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Abstract: The spatial and spectral properties of three-dimensional photonic 
jets are studied in a framework employing rigorous Lorentz-Mie theory. The 
contributions to the field from each spectral component are studied 
quantitatively and highlight the distinctive features of photonic jets. In 
particular, the role of evanescent field in photonic jets generated by small 
spheres is investigated. Secondary lobes in the propagative frequency 
distribution are also singled out as a distinctive property of photonic jets. It 
is shown that these differences lead to angular openings of photonic jets at 
least twice as small as those in comparable ‘Gaussian’ beams. 
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1. Introduction 

Scattering of light by microspheres is an old and well known problem, analytically solved a 
century ago by Mie. This classical problem has recently received renewed interest by Chen et 
al. who reported the existence of ‘photonic jets’ in FDTD calculations [1-3]. Their simulations 
showed that when illuminating cylinders [1] or spheres [2] with plane waves, one can produce 
narrow beams in the near field of the shadow-side surface. These beams typically have 
FWHM (Full Width at Half Maximum) widths smaller than the incident wavelength and 
remain subwavelength over distances of several wavelengths. Moreover, the intensity can be 
hundreds of times higher than the incident intensity [2]. The existence of photonic jets has 
since been experimentally confirmed in microwaves range [4], and directly observed in the 
optical waves range with a confocal microscope operating in detection mode [5]. 

The ability of microspheres to focus light and enhance the electromagnetic (EM) field was 
previously known and utilized to remove particles from a substrate in laser dry cleaning 
technique [6]. Arrays of particles-lenses were proposed in 2003 as a technique to pattern a 
substrate with neither mask nor lithographic processes [7]. This technique enables one to 
pattern various shapes by illuminating the array at different angles [8]. The subwavelength 
properties of photonic jets and the advent of nanosciences and biotechnology, recommend 
photonic jets as a useful tool for high resolution nano-particles detection [1-3], fluorescence 
microscopy improvements [9] and nanopatterning [7,8]. A fuller understanding of this beam is 
nevertheless needed to fully exploit the potential of microspheres as optical components. 

An analytical study of light focusing by axially symmetric systems has been performed 
using wave propagation theory in systems having spherical aberrations, extending the 
geometrical optics approach [10]. The field is developed on high-order Bessoid integrals 
which are vectorial three-dimensional generalizations of the Pearsey Integral. Applied to 
microspheres, this formalism describes “photonic jets” as resulting from off-axis rays 
converging towards different points with different angles as a consequence of spherical 
aberrations. In this framework, photonic jets are approximated as Bessel beams of variable 
cross section. This description provides physical insights, tending towards Mie theory for size 
parameters above 30. For smaller spheres, the agreement is less accurate due in part to 
evanescent field contributions not taken into account in the geometric optics framework. 

A spectral analysis of the photonic jets has previously been carried out by Itagi et al. [11] 
for cylinders. They concluded that the evanescent field only makes small contributions to 
photonic jets properties which are mainly due to a particular phase distribution. Chen et al. 
also affirmed that photonic jets do not involve evanescent fields [1], but this still need to be 
closely examined for spherical problems invoking a complete three-dimensional analysis. 

In this work, numerical parameters are presented in section 2. The three dimensional 
spectral expansion of the field described in section 3, permits a quantitative analysis of the 
contribution of the different spatial frequencies in photonic jets field distributions in section 4. 
The propagation of photonic jets is then studied in section 5 where a comparison with 
Gaussian beam is made for didactic purposes. 

2. Simulations parameters 

Throughout this article, an incident wavelength in the optical range, λv = 525 nm, is adopted. 
At this wavelength, latex spheres have a refractive index of Ns = 1.6. The surrounding medium 
is considered to be either air, N0 = 1, or water, N0 = 1.33. The index contrast will then be 
respectively equal to ρ = 1.6, or ρ = 1.2. For a radius R = 1 µm, the corresponding size 
parameters are respectively k0R = 2πRN0/λv = 12 and k0R = 16. 

The intensity distribution (Hermitian square of the electric field) produced by a latex 
microsphere of radius 1 µm in water illuminated by a plane wave is simulated in Fig. 1(a). 
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The photonic jet can roughly be described with 4 parameters displayed in Fig. 1(b): the ‘focal’ 
distance f from the surface of the sphere to the point of maximum intensity, the intensity 
enhancement Imax, at the ‘focus’, the beam width w0 at the focus and finally the ‘diffraction 
length’ zr. These last two parameters will be precisely defined in the next paragraph 
analogously to Gaussian beam parameters. 
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Fig. 1. Photonic jet produced when a dielectric sphere of radius R = 1 µm, and refractive index 
Ns is illuminated by a plane wave propagating along the z axis in a homogeneous embedding 
medium of refractive index N0 (ρ =Ns/N0 = 1.2, λv = 525 nm, λ0 = λv/N0, k0R = 16). (a) A hot 
scale map of a photonic jet is displayed on a logarithmic scale of the electric field intensity. (b) 
A schema for photonic jet parameters is provided: ‘focal’ distance f , maximum enhancement 
Imax , width at f, w0 and diffraction length zr . The amplitude contours of the photonic jet at 
I(z)/e² and Imax/e² are also displayed. 

 
The numerical code permits the calculation of the total and scattered field throughout all 

space when an incident field interacts with a microsphere. To characterize photonic jets, the 
intensity enhancement of the EM field has been displayed on two axes of interest: the 
propagation axis z and a transverse axis x at z = f. An example is presented in Fig. 2, for R = 1 
µm and ρ = 1.2. It has been found that the intensity enhancement along the propagation axis z, 
displayed in Fig. 2(a), can be fitted in its decreasing part by a Lorentzian distribution. At the 
same time, the transversal intensity enhancement, displayed in Fig. 2(b) can be predominantly 
fitted by a Gaussian distribution. Therefore, we define the diffraction length, zr , as the half 
width of the photonic jet at the half maximum of the Lorentzian fit of the axial intensity 
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distribution, and the beam width, w(z) as the transverse width at I(z)/e² of the Gaussian fitted 
distribution. The width at the diffraction focus, w0, of the photonic jet is then defined as the 
width at z = f. 
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Fig. 2. Intensity enhancement distribution for a 1 µm radius sphere illuminated by a plane wave 
at λv = 525 nm with an index contrast of ρ = 1.2, λ0 = λv/N0 = 394 nm (a) along the propagation 
axis (z) (in black), and its Lorentzian fit (in red), zr = 800 nm (b) along a transverse axis (x) for 
z = f = 1.57 µm (in black), and its Gaussian fit (in red), w0 = 241 nm = 0.6λ0. 

 
Despite these similarities with Gaussian beam distributions, it can be argued [10] that 
photonic jets are more accurately described in terms of Bessel beams of variable cross 
sections [10]. However, Gaussian beams are generated by classical optical devices, and 
commonly encountered in experiments. This comparison can lead to a practical understanding 
of photonic jet properties. As could be expected, photonic jets nevertheless differ from 
Gaussian beams, especially with respect to the way in which they propagate. The study of the 
spatial frequencies involved in the photonic jets field distribution will be particularly useful in 
distinguishing photonic jets from Gaussian beams. 

3.  Spectral study of photonic jets 

A rigorous angular spectral analysis of the scattered field is performed here by expanding the 
partial waves on plane waves [14-16] to calculate the EM field. In Lorentz-Mie theory, the 
scattered field is expanded on a set of Vector Spherical Wave Functions (VSWFs), commonly 
denoted Mn,m and Nn,m [12,13]: 
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where fn,m are the Mie coefficients for scattered field and k0 = 2πN0/λv is the propagation wave 
vector in the host medium. The details of our notations are given in Appendix A. Expressing 

the transverse wavevector K
�

 as: 

 ˆ ˆcos sin ,k kK Kφ φ= +K x y
�

 (2) 

one can write a spectral decomposition of the outgoing VSWFs in the form: 
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where (r//, φ, z) are cylindrical coordinates and 2 2
0zk k K= − . One can observe that the 

VSWFs can be interpreted as the angular spectrum in the plane wave representation of the 

(a) (b) 
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vector spherical harmonics. Spectral decompositions were here and henceforth restricted to 
the scattered field since they are unsuitable for describing incident plane waves (which are 
represented by a Dirac distributions at K = 0). 

To proceed further, we adopt the simplifying case of a sphere illuminated by a circularly 
right-polarized incident plane wave so that the field is entirely described by VSWFs with m = 
1 (arbitrary polarization can of course be obtained by superpositions with circularly left 
polarized waves, m = -1). Using the Cartesian vector spherical harmonics, the scattered field 
can be written as: 
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where details and full expressions are relegated to Appendix B. This expansion provides the 
angular spectrum of plane waves representation of the field via three different coefficient 
functions, A, B, and C. We focus our attention on the total spectral amplitude S = 
(AA*+BB*+CC*)1/2. 

The total spectral amplitude is presented in Fig. 3 as a function of the normalized radial 
spatial frequencies K/k0 for a sphere of radius R = 1 µm at the position φ = 0, z = 1.05 µm. S is 
normalized to 1 at K = 0, and plotted for two different index contrasts ρ = 1.2 in Fig. 3(a) and 
ρ = 1.6 in Fig. 3(b). The radial spectrum has the following features: a generally decreasing 
and oscillating features in the region 0 < K/k0 < 1 corresponding to propagative fields, a 
singularity originating from the homogeneous medium Green function at K/k0 = 1 and a 
monotonically decreasing behaviour when K > k0 for evanescent field contributions. 
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Fig. 3. Total spectral amplitude S = (AA*+BB*+CC*)1/2 as a function of normalized spatial 
frequencies K/k0 at z = 1.05 µm, for a sphere of radius R = 1µm, and index contrasts (a) ρ = 1.2 
and (b) ρ = 1.6, illuminated by a plane wave at λv = 525 nm. The low frequencies are 
respectively fitted by a Gaussian frequency distribution of respective widths K/k0 = 0,190 in (a) 
and K/k0 = 0,270 in (b) (red line).  

 
The propagative frequency decomposition can be separated in two regions of interest. 

From the zero-frequency to the first minimum, the spectral distribution can be described by a 
narrow Gaussian-type distribution. The secondary maxima and minima which can be 
observed in the higher spatial propagative frequencies enrich the jet spectrum. These 
secondary maxima result in photonic jets having features that differ from Gaussian beams in 
direct space. By comparing Fig. 3(b) with Fig. 3(a), one can see that higher index contrast 
enhances the high spatial frequency components which results in a stronger focalization and a 
narrower photonic jet [10, 16].  
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One can also deduce from Fig. 3 that the strength of the evanescent field contribution 
depends significantly on the refraction index contrast and position at which the spectral 
decomposition is carried out. This dependence is highlighted in Fig. 4, which displays a hot 
scale map of S as a function of the position along the propagation axis z and the radial 
frequencies K/k0 for refraction index contrasts ρ = 1.2 in (a) and ρ = 1.6 in (b). For both index 
contrasts, the evanescent field is considerably attenuated after distances of more than 500 nm. 
Consequently, for low index contrasts, like ρ = 1.2 where f = 1.6 µm, the evanescent field will 
not bring any significant contribution to the width properties of the photonic jet. On the other 
hand, for ρ = 1.6, the photonic jet is on the surface of the sphere so that contribution of the 
evanescent field may be important. This point and the influence of the high propagative 
spatial frequencies will be discussed in the next section. 

 

 
Fig. 4. S as a function of z and K/k0 in logarithmic scale with the same parameters as used in 
Fig. 3(a) and Fig. 3(b) respectively. 

 
In this section we have presented a rigorous analytical spectral expansion of three 

dimensional photonic jets. The next section will demonstrate how this tool can help in 
analyzing the properties of photonic jets and bring new elements to the understanding of the 
unique features of photonic jets in direct space. 

4. Photonic jet analysis 

4.1 Direct space analysis of evanescent and propagative spectral contributions 

Using the spectral expansion of Eq. (4), one can plot the spatial distribution after having 
explicitly filtered out all evanescent (i.e. K > k0) contributions. The photonic jet intensity 
along the propagation axis is plotted in red in Fig. 5(a)) while the intensity with the 
evanescent field removed is plotted in green. The same procedure is studied in Fig. 5(b)) for 
the transverse intensity at z = f. One remarks that when the evanescent field is removed, the 
maximum intensity position of the photonic jet moves away from the surface, the maximum 
field enhancement drops by half its value and the size of the width at diffraction focus is 
increased by 10 percent (from 230 nm to 256 nm). This example demonstrates that the 
evanescent field plays a significant role in the field distribution of photonic jets close to the 
surface of the sphere, which is the case when index contrasts are large. Nevertheless, the 
evanescent field cannot be held responsible for the principal photonic jet features, particularly 
when refractive index contrast is low. 
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Fig. 5. Intensity distribution of the electric field: (a) along the propagation axis (z), and (b) at z 
= f, for sphere of radius R = 1µm illuminated at λv = 525 nm for an index contrast of ρ = 1.6. 
The red curve corresponds to the full intensity while the green curve is the intensity once the 
evanescent field has been removed. 

 
The spectral expansion of the previous section showed a rich structure in the high spatial 

frequency components of the photonic jet. In direct space, each propagative spatial frequency 
corresponds to propagation at a given angle with respect to the beam axis. An intensity map of 
a photonic jet is presented on a colored map in Fig. 6 (with ρ = 1.6). It shows the angles 
corresponding to the first few maxima (red) and the minima (black) of S (cf. Fig. 3(b)). The 
maxima correspond to high intensity angles while the minima correspond to angles of low 
intensity regions. The maxima in the spectral distribution can therefore be associated with the 
presence of secondary lobes in the direct field structure. The first secondary lobes tend to 
confine the central lobe into a low divergent beam, while the secondary lobes with high 
transverse components tend to reduce the length and the width of photonic jets. 
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Fig. 6. Scattered intensity of a photonic jet produced by a sphere of radius 1 µm, illuminated at 
λv = 525 nm with an index contrast of ρ = 1.6. The angles corresponding to the maxima and 
minima in the spatial frequency expansion of Fig. 3(b) are displayed in direct space by red lines 
and black lines respectively. 

 
The properties of the field scattered by a microsphere illuminated by a plane wave has 

been studied without including the incident field. The incident field contributions to the 
principal beam (i.e. photonic jet) are actually rather weak, except in the case of low index 
contrasts where they reduce the Rayleigh length. It will however be demonstrated in section 5 
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that the ‘total’ photonic jets still can have particularly low angular openings when index 
contrasts are low. Therefore, the restriction to the study of the scattered field spectrum appears 
sufficient to highlight the distinctive physical properties of photonic jets. 

4.2 Origin of the secondary lobes 

The origin of secondary lobes illustrated in Fig. 6 can be found in the spherical geometry of 
the microspheres and the corresponding spherical geometry of VSWFs (or multipolar waves) 
which are eigenmodes of the spherical Maxwell propagation equation. The amplitude of the 
scattered field coefficients, |f (h)

n,1| and |f (e)
n,1| in this expansion are displayed in Fig. 7, where 

we recall that scattered field in the VSWF basis is expressed: 
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Fig. 7. Amplitude of scattered coefficients of photonic jets in the VSWF expansion; (a) for the 
magnetic |f (h)

n,1| coefficients, (b) for the electric  |f (e)
n,1| coefficients. R = 1µm, ρ = 1.6, λv = 525 

nm. 
 

Figure 7 illustrates that photonic jets can be seen as finite linear superpositions of high 
order VSWF, used to describe the EM field in the context of a rigorous EM theory. It can be 
noticed that the predominant order n is approximatively equal to the size parameter kR. This 
corresponds to rays passing close to the edge of the sphere in the context of Van de Hulst’s 
localization principle [17]. The scattered intensity of the term of VSWFs of order n = 11, 
which slightly dominates is displayed in Fig. 8. | f (h)

11 M11,1|² is displayed in Fig. 8(a) and | f 
(e)

11 N11,1 |² in Fig. 8(b). The VSWFs waves have intensity distributions comprised of number 
of ‘beams’ (there are in fact 2n ‘beams’ in a VSWF of order n). The secondary beams seen in 
Figs. 1 and 6 are therefore intrinsically present in the VSWFs. 
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Fig. 8. Scattered intensity of the terms of order n = 11, (a) | f (h)

11 M11,1|², (b) | f (e)
11 N11,1 |².  

R = 1µm, ρ = 1.6, λv = 525 nm. 
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The superposition of the principal order of this photonic jet, n = 11 (cf. Fig. 7) is displayed 

in Fig. 9.  
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Fig. 9. Scattered intensity in log10 hot scale of a “photonic jet” generated with the principal 

order in the VSWF expansion: n = 11, i.e. 
2( ) ( )

11 11,1 11 11,1
h ef f+M N . R = 1 µm, ρ = 1.6, λv = 525 

nm 
 
One can see from Fig. 9 that the finite superposition of the multipolar waves of different 

type (M and N) tends to enhance the principal (forward direction) beam and reduce the 
intensity of the secondary beams, especially in the backward direction. However, the forward 
secondary lobes still contain non negligible intensity. 

In this section, the electromagnetic origin of the photonic jet has been demonstrated. The 
secondary beams emerge as a natural consequence of the geometry and the scale (λ ~ R) of 
the scatterers which requires an expansion on VSWFs. These secondary beams thus appear as 
the principal distinguishing feature of photonic jets with respect to the Gaussian beam 
behaviour generated in a paraxial optics approximation. 

5.  Photonic jet propagation 

The study of photonic jet spectrum in the previous sections has highligthed a narrow 
Gaussian-like fundamental contribution and oscillatory high spatial frequencies. As it is 
illustrated in Fig. 6, angular openings of photonic jets are linked with the width of this 
fundamental distribution. This single narrow fundamental Gaussian distribution would give 
rise in direct space to a weakly focused Gaussian beam, with low angular openings. In the 
Gaussian beam model, the beam waist w0, and diffraction length zr are linked by the relation 
2zr = k0w0². According to this formula, low angular openings θd ≈ w0/zr are obtained for large 
waists. But, it has been observed that the principal beam (i.e. the photonic jet) is extremely 
narrow (cf Fig. 2). This fact is explained by the presence of oscillatory high spatial 
frequencies which enrich the angular spectrum and confine the field transversally. Using 
similarities with Gaussian beam of section 1, longitudinal confinement of photonic jets and 
Gaussian beams have been compared. For low index contrasts, it has been calculated that for 
identical waists, photonic jets present a Rayleigh length twice greater than classical Gaussian 
beams. Thus, its angular opening can be estimated to be twice lower than the Gaussian one. 
The oscillatory high spatial frequencies permit to generate a gaussian-like principal beams 
with low angular openings and extreme transversal confinement. A microsphere can easily 
create narrow beams with angular openings at least twice smaller than for a Gaussian beam 
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created by current high numerical aperture optical lenses. This confirms what was observed in 
the reciprocal space in previous sections. The beam created by a microsphere illuminated by 
an optical plane wave has a rich spectrum, leading to unique propagation features in direct 
space. 

6. Conclusion 

A three dimensional spectral analysis demonstrating the rich structure of photonic jets has 
been performed. This permits the study of the contributions from all spatial frequency 
components (both propagative and evanescent). This decomposition indicates predominantly 
propagative wave contributions, whose low frequency components are considered as a 
Gaussian type together with high spatial frequency components corresponding to secondary 
lobes in direct space. The evanescent field contributions to photonic jets created by 
microspheres have been demonstrated to play an important role, enhancing and sharpening the 
photonic jets field distribution, but not particularly involved in the low angular opening 
properties of photonic jets. It has been shown that the highly collimated photonic jets 
observed with low index contrast spheres is due to the presence of the secondary beams 
associated with the multipole nature of electromagnetic field interacting with microsphere. 
When the same sphere is embedded in air, the higher index contrast produces a more localized 
beam both in the radial and in the longitudinal directions. The fact that such simple and 
inexpensive optical components as dielectric microspheres provide beams of such unique and 
potentially useful properties opens up numerous perspectives for applications. 

Appendix A: Numerical simulations 

Home developed numerical codes based on Mie theory are used to perform the study. In this 
context, the electromagnetic field is expanded on the vector partial waves (also called the 
Vector Spherical Wave Functions VSWFs), commonly denoted Mn,m and Nn,m [12] : 
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where k0 = 2πN0/λv where λv is the incident vacuum wavelength and N0 is the refractive index 
of the surrounding medium. The Y, Z, and X in eq.(1) are vector spherical harmonics (VSHs) 
defined in spherical coordinates by [13] as: 
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Singularity free partial waves are obtained by taking the regular part, denoted Rg, wherein 

the outgoing spherical Hankel functions hn are replaced by spherical Bessel functions, jn:  
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These regular partial wave vectors are used to expand the incident and the internal field: 
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where ks = 2πNs/λv = ρk0 and Ns the refractive index of the sphere with ρ = Ns/N0 = ks/k0 the 
refractive index contrast.The anm and snm are respectively the incident and internal coefficients 
in the field expansion. E0 is a real parameter determining the incident field amplitude. For 
plane waves, these coefficients are: 
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where êi is the incident field polarization. The EM wave is circularly polarized to facilitate the 
analysis:  
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This choice renders the intensity axi-symmetric so that intensity maps in different planes are 
equivalent. The scattered field is expanded on the partial wave vectors: 
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where fn,m are the scattered coefficients in the field expansion. The boundary conditions at the 
surface of the sphere, r = R , enable one to link the scattered field coefficients with the 
incident field coefficients via the ‘Mie’ coefficients: 
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where ( )( ) ( ) and ( ) ( )n n n nx xj x x xh xψ ξ +≡ ≡  are the Ricatti Bessel functions. The ‘Mie’ 
coefficients only depend on the size parameter k0R and the refractive index contrast between 
the two media, ρ. It is usually sufficient to adopt the Wiscombe criterion for the truncation of 
convergence of numerical simulations as a limit for the truncation of the basis [18]. 

Appendix B: Spectral expansion of the electromagnetic field 

The spectral expansion of the EM field distribution of photonic jets can be obtained via an 
integral expansion of the VSWFs on a cylindrical coordinates and invoking Clebsch Gordan 
coefficients. In the Lorentz-Mie theory, the scattered EM field is expanded on the basis of 
VSWFs: 
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and Xn,m, Yn,m and Zn,m are the vector spherical harmonics and hn is the spherical outgoing 
Hankel function. E0 is a real parameter determining the incident field amplitude. It can be 
shown in the scalar case that: 
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where 2 2
0zk k K= − . Yn,m are the scalar spherical harmonics set as : 
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n m n m nY c P e φθ φ θ=  (17) 

 
where Pn

m are the associated Legendre polynomials and cn,m is a normalization factor: 
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Using the spherical unit vectors: 
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where ˆ ˆ ˆ,  ,  zx y  are the cartesian unit vectors, and using the Cartesian vector spherical 
harmonics defined by: 
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where ( , ;1, | , )l m n mμ μ−  are the Clebsch-Gordan coefficients, the vectorial spherical 
harmonics can be written in terms of cartesian spherical harmonics as: 
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The vector function analogue of eq. (15) is: 
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The exponential part can be expanded as : 
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The integral according to φk can be analytically calculated using [19] 
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Where Jn are the cylindrical Bessel functions 

Proceeding further, we obtain: 
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Where we assume that the plane wave is circularly right polarized so that only 

,1 0 // ,1 0 //( , , ) and ( , , )n nk r z k r zφ φM N  contribute to the field expansion and  
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and 
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In this notation, the scattered field is finally expressed: 
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