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nant interparticle couplings is presented. Possible domains of application include systems containing interact-
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1. INTRODUCTION

It has been well established that certain kinds of recur-
sive T' matrix algorithms [known as recursive centered 7'
matrix algorithms (RCTMAs)] [1,2] are numerically
stable and can be used to solve the Foldy—Lax multiple-
scattering equations for particles exhibiting “modest” in-
terparticle couplings. By “modest couplings,” we refer to
situations in which the order of the orbital number of the
vector spherical wave functions (VSWF's) necessary to de-
scribe the field scattered by each particle in an aggregate
of particles is not too much larger than that necessary for
describing isolated particles. The modest coupling criteria
apply to a host of multiple scattering situations, including
systems of dielectric particles comparable in size to the
wavelength and for most packing fractions including
dense packing. The modest coupling criteria can also ap-
ply to metallic particles under certain conditions.

As with any multiple-scattering technique not employ-
ing matrix balancing, a user of the RCTMA can encounter
numerical difficulties in certain extreme situations of
strongly coupled resonant phenomenon. In this work, we
present a matrix balanced form of the RCTMA that can
readily be employed even in the presence of strong (i.e.,
resonant) interparticle couplings. The rather extreme
situation of “strong couplings” studied here will generally
require carefully microscaled, engineered systems where
high @-factor resonances can occur for particles illumi-
nated in isolation, and in which the particles are suffi-
ciently closely spaced that neighboring particles modify
the resonance response properties. Examples of strong in-
terparticle couplings can be found in particles exhibiting
plasmon resonances, surface resonances, or even photonic
jet phenomena.

In Section 2, the notation is introduced in a brief review
of the relevant multiple-scattering theory. Section 3 de-
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scribes an analytic matrix balancing procedure used to
“well-condition” the multiple scattering system of equa-
tions. A matrix balanced RCTMA is derived in Section 4.
Essential formulas for applications are summarized in
Section 5. Their applications are then demonstrated by
applying matrix balanced RCTMA calculations to study
systems of interacting localized plasmon excitations.
Some known and novel aspects of interacting localized
plasmon excitations are presented.

2. MULTIPLE-SCATTERING THEORY: VSWF
APPROACH

Let us consider an arbitrary electromagnetic field inci-
dent on a collection of three-dimensional particles (as
shown in Fig. 1). The particles are considered “individual”
scatterers if they can be placed in a circumscribing sphere
lying entirely within the homogeneous medium (actually
this constraint can frequently be relaxed; see [3]).

The electromagnetic field E; incident on an N-particle
system is developed in terms of the transverse regular
VSWFs developed about some point O arbitrarily chosen
as the system origin:

Ei(r) = EOE 2 {Rg[Mnm(kr)]al,n,m + Rg[Nnm(kr)]QZ,n,m}
n=1 m=-n
92
=E,2, > Re[ W, ,(kr)la,, = ERg{W'(kv)la, (1)
q=1p=1

where E is a real parameter determining the incident
field amplitude. Equation (1) introduces a condensed no-
tation for the VSWFs M,,,,, and N,,,,: W1 ,(kr)=M,, ,,(kr)
and Wy ,(kr)=N, ,,(kr). The notation Rg[] stands for
“regular part of” and distinguishes these regular VSWF's
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Fig. 1. (Color online) Schematic of a field incident on a collection
of scatterers centered on x;,X,, ...,Xy. The radii of the respective
circumscribing spheres are denoted R{,R,,...,Ry.

from “irregular” scattered VSWFs (see Appendix A). In
the second line of Eq. (1), the two subscripts n,m are re-
placed by a single subscript p defined such that p(n,m)
=n(n+1)-m and has the inverse relations [4]

n()=Int\p, m@)=-p+nn+1). (2)

The last line of Eq. (1), adopts the compact matrix nota-
tion allowing the suppression of the summation symbols
[5]. The superscript ( ?) stands for the transpose of a col-
umn “matrix” composed of VSWFs into a row “matrix” of
these functions.

For points external to all individual circumscribing
spheres, the total field E;(r) can be written as the sum of
the incident field and a set of individual scattered fields
Eé’) centered respectively on each of the particle centers:

N
E,(r) =E,(r) + 2 E{(r)) = EoRg[W'(kx)]a
j=1
N
+Eo >, Wikr)f), (3)

J=1

where each scattered field Eg) is developed with coeffi-
cients f}(,) on the basis of outgoing VSWFs defined with re-
spect to the associated particle center denoted x;. The
spherical coordinates relative to each scatterer are de-
noted r;j=r-x;.

The crucial idea of Foldy-Lax multiple-scattering
theory is that there exists an excitation field EY) (r) asso-
ciated with each particle that is the superposition of the
incident field and the field scattered by all the other par-
ticles in the system (excluding the field scattered by the
particle itself) [6]. From this definition, the excitation

field of the jth particle can be written

N
EQ (r) = E\Rg[W!(kr)lel) =E,r) + >, El(r)
1=1,1#j

N
=E0Rg[‘Ift(krj)]lJU’°)a+ > HW%Q], (4)

1=1,#j

where e are the coefficients of the excitation field in a
regular VSWF basis centered on the jth particle. In the
second line of Eq. (4), we have used the translation—
addition theorem [1,4,5] and introduced the notation
where JV’O)EJ(kxj) is a regular translation matrix and
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HUD=H [k(x;-x;)] is an irregular translation matrix.
Analytical expressions for the matrix elements of J(kx;)
and H(kx;) are given in [1,4].

The other key idea of multiple-scattering theory is that
the field fz(\//) scattered by the object is obtained from the
excitation field e]({,) via the 1-body T matrix T(l’) derived
when one considers the particle to be immersed in an in-
finite homogeneous medium. This relation is then ex-
pressed as

) =TVe). (5)

[The index 1 on the T(lj) indicates that this 7" matrix con-
cerns an isolated particle, hence its denotation as a
1-body T matrix.] Employing Eq. (5) in Eq. (4), one ob-
tains a Foldy—Lax set of equations for the excitation field
coefficients [1,5]:

N
e)=J"a+ > HUITPeY)  j=1,....N. (6)
1=1,l#]

For numerical applications where one is obliged to
solve the equations on a truncated VSWF basis, it is ad-
vantageous to work with a set of formally equivalent
equations involving the scattering coefficients f}(,) . This set
of equations is derived by multiplying each of Egs. (6)
from the left by T(l’) and using Eq. (5) to obtain

N
=197 +TY > HUVA)  j=1,....N. (7)
I=1,1#j
In the RCTMA, one calculates the centered multiple
scattering transition matrices T;*, which directly yield
the scattered field coefficients in terms of the field inci-
dent on the system through the expression

N
=S Ta® o = g0, ®)
k=1

In this equation, we have introduced the column matrix
aV that contains the coefficients of the field incident on
the entire system developed on a VSWF basis centered on
the jth particle.

3. BASIS SET TRUNCATION AND MATRIX
BALANCING

Although the multiple scattering formulas of the previous
section are expressed as matrix equations on VSWF basis
sets of infinite dimension, the finite size of the scatterers
naturally restricts the dimension of the dominant VSWF
contributions. To discuss this phenomenon analytically,
we consider the case of spherical scatterers. For non-
spherical scatterers, the matrix balancing procedure de-
scribed below should be applied to the circumscribing
spheres of the particles.

The Mie solution for a sphere of radius R; immersed in
a homogeneous host medium can be cast in the form of a
1-body T matrix that is diagonal in a VSWF basis cen-
tered on the particle:



Stout et al.

[TY)]q,p;q’,p’ = 04,4'%p' T10,n(P),q), 9)

where the T(lj)(n(p),q) correspond to the Mie coefficients
and depend on g and n [cf. Eq. (1)].

With the objective of matrix balancing, it is helpful to
express the Mie coefficients of the scatterers in terms of
the Ricatti-Bessel and Hankel functions, respectively,
,(2)=zj,(2) and ¢,(z) =zh,(z), and their logarithmic de-
rivatives

.(2) P (2) ¥.(2) &,(2)
z)=——0, z) = .
B A A )
The T matrix elements of Eq. (9) for a sphere of dielectric
contrast pj=k;/k can then be cast in the convenient
form [7]

(10)

U (kR)) (u/ )@, (kR)) — pj®,(pkR))

&(RR)) pi®,(pkR)) - (ui/ )V ,(RR))
= T .’ ’1 b

gm) Y

TG,n,1)=

_ Un(kR,) (uf )@, (pkR) — p®,(kR;)
"~ &(kR)) pV,(ER)) — ()P, (pikR)

SR im2) (11)
= n
& kR )

where £ is the wavenumber in the external medium. The

T(j,n,2)

normalized T matrix coefficients T(j,n,q) of Eq. (11) con-
tain a rich resonant structure. The ratios #,(kR;)/&,(kR))
on the other hand have an exponentially decreasing be-
havior for large n>kR; as is demonstrated in Fig. 2 for
kR=10. One can remark from Fig. 2 that |, (kR)/&,(kR)|
becomes quite small beyond n,,,,=kR+3, and its value at
n=14 is ~2x 1074, Although these factors permit an ap-
propriately truncated VSWF basis set to contain essen-
tially all the physical information necessary for accurate
calculations, they also tend to produce ill-conditioned lin-
ear systems when one is obliged to enlarge the VSWF
space far beyond =kR+3 to account for strong coupling
phenomena.

A solution to the above problem is to balance the matrix
manipulations in Section 4 below by defining normalized
scattering and incident coefficients

O-OM.. L
___________ 0y _ -
3> -5 +...
:: 1 °.
N, %,
S -10 d o
;r: | .’
< -15 | °,
il | .
-20 ; °
1 o
0 10 14 20 30
n

Fig. 2. (Color online) Plot of the spherical Bessel to Hankel
function ratio |¢,(ER)/&,(kR)| occurring in the Mie coefficients
when kR =10.
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W)]q,p = gn(p)(kRj)[fV)]q,p s

For notational purposes, it is convenient to define
diagonal matrices [¢¥'] and [&”] with Ricatti—Bessel
functions along their diagonals, namely, [L//(/)]q/’p/;q’p
=8, %pp Ynp)kR)) and [0y g, =8y.418, prénip)(kR).
This notation allows normalized or balanced versions of
the one-body and many-body 7' matrices to be defined,
respectively, as

TY = [&NTY[p0, T = [&NTE ] (13)

In terms of these normalized quantities, Eq. (8) then
reads

N
m=>1ia®  j=1,...,N. (14)
k=1
In the next section, these normalized T(lj) and Tg’k) are
used to derive a matrix balanced version of the recursive
T matrix algorithm.

4. DERIVATION OF A MATRIX BALANCED
RECURSIVE ALGORITHM

In this section, we derive a matrix balanced version of the
RCTMA using purely algebraic manipulations. The recur-
sive algorithm can be invoked once we have a solution for

the T]((,fi matrices of a N=1 particle system. If we wish to
use only the recursive algorithm to solve a system, we ini-
tiate the recursive process with a single particle solution
described by TV =T,

One then considers an arbitrarily positioned particle
being added to the system. The excitation field on a par-
ticle N added to the system can be expressed as the su-
perposition of three fields. The first contribution is simply
the field incident on the system, the second contribution
results from the scattering of the incident field by the NV
—1st cluster of particles onto the particle NV, and the third
contribution comes from field scattered by the particle N
onto the N-1st cluster and which returns to the Nth par-
ticle as an excitation field. Invoking the translation—
addition theorem and Eq. (8), these three contributions
can be expressed in matrix form as [1]

N-1 N-1
e%\f)za(M+ E Irj((NJ)T]((,{eia(k)+ 2 H(NJ)TJ(GﬂH(k’ }dZ{,V)
J:k=1 k=1

(15)

Defining now the normalized irregular translation ma-
trices and excitation coefficients, respectively, as

HOP = [yHORERT, 2l = [0, (16)
the normalized form of Eq. (15) can be written
N-1 N-1
g =a™ 4 > ANITGRG® + S BTG FENED,
Jik=1 Jk=1

(17)
where we also used the definitions in Eqgs. (12) and (13).
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Recalling that the excitation field is linked to the scat-
tered field by the 1-body 7' matrix via eq. (5), and invoking
the definitions of Eqs. (12) and (16) we can write

e =IT{T'7. (18)
Employing this relation for particle N on the LHS of Eq.
(17) and rearranging we obtain
N-1
[T~ 3, AVTEARRY (7

k=1
N-1

_a™ i S BNITERGH. (19)
Jik=1

We now take the normalized 73"

as

matrix to be expressed

N-1 -1
TYN = [T - > HNITGHEEN ¢ (20)
Jk=1
With this assignment, we multiply both sides of Eq. (19)

by TE\Z,V’N ) and obtain an expression consistent with equa-
tion (14):

N-1
/IXIV) — T%V,N)a(l\f) + T;I,V’N) E FI(NJ)T](\/;fiL_Z(k)
Jok=1
N-1 N
- T%V,N)a(N) + 2 T%V,k)(—l(k) — 2 T%V,k)a(k)’ (21)
k=1 k=1

where we have assigned the matrix TX,V’k), k#N as
N-1
TOD = NS FVITH, 22)
j=1
One completes the description of the scattering by the
system by remarking that the field scattered by the other
particles in the system comprises the superposition of the
field that would be scattered by the N—1 particle cluster
in the absence of the Nth particle, plus the field scattered
from the N-1 particle cluster originating as a scattered
field emanating from the Nth particle. Using again the
translation—addition theorem, the field coefficients of }_‘X,)

can in turn be expressed in a form consistent with Eq.
(14) as

N-1 N-1
F=3 THa+ 3 TR
k=1 k=1
N-1 N-1
= > T{Ma® + > T AN T Ng®™
k=1 k=1
N-1N-1
b3S TGN
1=1 k=1
N-1 N
=TVa® + S Tbgh = S Thg), (23)
k=1 k=1

where we invoked Eq. (21). In the second and third lines

of Eq. (23) we have defined the 79" and T4 matrices
such that
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N-1

T = S TYHHEDTEN, (24a)
k=1

N-1
TP = T4 + S TROETYD . (24b)
=1

At this point, all the T%k) matrices have been obtained
and the matrix manipulations in Egs. (20), (22), and (24)
can then be repeated to add as many particles to the sys-
tem as desired.

Relationship with System Matrix Inversions. Although
the recursive algorithm is quite efficient for systems with
relatively small numbers of particles, for systems with
many particles, one may prefer to try and solve an entire
N-particle system directly. A balanced linear system for
the entire system corresponding to our recursive algo-
rithm can be obtained by applying the relation of Eq. (5)
to the LHS of Eq. (7), then multiplying both sides of the
resulting equations by the [#/)] matrix, and finally rear-
ranging to obtain a system of balanced linear equations
for the unknown scattering coefficients:

N
(TY7 e - X HOOR =aY

k=1,k#j

j=1,...,N, (25)

where we used Eqgs. (12) and (13). The system of linear
equations (25) can in principle be directly solved by in-
verting the balanced system matrix:

1

‘A}) [T(ll)]—l _g12 _gLN T g
— = (2)7— = —(2
f(zx%) ~ — gD [T(lz)] 1 — 2N a®
_ _ — — A 7 @)
foV) _ H(N,l) _ H(N,Z) e [T(lN)] 1 a

(26)

Once we have inverted this system, one can associate
each block with a corresponding TJ({,’k) matrix as

A1 (1,1 m(1,2 (1N —

v || Iy TY? Ty |[ g

]7(2) T(2,1) T(Z,Z) ce. T(2,N) 5(2)

I Y I A N , @D
= - - - ™)

N N,1 N,2) ... N,N

LT IR e TRV LY

which is of the same form as the desired solutions given in
Eq. (14).

5. SUMMARY AND APPLICATIONS TO
LOCALIZED PLASMON EXCITATIONS

In this section, we will apply the RCTMA to solve systems
exhibiting strong interactions between localized plasma
resonances. We begin this section by summarizing the
balanced recursive algorithm. We then recall some useful
formulas for extracting physical quantities from the T
matrix. Finally, we carry out some illustrative calcula-
tions for strongly interacting systems.
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A. Summary of the Balanced RCTMA Algorithm

To implement the RCTMA, one must first solve the 1-body
T matrices T(ll),T(lz), ... ,T(IN wt) for all the particles in the
system. Normalized versions of the 1-body 7' matrices and
the irregular translation matrices [1,4] HU*) are then cal-
culated via

T =[N Ty1, HOW = [ HPENTT, (28)
where the diagonal matrices

[¢U)]q,q’,p.p’ = 04,q' Op p' () (RR,))

and
[f(/)]q,q’,p,p’ = 04,4/ Opp'np)(kR,)

respectively, have Ricatti-Bessel and Ricatti-Hankel
functions on the diagonal. (R; is the radius of the circum-
scribing sphere of the jth scatterer).

The balanced recursive algorithm is that the solution
for the TE\I,V’N) matrix is obtained from the 7' matrices of
the N-1st system T%’i via the matrix inversion in Eq.

(20). All the other matrices T]((,’k) with j#N or k# N are
then obtained via matrix multiplications and additions
via Eqs. (22) and (24). This process is then repeated as
many times as desired.

B. Physical Quantities

When the incident field is a plane wave, it is convenient to
express physical quantities in terms of cross sections. Ap-
pealing to the far-field approximation of the field, the ex-
tinction and scattering cross sections of clusters of N ob-
jects can be expressed, respectively, as [8,9]

I A
O'extz_?Re EGO)’TfI(G ’ UScaFﬁE f}{f)"J(I’k)f(l\];)’

=1 k=1
(29)

It is also possible to produce analytical expressions for
local field quantities such as individual absorption cross
sections. For lossy scatterers in a lossless host medium,
one can obtain individual particle absorption cross sec-
tions by integrating the Poynting vector on a circumscrib-
ing sphere surrounding the particle to obtain the formula

, 1 L 1
o) = Rl efl) - I (30

In an analogous fashion, optical forces on the particles
can be calculated by integrating the Maxwell tensor on a
circumscribing sphere surrounding the particle [10,11]. It
is frequently convenient to characterize the optical force
by vector cross sections &Opt, defined such that the time-
averaged optical force on particles immersed in a liquid
dielectric of refraction index n,.q can be expressed as

Mmed

Fopt=||sinc” c &opta (31)

where ||Sinc||=|\%Re{E;”nc X Hj,.}| is the incident irradiance.
The binding force and its associated cross section o, be-
tween two particles separated by a relative position vec-
tor rys=r9—r; can be defined as
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1 R Nmed
Fb = E(FZ - Fl) *Tpos = ”Sinc” c Tp- (32)

C. Interacting Localized Plasmon Excitations

For those conductors such as the noble metals that sup-
port surface plasmon resonances, one can usually observe
localized plasmon resonances in sufficiently small par-
ticles. These resonances are typically dominated by ab-
sorption if the particles are sufficiently small with respect
to the incident wavelength and by scattering for larger
particles. We choose to study silver spheres 50 nm in di-
ameter immersed in air (for which both scattering and ab-
sorption are nonnegligible).

The study is carried out for wavelengths ranging from
the near ultraviolet through the visible (300 to 850 nm).
We ignore the relatively modest finite size corrections to
damping [12], simply adopt the bulk dielectric constant of
silver from [13], and extrapolate between the experimen-
tal values. The extinction, scattering, and absorption
cross sections for these particles are readily obtained from
Mie theory and are displayed in Fig. 3 as a function of fre-
quency. These spheres are quite small with respect to vis-
ible wavelengths (size parameters in the 300—800 nm
wavelength range go through 2R=0.52-0.20), and the
isolated particle cross sections are obtained to high preci-
sion with n,,,=4. One can also see from Fig. 3 that the
strength of the plasmon resonance for these particles is
about half due to absorption and about half due to scat-
tering.

One of the principle sources of interest in localized
plasmon resonances is their capacity to produce large
field enhancements in regions much smaller than the in-
cident field wavelength. This property is demonstrated in
Fig. 4(a) with a 2D and 1D plot of the electric field inten-
sity in and near an isolated 50 nm diameter silver sphere
illuminated near its resonance peak (Ay=365 nm with
Npg=0.077+1.6i). The plots in Fig. 4 are performed in a
plane containing the center of the sphere and perpendicu-
lar to k;,. (the polarization lies along the horizontal axis).
The dimensionless extinction and scattering efficiencies
Q=0/(wR?) at this frequency are respectively, Qey;
=14.48 and Q,.,;=6.76.

We now use the balanced recursive technique to calcu-
late the optical response of a dimer composed of 50 nm di-
ameter silver spheres whose surfaces are separated by

ext

abs

scat

200 300 400 500 600
7‘0 (nm)

Fig. 3. (Color online) Total cross section efficiencies @
=¢/(mR?) for an isolated 50 nm diameter sphere.
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Fig. 4. (Color online) Electric field intensity |E,|?/|Ei.J? in an
isolated 50 nm diameter sphere (\;=365 nm, N,,=0.077+1.60).
(a) 2D (hot) plot of the electric field intensity in a plane perpen-
dicular to the wave vector and containing the origin (horizontal
axis lies along the polarization direction). (b) 1D plot of the field
intensity along the line in this plane containing the direction of
electric field polarization.

1 nm. Although the T matrix calculated by RCTMA con-
tains information for arbitrary incident fields, we study
the physically interesting case of a plane wave perpen-
dicular to the axis separating the particles. As is widely
known, the response then depends strongly on the polar-
ization of the incident light. In Figs. 5(a) and 5(c), the ex-
tinction and scattering cross sections per particle are pre-
sented when the polarization is, respectively,
perpendicular and parallel to the symmetry axis. From
Fig. 5(c), one sees that the cross section for the parallel-
to-axis polarization presents a two-sphere coupled reso-
nance that is strongly redshifted with respect to the iso-
lated particle resonance. The polarization perpendicular

1 polarization || polarization

10
_. 8 Qext 15 Qext
o~
X ¢ Qscat Qscat
3 10
N 4
~ 5
o 2

0 0

300 400 500 400 500 600 700
(@) (c)

0

e 5
x Qb
& -3000 —Q,
\.Q
©

0 -6000

300 400 500 400 500 600 700
(b) A, (nm) (d) A, (nm)

Fig. 5. (Color online) Dimensionless cross section efficiencies
per particle @=0/(27R?) and binding force efficiencies for a
dimer of 50 nm diameter spheres (1 nm separation). In (a) and
(b) the polarization is perpendicular to the symmetry axis, and in
(c) and (d) it is parallel to the symmetry axis.
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to this axis, on the other hand, presents only slight modi-
fications with respect to an isolated sphere.

The optical binding force cross sections for these same
polarizations are plotted, respectively, in Figs. 5(b) and
5(d). While the binding force for the polarization perpen-
dicular to the particle axis [see Fig. 5(b)] is slightly repul-
sive, the force for polarization parallel to the resonance
can be highly attractive with the dimensionless |Q;| at-
taining amplitudes of three orders of magnitude. There
has already been experimental and theoretical evidence
supporting the existence of optical force couplings in par-
ticles with plasmon excitations [14], although such high-
precision calculations at such small separations seems
not to have been presented before now.

This dimer system dramatically illustrates the strong
coupling category since correct calculations require that
the VSWF space be enlarged far beyond the predomi-
nantly dipolar response characterizing the particles in
isolation. The normalized cross sections per particle are
given in Table 1 for different values of the VSWF space
truncation. Although it was necessary to go to n,,=30 to
achieve four-digit precision in all the cross sections, the
table indicates that results were already quite good at
N max=20.

A base 10 logarithmic intensity field map for a two-
silver-sphere dimer illuminated with light polarized along
the symmetry axis [frequency near the coupled sphere
resonance maximum (A\g=467nm and Nj,=0.048
+2.8271)] is presented in Figs. 6(a) and 6(b), which are, re-
spectively, a 2D plot (in the same plane as Fig. 4) and a
1D plot along the symmetry axis. The size parameter of
the individual spheres is #R=0.34 and the isolated cross
sections at this frequency are Q.=0.136 and Q.4
=0.0963. As can be seen in Fig. 6, the fact that one had to
go so far beyond the dipolar response has a dramatic ef-
fect on the field inside and near the particles. Notably, the
fields inside the particles are no longer quasi-constant as
was the case for isolated particles.

An important word of caution should be made at this
point. Although 1 nm separation may appear to be nearly
touching, the coupled resonance is in fact quite sensitive
to exact separation details when resonant particles are so
closely separated. For example, at a separation of 0.5 nm
for the silver dimer, the coupled plasmon resonance is dis-
placed to A\y=516 nm as compared with \y=467 nm for a
1 nm separation, and the multipole order has to be
pushed to n,,,,=50 to achieve four-digit accuracy in the
cross sections.

Nanometer scale separations are not necessarily theo-
retical idealizations, however, as recent experiments with
DNA separators have demonstrated [15]. Nevertheless, in
applications like DNA separators, one may well have to
consider the strong optical forces between these particles
on account of the exceptionally strong attractive optical
force efficiencies of these resonances. For instance, the
binding force efficiency at 0.5 nm separation was calcu-
lated at @,=-20174 for \;j=515.6 nm (cf. @,=-6018 for
1 nm separation at A\j=467 nm). The question of perfect
spheres exactly in contact, however, seems untenable
from an experimental standpoint and quite difficult from
a theoretical standpoint on account of the singular behav-
ior of the contact point. Theoretical separations of 0.1 nm,
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Table 1. Dimensionless Cross Section Efficiencies per Particle as a Function of VSWF Truncation n,

- 5 10 15 20 25 30 35 40
Qont/2° 4.60 15.53 17.38 17.20 17.14 17.13 17.13 17.13
Quea/2 3.51 10.62 11.30 11.04 10.98 10.97 10.97 10.97
Qs -417 -3639 -5530 -5918 -6000 -6015 -6018 -6018

“Qexi=Oext! 2TR?), Qo= e/ 2TR?), Q, =07,/ (wR?). The system is a dimer composed of 50 nm diameter silver spheres (1 nm separation) at A\y=467 nm and Np=0.048
+2.827i.

for instance, require multipole truncations of the order of shift and widen the coupled “chain” resonance. This chain
Nmax = 120 before convergence is achieved, but the idea of resonance peaks at ~561 nm and Nj,=0.0564+3.685:
“perfect” spheres separated at atomic scales has clearly (Qext/5=14.416 and Q.qt/5=12.543). It is clear from Fig.
gone beyond the domain of applicability of our mesoscopic 7(c) that the extinction cross section of the chain reso-
physical model in any case. nance is increasingly dominated by scattering rather than
It is also important to verify that the recursive algo- absorption. The number of VSWF orders necessary for
rithm works for more complicated systems. To this end, high precision was also seen to decrease slightly for the
we illustrate in Fig. 7 the results of calculations for a sys- chain. The calculation of Fig. 7 was carried out at np.y
tem composed of a line of five identical silver spheres, =20 since calculations at n,,,=24 produced negligible dif-
each separated by 1 nm. For the binding force, we now ferences on this scale.
present €, ; as the binding optical force between the two Despite the dominance of scattering, a considerable
outermost spheres and their nearest neighbors and @ 5 amount of absorption is still present in the five-sphere
as the binding force between the central sphere and each chain. Furthermore, from the field maps in Figs. 6(c) and
of its nearest neighbors. It is interesting to remark that 6(d), one can see that the central sphere has the highest
the addition of other spheres in the chain dramatically internal field intensities, and one consequently expects
lessens the strong binding force interactions between increased absorption in the central sphere. This supposi-
spheres, even though the fields between the spheres (see tion can readily be confirmed quantitatively by using Eq.
Fig. 5) can still be almost as high as in the dimer case. (30) to calculate the absorption in each individual sphere.
We remark that the interactions have continued to red- The results are given in Table 2.

2 sphere system

IE/E. P 10" BB, on axis
tot nc 0 :

i

-50 0 50

5 sphere system

inc!

|[Ewll /[, on axis

ji

|Eo|[E." 10°

-100 -50 0 50 100

00 50 0 50 100
(0 (d)

Fig. 6. (Color online) Logarithmic scale plots of the field intensity for a two-sphere dimer with (=467 nm, N,,=0.048+2.827i, and

incident light polarized along the sphere axis. (a) 2D plot in the plane containing the centers of the spheres and the polarization vector.

(b) 1D logarithmic plot along the symmetry axis of the spheres. (c) and (d) are the same as (a) and (b), respectively, but for a five-sphere

chain of spheres at its resonance maximum (\g=561 nm, Nx,=0.0564+3.6857). (cf. Fig. 7).
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Fig. 7. (Color online) Total cross section and binding efficiencies
for a chain of five “touching” silver spheres 50 nm in diameter
(1 nm separation). In (a) and (b) the polarization is perpendicular
to the symmetry axis, (¢) and (d), parallel to the symmetry axis.

Table 2. Individual Absorption Efficiencies
Q.= 0,/ (wR?) in a Five-Sphere Chain®

Qa,l Qa,Z Qa,3 Qa,4 Qa,5
0.8346 2.333 3.030 2.333

0.8346

“At \g=561 nm and N,=0.0564+3.685i.

We conclude this section with some calculations con-
cerning larger chains of particles. One can remark that
the chain coupled resonance continued to redshift and
widen when passing from the dimer to the five-particle
chain. Results for the extinction and scattering cross sec-
tions for chains of 10 and 20 spheres are presented in Fig.
8 for the same polarizations and incident directions as
considered previously.

1 polarization

300 400 500

|| polarization

---Q

10,scat

400 600 800
(b) A, (nm)
Fig. 8. (Color online) Total extinction and scattering cross sec-
tion efficiencies per particle in chains of 10 and 20 particles. In
(a) the polarization is perpendicular to the symmetry axis, (b),
parallel to the symmetry axis.
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One readily sees that ultraviolet and perpendicular po-
larization responses per particle seem to have stabilized
for large chains. The collective chain response on the
other hand continues to broaden and slightly redshift as
one passes from 10- to 20-sphere chains. It is an interest-
ing point for future studies to examine the evolution of
this phenomenon for even longer chains and to study the
impact of defaults in the chains.

6. CONCLUSIONS

The balanced recursive algorithm can give useful and
highly accurate information in systems with large num-
bers of strongly interacting resonances. This has been
demonstrated herein for the case of localized plasmon
resonances, and the studies presented here suggest that
chains of closely spaced localized plasmons can have po-
tentially interesting applications with respect to fre-
quency shifting and broadening. Although not demon-
strated here, this technique also proves useful for treating
closely spaced systems possessing surface resonances of
whispering gallery type.

It is worth remarking that matrix balancing seems to
be a useful method to employ in almost any Foldy—Lax
equation solution scheme, be it for direct system matrix
inversion, iterative techniques, or linear system solutions.
In fact, some modern matrix inversion programs actually
integrate numerical matrix balancing into their algo-
rithms. Nevertheless, since the matrix balancing in
Foldy-Lax equations can be obtained analytically at rela-
tively low computational cost, it seems beneficial to carry
out this balancing explicitly rather than relying on purely
numerical treatments.

The matrix balanced RCTMA has potentially interest-
ing applications for other kinds of resonance phenom-
enon, notably whispering gallery modes. Such studies are
currently underway. Furthermore, the ability of the ma-
trix balanced RCTMA to study defaults and small modifi-
cations in large complicated systems is particularly prom-
ising and will be employed in subsequent studies.

APPENDIX A: VECTOR SPHERICAL WAVE
FUNCTIONS

The vector spherical wave functions can be readily writ-
ten in terms of the vector spherical harmonics (VSHs) and
outgoing spherical Hankel functions:

\Itl,p(kr) = Mnm(kr) = h:—l(kr)xnm(67 d)),

1
‘I’Z,p(kr) = Nnm(kr) = k_r[\”n(n + 1)h;(kr)Ynm(0’ d))
+[krhy (k)] Z,,,,(6,$)]. (A1)

In the same manner, the regular VSWF's are obtained by
replacing the spherical Hankel functions in Eq. (Al) by
spherical Bessel functions. Our adopted definition of the
VSHs is
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rVY,.(6,¢)

Z 05 = ’
nm ( ¢) \/m

X, (0, ) = Zy, (0, ) AT, (A2)

where the Y,,,(6, ¢) are the scalar spherical harmonics.
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