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We derive an analytic expression for the local field intensity in an aggregate of particles illuminated by
diffuse light (T matrix formalism). To be precise, the diffuse light average is obtained by averaging the
electromagnetic response from plane waves over all possible incident field direction polarizations. We
applied this new averaging formula to analyze variations in the electromagnetic couplings between
two isotropic spheres as a function of their separation distance. The numerical calculations were per-
formed with the recursive centered T matrix algorithm (RCTMA), one of the known analytical solutions
of the multiple scattering equation of light. Illustrative calculations clearly demonstrate that diffuse
averaging has a large smoothing effect on the strong angular and local variations in the field intensities
that are omnipresent in orientation fixed calculations. We believe that this formalism can be a valuable
tool in the analysis of electromagnetic couplings in dense random heterogeneous media, in which light
propagation is dominated by a scalar diffusion behavior. © 2008 Optical Society of America

OCIS codes: 260.2110, 290.4210, 290.5825, 290.5850.

1. Introduction

During the past decade, the increasing capability to
perform accurate and relatively fast numerical eva-
luations of local fields in structured and disordered
heterogeneous systems has played an important role
in the advancement of a number of domains of applied
physics. Among these, one can site the study of the
amplification of the local field intensity in disordered
metallic structures where the heterogeneities have
sizes much smaller than the wavelength of the inci-
dent radiation [1], the analysis of photonic bandgap
materials [2], or the effect of the internal field on Ra-
man scattering cross sections [3]. Another interesting
domainof application concerns the studyof theoptical
properties of architectural paint films. It is assumed
that the analysis of the variation of the local field in-
tensity among the pigments can provide fundamental
understanding on the complex electromagnetic cou-
plings that take place in the medium and that are

known to strongly influence the gloss, color, and opa-
city of the dry films (see, for example, Refs. [4,5]).

Following this line of research, a series of works
[6,7] have been carried out on rutile titanium parti-
cles,which areused aswhite pigments inmany indus-
tries because of their high index of refraction and
absence of absorption in the visible range. These si-
mulations [6,7] were performedusing the finite differ-
ence time domain (FDTD) method [8]. Their results
clearly demonstrated strong variations in the near
field intensity in function of the direction of propaga-
tion and polarization of the incident plane wave as
well as the relative positions between the scatterers.
However, architectural white paint films, as well as
many other materials, are random dense heteroge-
neous media whose heterogeneities are comparable
in size or larger than the wavelengths of the incident
radiation. Because light propagation in such media
can be relatively well described by the diffusion ap-
proximation of the scalar radiative transfer equation
(see Ref. [9], for example), such dependencies of the
local field intensities on specific polarizations and or-
ientations of the incident radiation are unlikely to
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have a significant effect on overall behavior. There-
fore, in order to improve the validity of the fundamen-
tal scattering models, one could take into account
diffuse illumination.
Because of its wide theoretical range of applica-

tion, FDTD is certainly one of the most popular tech-
niques currently used to calculate local fields. One of
the most cited advantages of this method is to permit
the modeling of systems composed of anisotropic
materials and to treat arbitrarily shaped particles.
Nevertheless, such finite element methods also suf-
fer from a number of nonnegligible disadvantages.
First, they necessitate an extensive CPU time, which
grows strongly with system size and dimension. Sec-
ondly, their numerical implementations are complex,
and their development necessitates strong knowl-
edge in computational physics. Finally, to our knowl-
edge, they have been principally adapted to a single
coherent incident beam with a fixed direction and or-
ientation with respect to the multiple scattering sys-
tem. Thus, orientation averaging of both near and far
field quantities such as field intensities and cross
sections must be evaluated numerically.
An interesting alternative to finite element meth-

ods is themultiple scattering centeredTmatrix form-
alism introduced by Mackowski [10]. In contrast to
FDTD, calculation times do not become longer with
increasing distances between the particles, but de-
pend only on the number of scatterers in the system
and their relative sizeswith respect to thewavelength
of the incident field. Furthermore, the local fields can
be exactly evaluated at any point in space, whereas in
finite element methods, their precision depends on
the mesh size and the extrapolation function. An
all-important advantage in the present context is that
the multiple scattering T matrix formalism can yield
analytical expressions for the orientation and polari-
zation averages of both far field optical parameters
[11] and the near field averages derived herein.
The aim of this paper is twofold: (a) to propose a

theoretical formalism based on the multiple scatter-
ing T matrix theory that provides an analytical for-
mulation of the orientation and polarization average
of the local electric field intensities and that can be
used in structured or randomly configured systems of
dielectric or metallic objects and (b) to illustrate pos-
sible applications of this formalism through the
study of the amplitude of the electromagnetic cou-
plings between two spherical rutile titanium dioxide
pigments as a function of their separation distances.
The first part of this work, Section 2, is devoted to

theory and is divided into three subsections. In the
first two of these subsections, we briefly recall the
fundamental expressions related to the multiple
scattering T matrix formalism as well as the analy-
tical expressions of the total external field intensity
for the case of an incident field with fixed orientation
and polarization of the incident field. Building upon
our previous work [12], we derive in Section 3 an ana-
lytical formulation of the total external electric field
intensity under diffuse illumination.

Inthesecondpartof thispaper,Section3,weapplied
the T matrix formalism to study the variation of the
electric field intensity as a function of the distance of
separation between two spherical dielectric particles.
Two cases are considered: an incidentmonochromatic
plane wave propagating along and perpendicular to
the axes connecting the two scatterers, and the same
two scatterers under diffuse light illumination.
Although amuch larger number of particles can read-
ilybetreated inthismanner,werestrictedourselvesto
twoparticles in thiswork in the interest of simplifying
the analysis of the interparticle interactions.

2. Theory—Multiple Scattering T Matrix and Diffuse

Light Formulas

A. Summary of the Multiple Scattering T -Matrix Method

We consider a monochromatic plane wave, linearly
polarized, incident on an ensemble of N isotropic
dielectric objects with complex refractive index n

ðjÞ
s

(j being the particle label), dispersed in an infinite
homogeneous nonabsorbing medium characterized
byan index of refractionnm.We choose somearbitrary
pointO as the coordinate system center and label the
center of eachparticle byaposition vector r

ðjÞ
0
. For each

of the particle centers, we define a local reference
frame centered on r

ðjÞ
0

with axes parallel to the system
coordinate system. Thus, any point in space is loca-
lized by the position vectors r in the system centered
frame or rj ¼ r − r

ðjÞ
0

in a reference frame centered on
the jth particle. The incident field has a vacuum
wavelength λ and wave vector ki ¼ kêk, where
k ¼ 2πnm=λ, the vector ki being associated with radial
unit vectors ðêk; êθk ; êϕk

Þ in a spherical coordinate sys-
tem. The incident (linear) polarization is specified by
êi and characterized via a parameter γ ≡ a cosðêi · êθkÞ.
Using appropriately defined vector spherical wave
functions (VSWFs) [12], denoted Ψ, as basis sets for
developing the time harmonic incident (Ei) and scat-
tered (Es) electromagnetic fields, one has

EiðkrÞ ¼ E0RgfΨ
tðkrÞgaγ; ð1Þ

EsðkrjÞ ¼ E0Ψ
tðkrjÞf

ðjÞ
N ; ð2Þ

where t and Rg stand for “transpose of” an “regular
part of,” whereas aγ and f

ðjÞ
N are column vectors com-

posed of the incident field coefficients and the jth par-
ticle scattered field coefficients. The multiple
scattering T matrix method takes the form of a linear
system of coupled matrix equations [12,13]:

T
ðjÞ
N ¼ T

ðjÞ
1

2

6

6

6

4

I þ
X

N

l ¼ 1

l ≠ j

Hðj;lÞT
ðlÞ
N Jðl;jÞ

3

7

7

7

5

; j ¼ 1;…;N;

ð3Þ

where
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• I is the identity matrix, while Jðl;jÞ andHðj;lÞ are
the regular and irregular translation-addition ma-
trices [14]. They are used to translate field develop-
ments on a basis set of spherical vector wave
functions around a given origin in terms of spherical
vector waves centered on a different origin.
• The symbol T

ðjÞ
1

represents the one-body T ma-
trix of the jth object in the system [15]. When oper-
ating on the expansion coefficients of the excitation

field impinging upon the particle (denoted e
ðjÞ
N ), it

yields the expansion coefficients (f
ðjÞ
N ) wave via the

relation f
ðjÞ
N ¼ T

ðjÞ
1
e
ðjÞ
N , with

e
ðjÞ
N ¼ Jðj;0Þaγ þ

X

N

l¼1; l≠j

Hðj;lÞf
ðlÞ
N :

• The T
ðjÞ
N matrix will be referred to here as the

N-body T matrix of the jth object in the system. It di-
rectly relates the expansion coefficients of the inci-
dent field on the entire N particle system to the

expansion coefficients, f
ðjÞ
N , of the field scattered by

the jth particle via the relation f
ðjÞ
N ¼ T

ðjÞ
N Jðj;0Þaγ ¼

T
ðjÞ
N eki·r

ðjÞ

0 aγ (the last equality being valid when aγ

are the coefficients of a plane wave with wavenumber

ki).

Once the N-body T matrices are evaluated by sol-
ving Eq. (3) [16,17], analytic expressions can be de-
rived for the total cross sections of the entire
system [10]. Although in theory the analytical expres-
sions of the electric fields involve infinite expansions
on theVSWFs, in practice it is nowwell known that an
accurate representation of the fields can be achieved
when truncating the series to an order nmax that de-
pends on the product of the incidentwavenumber and
the size of the particles.

B. Total External Field Expression Under a Fixed

Orientation of the Incident Wave

Applying the superposition principle, the total exter-
nal electric field, noted Etot, can be expressed as the
sum of the incident wave and the fields scattered by
each of the particles. Combining Eqs. (2) and (A1) ,
the latter given in the Appendix, we have

EtotðkrÞ ¼ E0ðêx; êy; êzÞ
h

ðEx
i E

y
i Ez

i Þ
t

þ
X

N

j¼1

CðrjÞΨ
tðkrjÞf

ðjÞ
N

i

; ð4Þ

where CðrjÞ is the standard dyadic that transforms
vectors in the jth particle spherical coordinate basis
to the Cartesian coordinate system:

CðrjÞ ¼

2

4

sin θj cosϕj cos θj cosϕj − sinϕj

sin θj sinϕj cos θj sinϕj cosϕj

cos θj − sin θj 0

3

5: ð5Þ

Ψ
tðkrjÞ are 3 by 2nmaxðnmax þ 2Þ matrices that con-

tain the spherical coordinate components of the vec-
tor spherical wave functions given in terms of the
local spherical coordinate systems. From Eq. (4),
the intensity of the total external electric field is sim-
ply derived:

‖EtotðkrÞ‖
2 ¼ E2

0
½Aþ Bþ C�; ð6aÞ

with

A ¼ 1 ; B ¼ 2 × Re
h

ðEx
i E

y
i E

z
i Þ

�
X

N

j¼1

CðrjÞΨ
tðkrjÞf

ðjÞ
N

i

;

C ¼
X

N

j¼1

X

N

l¼1

h

f
ðjÞ
N

i

†
Ψ

�ðkrjÞC
tðrjÞCðrlÞΨ

tðkrlÞf
ðlÞ
N ;

ð6bÞ

where † and Re stand for “conjugate transpose of”
and “real part of.” The formulas in Eq. (6b) will prove
useful in the derivations that follow, but in practice,
it is fastest to calculate the field intensity by first cal-
culating the electric field from Eq. (4) and then sim-
ply to take E

�
tot · Etot. Furthermore, since the aγ

coefficients are nonnegligible to all multipole orders,
it is preferable to use the direct expression for the
incident field, Eq. (A1), instead of the expansion
on the VSWFs, Eq. (1).

C. Orientation Average Expression of the Total External

Field Intensity

A considerable advantage of using theT matrix form-
alism is that the variation in the orientation and po-
larization of the incident radiation are completely
and uniquely contained in the aγ expansion coeffi-
cients. The averaging process can be broken up into
two steps: We first average over all possible direc-
tions of the incident field polarization, and second
we average over all possible orientations of the wave
vector of the incident radiation to simulate diffuse
illumination. Taken together, these averaging pro-
cesses can take the general form

ha†
γMaγi0 ¼

R

2π
ϕ¼0

R

π
θ¼0

R

2π
γ¼0

a†
γMaγdγ sin θdθdϕdγ

R

2π
ϕ¼0

R

π
θ¼0

R

2π
γ¼0

dγ sin θdθdϕdγ
; ð7Þ

where hi0 denotes the orientation and polarization
averages procedures and M will be a matrix whose
coefficients are independent of the integration an-
gles. The average over the polarization angle γ corre-
sponds to the average intensity of two perpendicular

1 June 2008 / Vol. 47, No. 16 / APPLIED OPTICS 2899



polarizations noted p and q such that

ha†
γMaγi0 ¼

1

2

1

4π

Z

2π

ϕ¼0

Z

π

θ¼0

½a†
pMap þ a†

qMaq� sin θdθdϕ:

ð8Þ

Then, using the orthonormality of the vector spheri-
cal harmonics [18], Eq. (8) leads to

haγMaγi0 ¼ 2πTrðMÞ; ð9Þ

where Tr stands for “trace of.”
Now, to retrieve a formulation as given in Eq. (7), it

is necessary to explicitly introduce the centeredTma-
trices τ

ðj;lÞ
N , which are related to the T

ðjÞ
N matrices via

the relations

T
ðjÞ
N ¼

X

N

l¼1

τ
ðj;lÞ
N Jðl;jÞ; j ¼ 1;…;N: ð10Þ

Wehavepreviously established that the calculation of
the τ

ði;jÞ
N matrices can be an efficient means of obtain-

ing theT
ðiÞ
N matrices [11,12]. Thus, using the represen-

tations of the incident and scattered fields’
expansions on the VSWFs, the total external field in-
tensity can be expressed as

‖EtotðkrÞ‖
2 ¼ E2

0
‖ðêx; êy; êzÞ

�

CðrÞRgfΨtðkrÞgaγ

þ
X

N

j¼1

X

N

l¼1

CðrjÞΨ
tðkrjÞτ

ðj;lÞ
N Jðl;0Þaγ

�

‖2;

ð11Þ

which leads to

‖EtotðkrÞ‖
2 ¼ E2

0

�

a†
γRgfΨ�ðkrÞgRgfΨtðkrÞgaγ

þ a†
γRgfΨ�ðkrÞg

X

N

j¼1

X

N

l¼1

Pðr̂; r̂jÞΨ
tðkrjÞτ

ðj;lÞ
N Jðl;0Þaγ

þ
X

N

j¼1

X

N

l¼1

a†
γJð0;lÞ½τ

ðj;lÞ
N �†Ψ�ðkrjÞPðr̂j; r̂ÞRgfΨ

tðkrÞgaγ

þ
X

N

j¼1

X

N

l¼1

X

N

i¼1

X

N

k¼1

a†
γJð0;kÞ½τ

ði;kÞ
N �†Ψ�ðkriÞ

× Pðr̂i; r̂jÞΨ
tðkrjÞτ

ðj;lÞ
N Jðl;0Þaγ

�

; ð12Þ

wherePðr̂i; r̂jÞ ¼ Ctðr̂iÞCðr̂jÞ. The final stage of the pro-
cedure consists of using the translation theorem to ex-
press the incident field asa function of theJðl;0Þmatrix
in the second and third terms of Eq. (12) such that

EiðkrÞ ¼ E0CðrlÞRgfΨ
tðkrlÞgJ

ðl;0Þaγ: ð13Þ

Introducing this relation into Eq. (12) leads to

‖EtotðkrÞ‖
2 ¼ E2

0

�

a†
γRgfΨ�ðkrlÞgRgfΨ

tðkrjÞgaγ

þ 2Re

 

X

N

j¼1

X

N

l¼1

a†
γJð0;lÞRgfΨ�ðkrlÞg

× Pðr̂l; r̂jÞΨ
tðkrjÞτ

ðj;lÞ
N Jðl;0Þaγ

!

þ
X

N

j¼1

X

N

l¼1

X

N

i¼1

X

N

k¼1

a†
γJð0;kÞ½τ

ði;kÞ
N �†Ψ�ðkriÞ

× Pðr̂i; r̂jÞΨ
tðkrjÞτ

ðj;lÞ
N Jðl;0Þaγ

�

: ð14Þ

This expression for ‖Etot‖
2 as a later relation has pre-

cisely the same form a†
γMaγ described in Eq. (7). Con-

sequently, applying Eq. (9) to Eq. (14), the orientation
average of the total external electric field intensity
can be expressed as

h‖EtotðkrÞ‖
2io ¼ 2πE2

0
½Ao þ Bo þ Co�; ð15aÞ

with

Ao ¼ 1=2π;

Bo ¼ 2ReTr

 

X

N

j¼1

X

N

l¼1

RgfΨ�ðkrlÞgPðr̂l; r̂jÞΨ
tðkrjÞτ

ðj;lÞ
N

!

;

Co ¼ Tr

 

X

N

j¼1

X

N

l¼1

X

N

i¼1

X

N

k¼1

Jðl;kÞ
h

τ
ði;kÞ
N

i

†
Ψ

�ðkriÞ

× Pðr̂i; r̂jÞΨ
tðkrjÞτ

ðj;lÞ
N

!

; ð15bÞ

where the invariance of the trace on circular permu-
tation and the addition rule of the translation ma-
trices Jðl;kÞ ¼ Jðl;0ÞJð0;kÞ and I ¼ Jðl;0ÞJð0;lÞ were used.
Finally, the exploitation of symmetry relations leads
to the final result:
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Bo ¼ 2 × ReTr

�

X

N

j¼1

RgfΨ�ðkrjÞgΨ
tðkrjÞτ

ðj;jÞ
N

�

þ 2ReTr

�

X

N

l¼1

X

N

j>l

RgfΨ�ðkrlÞgPðr̂l; r̂jÞΨ
tðkrjÞτ

ðj;lÞ
N

�

;

ð16aÞ

Co ¼ Tr

 

X

N

l¼1

X

N

i¼1

X

N

k¼1

Jðl;kÞ½τ
ði;kÞ
N �†Ψ�ðkriÞΨ

tðkriÞτ
ði;lÞ
N

!

þ Tr

 

X

N

i¼1

X

N

l¼1

X

N

j>i

X

N

k¼1

Jðl;kÞ

×
h

τ
ði;kÞ
N

i

†
Ψ

�ðkriÞPðr̂i; r̂jÞΨ
tðkrjÞτ

ðj;lÞ
N

�

: ð16bÞ

D. Range of Application

Although the T-matrix formalism is in principle ap-
plicable to arbitrarily shaped particles, one needs a
reliable method for its calculation. In practice, the
Waterman null field approach is most commonly em-
ployed, but it usually fails to properly converge for
nonaxisymmetric particles. Numerous extensions of
the theory have been proposed to overcome this lim-
itation. Some modify the resolution of the surface in-
tegrals (see, for example, Ref. [19], or more recently,
Ref. [20]), Others use different sets of basis functions
[21] and one must convert to the VSWFs before em-
ploying Eqs. (15) and (16), and this can apparently
can only be done if the smallest circumscribing
spheres around each scatterer do not overlap.
Lastly we point out that, contrary to Cruz et al.

[22,23], who used the global T-matrix approach and
consequentlywere limited to evaluating the local field
intensity outside the smallest circumscribing spheres
of the entire system, the use of the centered T-matrix
formalism allows one to readily calculate the field at
any point of space outside of the smallest circumscrib-
ing sphere of each scatterer [24].

3. Application

A. Description of the System Under Study

The system under study is composed of two isotropic
dielectric spheres, noted S1 and S2, with index of re-
fraction ns ¼ 2:8, which is known to be a good approx-
imation for anisotropic rutile titanium dioxide
crystals. The particles are dispersed in polymer resin
(nm ¼ 1:5) and illuminated by a monochromatic
plane wave. They have radii rs ¼ 0:12 × μm and
are centered at ð0; 0; z1Þ

t and ð0; 0; z2Þ
t in the princi-

pal Cartesian coordinate system. The wavelength of
the incident radiation was set to 0:545 μm, which cor-
responds to the middle of the visible spectra. Our
goal here is to analyze and compare the evolution
of the scattering patterns produced by the multiple

scattering interactions as the separation distance
jz2 − z1j between the objects varies.

To fulfill this objective, the center of S1 is fixed at
z1 ¼ −0:5 μm, and we calculate intensity maps of the
scattered and total external fields for several differ-
ent values of z2. We focus our attention on the small
region of space in the yOz plane and that is centered
at the origin of the reference frame. The plotting re-
gion is a square ranging from −1:0 to 1:0 × μm on the
Oy and Oz axes. Results are displayed in a three di-
mensional plot with intensity given in the Oz axis
and a contour plot with reversed gray level scale
in the upper part of the figure. Calculations were car-
ried out every 5 × 10−3 × μm, resulting in a 399 by 399
grid of the observation plane.

B. Fixed Orientations of the Incident Wave Vector Parallel

to the Oz Axis

In order to compare with the orientation averaged re-
sults in Subsection 3.D below, we first applied Eq. (7)
to evaluate the total external field intensities result-
ing from a fixed orientation and two polarizations,
transverse electric (γ ¼ π=2) and transversemagnetic
(γ ¼ 0) (transverse with respect to the observation
plane). Although polarization dependence can be
quite strong, for reasons of simplicity we illustrate po-
larization averaged intensities corresponding to un-
polarized incident fields [cf. Eq. (8)]. This first series
of calculationswere performedwhile fixing the propa-
gation of the incident plane wave along the positive
direction of theOz axis. The goal here was to study in-
terparticle coupling effects (i.e., sometimes called de-
pendent scattering), and we found that inclusions of
the interferenceof the incident fieldwith thescattered
fields only tended to clutter the analysis. Conse-
quently, we chose to plot the normalized scattered
fields intensities �Is ¼ Is=I0. Nevertheless, it seems
clear that, were one to study phenomenon such as
photonic jets orhot spots, itwouldbepreferable toplot
theorientationaveraged total field.The intensitymap
of Fig. 1(a) is that of a sphereS1 isolated in the infinite
medium, while Figs. 1(b) to 1(f) display the intensity
patterns of the two particles system for particle se-
paration distances jz2 − z1j equal to 17rs, 12rs, 8rs,
4rs, and 2rs, with the incident light directed along
the two-particle symmetry axis. Taking the scattering
patternofS1 ofan isolatedsphereas the referencepat-
tern, Figs. 1(b) to 1(f) show a progressive increase in
the electromagnetic couplings as the particle separa-
tion distance decreases. Such interaction processes
can be divided into a succession of qualitatively dis-
tinct regions:

• When jz2 − z1j is much larger than the wave-
length of the incident field (not shown in the paper),
the presence of S2 does not significantly affect the
scattering pattern near S1, leaving unchanged the
spatial distribution of the strong intensity in the
near field around the particle. Nevertheless, approxi-
mately hyperbolic interference patterns appear in
the region between the particles.

1 June 2008 / Vol. 47, No. 16 / APPLIED OPTICS 2901



• As the separation distance jz2 − z1j decreases to
values between ten and several wavelengths of the
incident field (Figs. 1(b)–1(d)), the presence of S2

has two successive effects on the scattering patterns.
In a first step, the curved interference patterns be-
tween the particles become more intense and adopt
more complex forms. Most notable are the large in-
creases in intensity maxima near the line separating
the objects and the strong angular variations of the
field intensity around this axis. In a second step, as
the particles get considerably closer, the spatial form
of the near field intensity is progressively altered, in-
dicating occurrence of strong interparticle couplings.
• When the separation distance jz2 − z1j becomes

inferior to a few wavelengths (Fig. 1(e)), the interfer-
ence pattern in the region between the particles
vanishes. The particle S2 is now entirely positioned
in the near field region of S1, resulting in strong near-
field couplings.
• When the two particles are in contact (Fig. 1(f)),

the scattering pattern exhibits the characteristics of
an isolated nonspherical object in interaction with a
monochromatic plane wave.

C. Fixed Orientations of the Incident Wave Vector Parallel

to the Oy Axis

The particularly strong amplitudes of the interaction
between scattered waves illustrated in the previous
example is largely due to the specific direction of
the incident wave vector that was chosen to be paral-
lel to the axis connecting both scatterers. Thus, to pro-
vide an additional source of comparison with diffuse
illumination, we mapped the scattered intensity cor-
responding to an incidentwave propagating along the
negative Oy direction, that is, perpendicular to the
axis that binds both scatterers. The interaction pro-
cess globally shows the same characteristics as de-
scribed in the preceding subsection. The fact that
the scattered intensity of each isolated particle is
principally enhanced in the forward direction intro-
duces the following differences with on-axis illumina-
tion: (a) the couplings on the (Oz) axes separating the
objects are weaker than in the on-axis configuration,
and (b) the angular variation around the Oy axis, in
thehalf-plane (zOy) andwith ynegative, are strength-
ened. Detailed analysis and comparisons between

Fig. 1. (Color online) (a) Mapping of the scattered electric field intensity (outside the particles) of a system composed of an isolated
dielectric sphere with index of refraction 2.8 and radius 0:12 μm embedded into an infinite nonabsorbing medium with refractive index
1.5. The incident field with wavelength of 0:545 μm propagates in the positive direction of theOz axis. (b) Same as Fig. 1(a) but instead the
system is composed of two identical dielectric spheres separated by jz2 − z1j ¼ 17rs. (c) Same as Fig. 1(b) with separations jz2 − z1j ¼ 12rs.
(d) Same as Fig. 1(b) with separations jz2 − z1j ¼ 8rs. (e) Same as Fig. 1(b) with separations jz2 − z1j ¼ 4rs. (f) Same as Fig. 1(b) with se-
parations jz2 − z1j ¼ 2rs.
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Figs. 1(c) and 2(c), as well as 1(e) and 2(e) clearly show
both phenomena.

D. Diffuse Light Illumination

To study the effect of diffuse illumination on the elec-
tromagnetic couplings, wemapped the normalized or-
ientation average scattered intensity h�Isi ¼ hIsi=I0, in
the same system of two dielectric spheres and for the
same distances of separation as in Subsections 3.B
and 3.C above. Examination of the resulting cartogra-
phies displayed from Fig. 3(a) to Fig. 3(f) shows the
following features: (a) a decrease of the couplings in
the zone between the particles as compared to thepre-
vious systems, (b) the presence of strong field inten-
sity near the particle surfaces, and (c) a drop in the
maximum normalized intensity to 2.1 as compared
to the fixed orientation enhancements of 12.5 and
10.0 for the on-axis illumination and perpendicular
illumination (see Subsections 3.B and 3.C). These ob-
servations suggest that the interparticle influence is
principally due to couplings of the scattered fields in
the zones located near the surface of the scatterers.
Indeed, a study of the orientation and averages of
the total scattering cross sections only show notice-
able differences from the independent scattering re-

sults when the surfaces of the particles are
separated by less than approximately one diameter.

An important aspect of this study is that the “tran-
sitions” between different (independent and depen-
dent) scattering “regimes” are continuous, and one
cannot define a precise distance between them. The
diffuse scattering results lead us to question the no-
tions of scattering volume around each scatterer as
introduced by Fitzwater et al. [25] to describe depen-
dent scattering inwhite paint films. They argued that
at a given concentration, the overlapping of the scat-
tering volumes was the cause of the decrease in the
scattering efficiency. Our calculations indicate rather
that the dimensions of the scattering volume are not
absolute and thereby cannot be readily associated to a
threshold in concentration.

4. Conclusion and Future Work

Using the recursive centered T matrix formalism, we
have derived analytical expressions of the local field
intensity when averaging with respect to all direc-
tions of the incident monochromatic plane waves
and all angles of linear polarization. We applied this
formalism to analyze the variations of the local scat-
tered field intensities of a simple system composed of

Fig. 2. (Color online) (a) Mapping of the scattered electric field intensity (outside the particles) of a system composed of an isolated
dielectric sphere with index of refraction 2.8 and radius 0:12 μm embedded into an infinite nonabsorbing medium with refractive index
1.5. The incident field with wavelength of 0:545 μmpropagates in the negative direction of theOy axis. (b) Same as Fig. 2(a) but instead the
system is composed of two identical dielectric spheres separated by jz2 − z1j ¼ 17rs. (c) Same as Fig. 2(a) with separations jz2 − z1j ¼ 12rs.
(d) Same as Fig. 2(a) with separations jz2 − z1j ¼ 8rs. (e) Same as Fig. 2(a) with separations jz2 − z1j ¼ 4rs. (f) Same as Fig. 2(a) with se-
parations jz2 − z1j ¼ 2rs.
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two identical spherical rutile titanium pigments as
function of their separation distance.
One direct application would be to compare the an-

gular variation of the local scattered or exciting field
intensity around a given scatterer with the far field
differential scattered intensity of the whole system
after configuration average. Such an analysis would
clarify the validity of using far field optical para-
meters to characterize the volume element of dense
heterogeneous media in radiative transfer calcula-
tions as is frequently done [26]. Another application
could be found in the study of the average local field
intensities in clusters of aggregated spheres. Indeed,
it has been shown [27] that, for a given wavelength
and relative index of refraction, there is a specific
size of primary particles at which the orientation
and polarization average scattering cross section of
the whole cluster is equal to the sum of the individual
scattering cross sections in the independent assump-
tion. Studies of the local electric field intensity as a
function of the size of the primary particles could pro-
vide useful information on the origin of this particu-
lar phenomenon.

Appendix A

The incident plane wave is generally expressed as

EiðrÞ ¼ E0 expðiki · rÞêi;γ: ðA1Þ

In spherical coordinates this reads

EiðrÞ ¼ ½ êk êθk êϕk
�

2

4

0

cos γ
sin γ

3

5E0 expðiki · rÞ: ðA2Þ

In Cartesian coordinates it reads

EiðkrÞ ¼ ½ êx êy êz �

×

"

cos θk cosϕk cos γ − sinϕk sin γ

cos θk sinϕi cos γ þ cosϕk sin γ

− sin θk sin γ

#

E0 expðiki · rÞ;

ðA3Þ

Fig. 3. (Color online) (a) Mapping of the orientation average scattered electric field intensity (outside the particles) of a system composed
of an isolated dielectric sphere with index of refraction 2.8 and radius 0:12 μm embedded into an infinite nonabsorbing medium with
refractive index 1.5. The wavelength of the incident field is 0:545 μm. (b) Same as Fig. 3(a) but instead the system is composed of two
identical dielectric spheres separated by jz2 − z1j ¼ 17rs. (c) Same as Fig. 3(a) with separations jz2 − z1j ¼ 12rs. (d) Same as Fig. 3(a) with
separations jz2 − z1j ¼ 8rs. (e) Same as Fig. 3(a) with separations jz2 − z1j ¼ 4rs. (f) Same as Fig. 3(a) with separations jz2 − z1j ¼ 2rs.
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with

ki · r ¼ krðsin θr sin θk cosðϕr − ϕkÞ þ cos θr cos θkÞ:

The authors would like to thank R. K. Chang and
Eduardo Nahmad for their support given to this
work.
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