This may have some important consequences. As is well known, a 

number of recent nuclear structure calculations have given the calculated transition 

rates as being too large compared with the experimental values. This has brought 

up various proposals of quenching mechanisms, such as the A-hole admixture in 

the nuclear wave functions, for the purpose of suppressing the calculated transition 

rates. [See, for example, refs. 29,30) and the references quoted therein.] It seems that 

in earlier calculations no serious attempt has been given to the calculation and the 

inclusion of the wave-function normalization factors. The inclusion of these factors 

in the calculation of Tri is likely to provide a significant portion of the needed 

quenching effect. If this turns out to be the case, the need of other quenching 

mechanisms may be considerably reduced. 

We emphasize that there is a compensating factor which has to be taken into 

account. The X factors in (3.15) would most likely have a suppressing effect on Tri, 

but the contribution to Tfi from the wave-function components which lie outside 

the model-space may have an enhancing effect on T,;. This contribution, referred 

to as the Q-space contribution, enters Tfi via the wave-function boxes W and the 

core wave-function Iy$ of (3.15). In fact our formulation provides a self-consistent 

scheme for determining which linked-diagrams should be included in Tfi. The 

starting point is the effective interaction Veff of (2.6). Once one has decided which 



D.l?. Stout, T 73. Kuo / Linked diagram expansions 107 

diagrams should be included in T,i, the quantities N, b, and AE are all fixed 

accordingly. Since there is a definite relation between the diagrams included in Ve’ 

and those contained in W and Y/p, the diagrams to be included in the Q-space 

contribution to rci are entirely determined by the way we choose to calculate Veff. 

This is a main point of our result. 

In practically all shell-model calculations, the transition matrix element Tfi is 

calculated as CklC p X:*X;(kj T”ll) where the x’s are the shell-model wave functions. 

Teff, as mentioned earlier is an effective transition operator usually determined in 

an empirical way. This shell-model Tfi is rather different from that given by (3.15), 

the former essentially corresponding to the latter with the X factors set to 1, py 

and W both ignored, and Te’ replaced by T. To a large extent, the empirical 

shell-model effective interaction can now be derived from a realistic nucleon-nucleon 

interactions using the method outlined in sect. 2 26-31). Hence the wave functions b 

and x should be rather close to each other, but the other aspects of these two means 

of computing Tfi are really quite different. It should be of much interest as well as 

useful to carry out calculations using both methods and compare their results. 

The reader may have noticed that while we started out with a Raleigh-Schroedinger 

type perturbation theory, what has been accomplished is basically a synthesis of 

Raleigh-Schroedinger and Briilouin-Wigner valence-linked pe~urbation theory in 

an attempt to extract desirable properties of each. We note that our formalism for 

Tfi does not require the calculation of any folded diagrams which is a convenience 

compared with earlier methods. 

The authors are obliged to S.S. Wu and P.J. Ellis for helpful discussions. 
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