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ABSTRACT

We carry out calculations of electron capture and f-decay from several odd-even and odd-odd nuclei with
A > 60, seeking the largest transitions. Of these, only the ®°Co + e~ — %°Fe + v, transition has been pre-
viously evaluated in a shell model calculation, by Fuller et al., in a form suitable for inclusion in stellar evolu-
tion calculations. For neutron-rich stellar cores with Y, = Z/4 = 0.42 to 0.43, this single transition accounts
for roughly half of the total electron capture in present evolutionary calculations, even though the abundance
by mass fraction of ®°Co is only on the order of 10~5. We show that nuclei with 4 > 60, essentially not
included to date, may make significant contributions to the electron capture and f-decay rates in the last

stages of stellar evolution.

Subject headings: nucleosynthesis — stars: supernovae

I. INTRODUCTION

The basis for understanding electron capture during the
late stages of stellar evolution was formulated by Bethe et al.
(1979, hereafter BBAL). These authors used the reaction
*SFe(e, v,) >*Mn with a zero-order shell model to point out
that considerable Gamow-Teller strength should be present at
excitation energies of a few MeV in the daughter nucleus
36Mn, and thus the continuum electron capture rate should be
rapid in the presupernova stellar collapse where electron Fermi
energies reach several MeV. Fuller, Fowler, and Newman
(hereafter FFN) with similar shell model techniques, made esti-
mates of Gamow-Teller resonance strengths and energy cen-
troids which were then employed with the available
experimentally determined energy levels and fi-values to
compute nuclear reaction rates over a broad range of nuclei
and stellar conditions (FFN 1980a, b, and 1985).

The FFN calculations were carried out for both the
“electron capture direction” and the “ positron capture direc-
tion.” The former includes both continuum electron capture
and f*-decay, while the latter includes f~-decay and contin-
uum positron capture. The “electron capture direction,” or
T= — T~ transitions, can be explored experimentally by (n, p)
experiments. Such recent experiments (Hiusser and Vetterli
1988) have shown the extensive Bloom and Fuller calculation
(1985) to be basically correct, but determine an empirical quen-
ching factor, similar to those known for (p, n) reactions, which
should be applied. Part of such a quenching factor arises from
truncation of shell model calculations to the lowest shells and
selected configurations. But there remains a residual factor of
~0.6, which takes into account the strength that has been
moved quite far upward in energy by tensor interactions
(Bertsch and Hamamoto 1983), and strength moved even
further into the A(1230) isobar region (Bohr and Mottleson
1981; Brown and Rho 1981).

In the most naive shell model calculation which we shall use
in this paper, the quenching factor for the *Fe — **Mn tran-
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sition is (Hausser and Vetterli 1988) <0.35. With the more
extensive Bloom and Fuller calculation (1985), the factor is
~04.

In this paper we wish to extend the work of FFN to 4 > 60.
It was shown in BBAL that, as a result of electron capture, the
average number of nucleons per nucleus (4) moves upward.
The work of BBAL pertained to higher densities and tem-
peratures than are relevant in the precollapse evolution of
stars, and these authors averaged over pairing gaps, a pro-
cedure which was justified only for their higher temperatures
(T 2 8 x 10° K). In the precollapse evolution where tem-
peratures are lower (2 x 10° K < T < § x 10° K), the nuclear
effects of odd-odd compared with even-even nuclei can make
quite a difference. As a result, the relevant 2’s are less than half
those tabulated in BBAL. Here /i = u, — u,, where 4, and 4,
are neutron and proton chemical potentials, respectively.
Because the BBAL s are too large, the A’s computed there
will not be quantitatively accurate. Nonetheless, there is a ten-
dency for A to increase with decreasing Y,. Here Y, is the ratio
of the number of electrons to the number of nucleons. Since we
consider conditions in which essentially all nucleons are in
nuclei, T, is simply given by

Y,

-

Current stellar evolution calculations predict Y,’s of 0.42-0.43
for the center of the 18 M (Woosley, Pinto, and Weaver 1988)
star appropriate for the progenitor of SN 1987A, and this is on
the edge of the FFN matrix of nuclei. Clearly, additional rates
for the higher A nuclei will allow more electron capture.

It is also true that f-decays for these nuclei have been
neglected. The net effect of these reactions is to increase the
value of Y,. Thus both electron capture and f-decay rates must
be calculated if we are to see the full effects on the value of Y.

Electron capture and f-decay rates for the allowed Gamow-

)]

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1990ApJ...362..241A&amp;db_key=AST

J. 21362 JZ41A0

AR

rt

242

Teller transitions exceed those for the forbidden ones by orders
of magnitude, so we consider in this paper only allowed tran-
sitions. First, we calculate the °°Co + e~ — %°Fe + v, reaction
and compare it to the FFN result, since it has played such a
large role in electron capture to date. Then we extend the
calculations to the higher A cobalt isotopes and some of the
copper isotopes. We then consider some of the large f-decays
in this range of 4.

In this paper, we calculate transitions from only the lowest
state of the parent nucleus having an allowed transition.
Usually we can connect these with a measured transition. It is
clear that we underestimate the total transition strength.
Extensive shell model calculations will be needed to indicate
how much strength lies in excited levels. Furthermore, (n, p)
measurements (Hidusser and Vetterli 1988) are being extended
to other nuclei, so we should reach a better understanding of
strength in the higher levels soon.

These reactions do not go down a chain of nuclei in the
presupernova environment. Nuclear statistical equilibrium is
maintained by the strong and electromagnetic interactions at
all times after the completion of silicon burning in the stellar
core. We show that the abundances in the Cu region are larger
than those in the Co region, in accord with the arguments of
BBAL. However, quenching factors are somewhat smaller.

The Cu region is substantially more favorable for electron
capture than the Co one, because the allowed Gamow-Teller
transitions go from the ground states in the former cases.
Except for °*Co, the transitions are from excited states in the
Co region.

Our plan in this paper is to make calculations of some selec-
ted rates which look large, in order to show how the nuclear
physics can be tied down from experiment. At the same time,
one of us (M.B.A)) is formulating the results so that they can be
incorporated into stellar evolution calculations.

II. THE Co + e~ — Fe ELECTRON CAPTURE RATES

In computing such rates, we are interested in the allowed
Gamow-Teller transitions between a mother and daughter
nucleus in either their ground states or excited states. The
energy balance for such a reaction can be written as

€. +A*=j+e,, ©)

where €, and ¢, are the electron and neutrino energies, respec-
tively, jt is the difference in energy between the ground states of
the daughter and mother nuclei; A* is the difference in the
excitation energies of the mother and daughter nuclei. The rate
of an allowed Gamow-Teller transition from one state to
another is given (A = ¢ = 1 throughout this paper) by

2 2 2 Jex 1
b= E (L) sicopn, v, 22D
27 \gy VA

x exp (—E{*/ky T)X€Z) , 3

where Gy is the Fermi coupling constant, g ,/g,, = 1.25 here, p
is the density, and N, is Avogadro’s number; J* and E{* are
the spin and excitation energy of the mother nucleus in its
excited state, and Z, is its nuclear partition function. The
quenching factor is given by 2, so that 2| {6} |? is the square of
the empirical matrix element. The average of the square of the
neutrino energy is given by {e2). This average is given by

1 jw pg(ﬁ* _ EE)ZF(Z, €e) dpe
mpNA Y. Jo 1 +exp [(€. — u)/ksy T1’

&) = @
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where g* = i — A*, u, is the electron chemical potential, and
T is the temperature. F(Z, €,) is the Fermi function, which
includes the effect of the nuclear Coulomb field on the electron
wave function. .Z is the lower limit of the electron momentum.
For ji* < m,, & is zero, while for i* > m,, & is \/(i** — m3).
The rest of this section will be devoted to how the various
pieces of A are determined for each transition. First we will
discuss how |{o)|?, the allowed Gamow-Teller matrix
element, is computed. Then we will discuss methods of per-
forming the above phase space integral.

From Lederer and Shirley (1978) one sees that the lowest 1*
state in °°Co is at 0.74 MeV. Calculations performed with a
bare G-matrix calculated from realistic forces place the level at
about 2.52 MeV. According to the schematic model (Brown
1971), the energy of the Gamow-Teller state should be lowered
in proportion to its strength. Thus, one would expect a quen-
ching factor in the strength of ~0.29. This is in line with the
factors Héusser and Vetterli (1988) find; e.g., roughly 0.4 for
the Fe — Mn transitions.

However, we shall try to obtain the Gamow-Teller strengths
[B(GT)] from measured fB-decays; i.e., use those for the f~
transitions with detailed balance to obtain those in the electron
capture direction. This cannot be done for the
60Co*(1%) - ®°Fe(0*) transition, because the 0.74 MeV state
in cobalt lies above the °Fe ground state in energy. But **Fe
beta decays to the 0.5061 excited 1* state of 42Co* essentially
100% of the time (Lederer and Shirley 1978), with a log (f?)
value of 4.1. From Bohr and Mottelson (1969, Vol 1, p. 410),

da 2
B(GT) = (b‘) 2({0) 2 )
S (5’—) 21 fll ot i3 ©)
@J;+ D \gy M
6250
===, 7
.ﬁl/z ( )

where everything is as defined above, times are measured in
seconds, and “SM ” stands for the value obtained using shell
model methods. Note that B(GT) as used in this paper is nor-
malized with respect to the definition given in Bohr and Mott-
leson (1969), so that our strength is unitless:

4z
By, o(GT) = G2 Byu(GT) . @®)
F

For the %2Fe p-decay, J; is 0. Thus the square of the empirical
matrix element is

o 0230
2K flot iy = (1.25) ft,, ®

=0.3177. (10)
Now this f-decay involves one of the four valence neutrons in
the ®2Fe 1f; , shell going into a 1f;, proton hole (see Fig. 1). In
%0Fe there are only two such valence neutrons, so the B(GT)
for ®°Fe should be half of that for ®>Fe (see the Apendix). Thus,
the square of the empirical matrix element should be approx-
imately 0.159 for %°Fe —%°Co + e~ + v,. Using detailed
balance, we divide this by (2J; + 1) = 3 and, using equation (5),
can then obtain B(GT) for the electron capture transition.

In the Appendix, we show that the naive shell model number
is | (&) |54 = 8/7. This implies a quenching factor of 0.14, much
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Fi1G. 1.—The occupation of the not completely filled shells is shown for
62Fe and %2Co nuclei. Solid circles are particles in an otherwise empty shell,
while empty circles are holes in an otherwise filled shell. In S-decay, a 1f;,
neutron becomes a 1f;, proton. In ®°Fe there are only half as many 1f;,,
neutrons to choose from. Thus from the Appendix, B(GT) is reduced to 1/2 of
the strength of the *?Fe transition. In the *Fe transition, there are 3/2 times as
many neutrons to decay. Thus the Appendix predicts that the strength of this
transition is 1.5 times larger than 52Fe’s.

smaller than those seen in the iron to manganese transition.
This is also much smaller than the 0.29 estimated from the
energy of the excited 17 state in °°Co. Our argument of scaling
the B(GT) from the °2Fe — $2Co S-decay should be reliable, so
we do not need to know the quenching factor here, although it
is of interest elsewhere.

Now that B(GT) can be determined, we can turn to the
phase space integral. It is numerically evaluated using a
fourth-order Hammings modified predictor-corrector method
(Ralston and Wilf 1960, p. 95; Ralston 1962). However, if i* is
large, it is possible to obtain analytical approximations for
{€2> which are accurate to within roughly 20% for 2 x 10°
K<T<5x10° K and 1 x10" g cm®<p <1 x 101 ¢
cm 3, Begin by setting F(Z, €,) = 1 for now. If i* is greater
than roughly 2 MeV, the lower limit of the phase space integral
ensures that the electrons are relativistic, and we do not error
much by replacing p, by €, throughout the integral. Also,
for the density and temperature regime given above, we
can approximate the Fermi-Dirac distribution function by
exp [(u. — €.)/kg T]. With these approximations, we obtain
the following expression for {e2)°:

e’ = 1 foo €o(* — €. de, exp [(u, — €.)/ky T] .
4

PPN, Y, L
(11)

The 0 superscript denotes that this approximation neglects the
Fermi function. This expression can now be integrated analyti-
cally. The final expression is

221 — I

e = oY exp <”LT—#> (QT3[** 4+ 12T* ji* + 24T%),
7%

(12)

where all energies and temperatures are in MeV and p-, is the
density in 107 g cm ~3. All that is needed is an analytic expres-
sion for y,. The electron chemical potential is found by inver-
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ting the expression for the lepton number density:
8n [ ,
=-— d
ne (2 7'[)3 J; pe p e

_ -1 -1
reen(Gr)] -l (o)] T
(13)

In the highly degenerate regime, this expression can be approx-
imated (Bludman and van Riper 1978) by using recursion rela-
tions for the relativistic Fermi integrals. In our range of
temperature and density, the electrons are not degenerate
enough for this approximation to hold. A satisfactory approx-
imation in our regime is given by

— L11(p, ¥)13| 1 4 (= e 14
/te . 7 ‘e 111 (P7 Y¢)2/3 H ( )

where T is in MeV. This expression is only an approximation
of the actual solution of g, for highly relativistic electrons.
Using this expression in the analytical approximation for the
electron capture rates yields capture rates which are fairly close
to the numerical results, as will be shown below.

The above integrals computed the electron capture rate as if
the electrons interacted with the nucleus as plane waves.
Actually, the electron wave functions are distorted by the
nuclear Coulomb field. The Fermi function corrects for this.
F(Z, €,) is defined as |Ycouoms |2/ Wieee |?> and, for relativistic
electrons, has the form

2p, R\ 240 |T(y + iv) |2
F(Z, €)= 21 + y)| 2= o LW WIE s
@c=2+9(%5) irey+ e

where v is Ze?/hv,, y is [1 — (Z&)*]*/?, R is the nuclear radius,
and I' is the gamma function. This expression does not include
the finite size of the nucleus and is rather laborious to compute.
A simple fit to F(Z, €,) obtained by Schenter and Vogel (1983).
which does include the effect of finite nuclear size, has been
used instead. Their fit actually is meant for cases in which the
nuclei are not fully ionized, but are still screened by its atomic
electrons. Although this is not the case for our nuclei, the
correction is small relative to the uncertainties in the matrix
elements and energy levels of these nuclei. Schenter and Vogel
(1983) find that the Fermi function can be fitted by a simple
analytic approximation. This fit is what is used in computing
our electron capture rates and f-decay rates. The approx-
imation has the form

F(Z, €)= :7 exp [a(Z) +8(2) \/ ;ﬂ ,

where a(Z) and f(Z) depend upon the nuclear charge Z and the
kinetic energy of the electron, T (T = €, — m,). They have the
following form: '

(16)

A(Z) = —0.881 + 4.46(—2)Z + 1.08(—4)Z? (T <12m,),
(17)

= —8.46(—2) + 2.48(—2)Z + 2.37(—4)Z* (T =12m,),

‘ ' (18)

B(Z) = 0.673 — 1.82(—2)Z + 6.38(—5)Z?> (T <12m,),
(19)

=1.15(—2) + 3.58(—4)Z — 6.17(—5Z, (T >=12m,).

(20)
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When i* is greater than roughly 2 MeV, the electrons which
contribute will be fairly highly relativistic. Thus the Fermi
function becomes

F(Z, €) = exp [dZ) + B(Z)\/€./m.] @D

This expression for F will still yield an integral which cannot be
expressed as a finite sum of elementary functions.
We can gain an analytical approximation if we form

(> = <D exp [(2) + fZ)/{ed/m] . (22)

The C superscript indicates that we have included Coulomb
effects. {e_) is an average of the electron energy, but a very
special kind of average. It is the average over only those elec-
trons which can take part in the capture reaction. Thus we will
only average over electrons with energy greater than ji*:

5:‘ 63 €Xp [(/‘le - Ee)/t]dee

EO* Gg exp [(/‘e - 62)/t]d€e

- 3T 4 30*2T? + 64*T3 + 6T
= A*2T + 20*T? + 273

Using this expression, one can obtain the average electron
energy to put into the expression for (e2)C.

In Table 1A we have a comparison of all these methods of
evaluation with the FFN rates for electron capture on ¢°Co
when Y, has a value of 0.5. In Table 1B we compare results for
the 62Co electron capture rate with those obtained from the
Mazurek et al. (1974), calculation, also when Y, = 0.5. For the
°Co transition the agreement of the analytical expressions

(&> ~ 23)

(24)

TABLE 1
COMPARISON OF RATES FOR ELECTRON CAPTURE

p(gem™?) Type of Rate 3x10°K 4x10°K S5x10°K
A. %°Co — %°Fe Electron Capture
FFN 25 (=5) 26 (=4 13 (=3)
2 1.99(—6) 695(—6)  193(—5)
107...... A 159(—6)  472(—6)  114(—5)
i 3.82(—6) 144(—5)  401(—5)
e 3.56(—6) 103(—5)  2.44(—5)
FFN 19 (-3) 8.6 (—3) 24 (-2)
2 1.28(—4) 159(—4)  229(—4)
10%...... Am 3.17(-5) 7.62(—5) 1.40(—4)
fisd 268(—4)  330(—4)  475(—4)
i 6.75(—5) 160(—4)  291(—4)
B. ¢2Co —» ®2Fe Electron Capture
Mazurek et al. 9.7e(—11) 77 (-9) 19 (-7)
2 1.42(—8) 312(=7)  2.52(—6)
107...... A 164(—8) 2577  167(—6)
fisk 428(~8)  630(=7)  5.11(—6)
< 338(—8)  521(—7)  338(—6)
Mazurek et al. 70 (=9) 18 (=7) 24 (—6)
2 8.94(—7) 713(—6)  2.99(—5)
10%...... a0 11(—6)  773(—6)  2.89(—5)
a5, 1.80(—6) 1.44(—5) 6.04(—5)
i 2.25(—6) 157(=5)  584(—5)

Notes.—Electron capture rates have been computed in four different ways
for comparison with the rates currently used in stellar evolution calculations.
The units of each rate are s~ *. The superscript “0” indicates that the rate was
calculated without including Coulomb effects on the electron wavefunction,
while a “C” indicates that these effects were included. The “an” subscript
indicates the use of one of the analytical forms discussed in the paper. The
“num ” subscript indicates that the rate was computed numerically.
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with the numerical results is very poor. At a density of 107 g
cm ™3 and a temperature of 3 x 10° K, 22, is too large by 25%
and AS, is too large by 6%. As temperature or density increases,
the analytical expressions make estimates which are too large
by factors of as much as 4. This is because ii* is —0.0166 MeV
for this transition. This is not the case in which the approx-
imations were meant to apply. Thus only the numerical results
can be trusted for this transition. We see that at the lowest
density and temperature on the table, FFN obtain a rate which
is 10 times our result, AS,,,. This is not surprising because we
have computed only the transition from the lowest 1* state of
6°Co and have used the experimentally obtained quenching
factor. FFN did not use this quenching factor and used a full
partition function and included all possible transitions. Thus,
one expects their rates to become even larger than ours at
higher temperatures and densities due to the greater acces-
sibility of excited states. This discrepancy is discussed at
greater length in the last section of this paper.

In table 1B we see that both analytical approximations are
accurate to within 20% for all of the rates computed, except for
A5, at p=10" gcm ™3 and T = 5 x 10° K. Fortunately, the
presupernova evolution does not reach such high temperatures
at such low densities. In this case we have compared with the
Mazurek et al. (1974) rates which have been used in recent
stellar evolution calculations (Woosley, Pinto, and Weaver
1988), since FFN did not go this high in 4. We see that there
are severe disagreements between our results and theirs. Even
without including all excited states, our rates are typically
roughly a factor of 100 larger than their rates. Such a large
increase indicates that the underestimate of transitions with
nuclei having 4 > 60 might be important.

The time rate of change of Y, due to a particular transition is
given by the following equation:

dYe Z, 4
d—t i

where the subscript i denotes a transition from the ith excited
state of the mother nucleus, Y; 4 is the mass fraction per
nucleon of the mother nucleus [Y,;, 4, = X5, 4/A], and A* * is
the transition rate from the ith excited state of the (Z, A)
nucleus. The plus sign applies for ™ -decay, while the minus
sign is for electron capture (e.c.) The total rate of change of Y,
due to one nucleus is given by

dy,
- =Yz, 4 I: + Y AENBH)- Y AE A’(e.c.)] )
dt B~ -decay e~ cap

= F Y(z, 4) Af’z’ = s (25)

Z, 4)

(26)

We will try to estimate the size of contributions by computing
the rate of change of Y, due to the single transitions we have
just calculated.

In Table 2, the mass fractions per nucleon are listed for each
mother nucleus for four different values of Y, at a density of 108
g cm ™2 and two temperatures: 3 x 10° K and 4 x 10° K. In
calculating the mass fractions for each nuclear species, we have
not included excited states. The abundances obtained are only
of heuristic value, since only the ground states are included.
We see that for ®°Coat T, = 4 x 10°K,

Y, 17(=4) x 160(=4) _,

dt 60 ’
=4.5(—10)s"1.

@7

(28)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1990ApJ...362..241A&amp;db_key=AST

J. 21362 JZ41A0

AR

I'I_

No. 1, 1990 ELECTRON CAPTURE AND pS-DECAY 245
TABLE 2
REACTIONS CONSIDERED

Transition Y. Y, J, BGT) E XY, =045 X(Y,=044) X(Y,=043) X,(Y,=03) T,

69C0 = %F¢ ....ovov... 0450 0433 5 008274 07388 —0.0166 { > 25 ‘g i;ﬁ :‘;’; ;g - % i:;}: Z{» :
§2C0 - 2Fe ..o, 0435 0419 2 016548 05061 2575 {;g % f:éﬁ:‘s‘; f:g((:‘g gj{:;; ]
$4C0 - $4Fe ..o 0422 0406 1 024823 0 4411 { ¥ ‘1‘2_?)2) SE:% gf)t 2 ‘1‘:};{:8 :
65CU = SENI v 0439 0424 1 013145 0 0.747 { 3 gg % gzgg - 3 ég} - % ;:(1)%:;; ]
S1CU = SN v, 0433 0418 32 0395 0 4341 { v gﬁ 2; ﬁg:i; 3:3}:3 g:‘;}:g ]
$8Cu SN ............... 0426 0412 1 0787 0 3.081 { ey o e e 3
19Cu—1Ni ..o 0414 0400 1 1574 0 4671 {g&: E iy e 3
6970 5 3CU e 0435 0420 12 0125 0 2991 { by g} 3 2:2} :% ;:gt 3} ;gz - g; :
69C0 = SONi .vovvran.. 0450 0467 5 10324 07388 —4.074 32 ‘5‘; }:Z}:‘g ;:‘;Ej; ;:gtﬁ)) :
62C0 > §2Ni 1orvveenn 0435 0452 2 06882 05061 —6332 ;g(( % f:g}:‘g f:g{:‘g éﬁ}:% 3
63C0 = SENi evvveveennn 0429 0444 72 009649 © —4.086 { r ;E % gg{: i; ﬁ: - g; 3:3: :3; :
64C0 o> SN oo 0422 0438 1 03441 0 —7818 { ;ﬁ_?)z) ?;E:% g:g}:g “{ét'g :

Notes—All relevant information for the electron capture and f-decay transitions discussed in this paper are listed. The second and third columns list Z/4 for the
parent and daughter nuclei, respectively. J,, is the spin of the ground state. B(GT) is the Gamow-Teller strength of the particular transition. E{* is the energy in MeV
of the initial state, measured from the ground state. “0” means we are using the ground state; i is as defined in the paper. The last four columns list the abundance of

the ground state of each nucleus at p =

This is very small, even when multiplied by the Kelvin-
Helmholtz contraction time of ~4 x 105 s following silicon
burning. However, we know from the output of the stellar
evolution calculation of Woosley, Pinto, and Weaver (1988)
that this reaction gives roughly half of the electron capture of
Y, ~ 0.43 x 10® g cm 3 is the density at which significant elec-
tron capture begins. Densities do become larger as time goes
by.

In Figure 2, the temporal evolution of central density and
central temperature are shown for an 18 M star (Woosley,
Pinto, and Weaver 1988) during and after silicon burning. This
figure gives a general idea of the temperatures and densities
seen. The Kelvin-Helmholtz contractions we have been dis-
cussing occur after the completion of silicon core burning and
after the oxygen shell burning shown on the plot. It can be seen
that densities do exceed 10® during these contractions. Were
we to use pg = 3 in our estimates, 4, and thus dY,/dt would be
an order of magnitude larger. In any case, these rates will be
put into stellar evolution codes to see exactly what their effects
are.

If one refers to the analytical approximations for A one sees
that its behavior is dominated by a particular factor:

htd *
B

The exponentiated factor is the difference in energy between
the two ground states of the nuclei. The nuclei with the largest
electron capture rates will be those with the smallest “ wall” to
climb. In the next section, we discuss several such nuclei.

p*2 (29)

II. THE Cu + e~ - Ni ELECTRON CAPTURE RATES

67N1 B-decays from a partlcularly simple neutron 2p, , state
o °’Cu with a proton in the 2p,, state (see Fig. 3). This

10® g cm ™3, and the temperature and value of Y, listed.

transition is from a ground state to a ground state and the
log (ft) value has been measured (Reiter, Breunlich, and Hille
1975) at 4.5. This gives a B(GT) of 0.198 and

2 Sfllot|lid? =0.1265 . (30)

If one computes (de Shalit and Talmi 1963, p. 57) the reduced
matrix element for a one particle transition using a naive shell
model, one obtains

8
[<flloT i) Rem = 3 (1)

giving a quenching factor of 0.05, much smaller than we
obtained for the Co — Fe transitions.

As is seen in table 2, the B(GT) for the inverse reaction is
twice what we just computed, because of detailed balance.
Thus it is slightly larger than 6°Co — ®°Fe strength. Using the
method of Appendix A to find transition strengths for *8Cu
and 7°Cu, we obtain strengths which are 2 and 4 times, respec-
tively, as large as for ’Cu. The Gamow-Teller strength of
electron capture upon 66Cu has been determined separately
using its own inverse reaction ft -value, listed in Lederer and
Shirley (1978).

Table 3 lists rates of electron capture on %°Cu, 67Cu, and
%8Cu. The first nucleus provides the largest capture rate,
3.45(—3) s~ !. But its maximal abundance (see Table 2) is less
by a factor of 10 than either of the two heavier copper nuclei.
For this nucleus, we find that over the contraction time of
4 x 10° s the change in Y, is roughly 0.0006 for pg = 1. ®’Cu is
200 times more abundant, but its capture rate is roughly 1000
times slower. For this nucleus we obtain AY, ~ 6(—5). For
68Cu, the change in Y, will be 1(—4). All of these rates are
calculated at a density of 108 g cm ™ 3. The other nuclei listed in
Table 2 yield rates that are of this same order. In these cases,
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F1G. 2—The log, , of central density vs. central temperature is plotted as a
function of time for the developing iron core. The plot begins in the lower left
corner with the silicon core contracting toward central silicon ignition. The
plot ends in the upper right corner with the fully developed iron core in its final
collapse stage. Each major burning stage which affects the core is listed. The
core burning lasts for 5.1 days. From the end of core burning to the end of O
shell burning is another 4.7 days. From the end of O shell burning to the end of
the first Si shell burn is 2.5 more days. 2.2 days is spent in the contraction
before this shell ignites. The rest of the evolution on the plot takes only 38
minutes.

electron capture is small unless the density is substantially
higher that pg = 1, or unless excited states contribute substan-
tially.

IV. B-DECAYS OF 64 63.62.60Cq

Given typical Kelvin-Helmholtz contraction times on the
order of 4 x 107 s, it is surprising to see the f-decay half-life of
64Co of 0.30 + 0.03 s (Rahkonen and Kantele 1974). At
present, this decay has not been included in the stellar evolu-
tion calculations of Weaver and Woosley. Of course, this half-
life was measured in an environment not immersed in a sea of
degenerate electrons. The half-life will be somewhat increased
because of blocking. Using Fermi’s golden rule, it can be
shown that the decay rate can be expressed in a form analo-
gous to that for electron capture:

2 ex _ Eex
1= 9 penHEAD o0 ( E: )

T Z, kg T
VA*2—me2 20~ % 2F Z d
y f Pe(ir* +5)°F(Z, €) dp. 32)
o 1+ exp [(u, — €.)/kg T]

All factors are as they have been defined throughout the paper.
One can estimate the effect of blocking on the decay rate by
computing a blocking factor F:

3
F~1-10 (f‘ﬂ—*) , (33)
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2p1s2 —— 2py2

1fs/2 /e

2psse 2psse
———— | 2ps;2 2ps/2
P n P n

cu(J=3/2") Ni(J=1/2")

F1G. 3—The electron capture shown involves a single particle transition
from the 2p,, shell to the 2p,, shell. The method of the Appendix is used to
computed the matrix elements for °®Cu and "°Cu.

where p, < —i*. For this reaction g* is —7.818 MeV. At
T=4x10°K,p=10% gcm 3, and Y, = 045, u, has a value
of 1.8 MeV. The blocking factor then becomes

F ~1—10(1.8/7.818)° (34)
~0.88 (3%

which predicts that the half-life should increase to roughly 0.34
s, still very small compared with the Kelvin-Helmholtz time. In
Table 4A, the f-decay rates have been computed numerically
and are listed in the same format as the Table 3 electron
capture rates. From this table, we see that at 10® g cm® and
4 x 10° K the decay rate is 2.09 s~ !. Thus the half life will
actually be 0.33 s. The blocking factor slighly overestimates the
reduction in the rate due to the electron Fermi sea.

The f-decay rates are on the order of two per second and
abundances of ®4Co (see Table 2) are ~6 x 107 ¢ for Y, = 0.44
and 6 x 1073 for Y, = 0.43 at a density of 10® and temperature
of 4 x 10° K. Thus, in a Kelvin-Helmholtz time of 4 x 10° s,
there would be roughly four ®*Co decays per nucleus in the
core of the star for Y, of 0.44 and roughly 40 for Y, of 0.43.

In Tables 4B-D, the rates are given for decays of 3Co, ¢2Co,
and °°Co. Note that these rates are 130, 11, and 400 times
smaller than those for ®4Co. This is because of the dwindling

TABLE 3
ELECTRON CAPTURE RATES

plg cm?) 3x10°K 4x10°K 5x10°K

A. Rates for ®Cu — °*Ni Electron Capture
107........ 835(—5)  1.66(—4)  323(—4)
108........ 2.64(—3) 3.45(-3) 4.56(—3)

B. Rates for 4’Cu — °’Ni Electron Capture
107........ 2.45(—9) 122(—7) 1.56(—6)
108........ 1.66(—7) 3.71(—6) 2.73(-9)

C. Rates for ®®Cu — *®Ni Electron Capture
107........ 37A=7)  564(—6)  3.59(—5)
108........ 2.50(—5) 1.72(—4) 6.25(—4)

NoTes.—AS,,, has been computed as a function of tem-
perature and density of Y, of 0.5. The units of each rate are
-1
s
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roughly 2 orders of magnitude larger. It is clear that for den-
sities near 108 g cm™3, the decay of %3Co, all by itself, will
prevent decreases of Y, below 0.44. The density must increase
considerably before the electron capture predominates over the
B-decay.

Of course, what will happen when the rapid cobalt f-decays
are included is that the temperature will start to decrease,
cutting off the abundances of the odd-odd ¢°Co, °2Co, and
64Co, and of the odd-even ®3Co. The abundances will then be
concentrated ‘in the even-even nuclei. From the cobalt abun-
dances in Table 2 this can be seen in the transition from tem-
peratures of 4 x 10° K to 3 x 10° K. In each case, the
abundance drops by a factor of at least 10. If the temperature
drops further, so will the abundances, cutting off the f-decays
in dynamical times of several times 10° s. We consequently
believe that the electron fraction will not drop below 0.44 until
later in the contraction, possibly not until collapse. This is
larger than the central electron fractions just before collapse in
the present calculations and would appear to increase the size
of the core, which scales as Y2,

However, one can also show that the electron pressure is

proportional to
14+ 2(2TY
3\ &

for relativistic electrons. Thus, in reducing the temperature of
the material, these f-decays will also reduce the ability of the
core to support itself. Clearly these effects will find some
balance. This balance might or might not lead to substantially
different post-core-silicon-burning behavior. The only way we
will know for sure is by incorporating these rates into the
stellar evolution code.

From Table 1A it was seen that the rates calculated for the
60Co — 5°Fe electron capture are smaller than those of FFN
(19824) by more than an order of magnitude. Part of this is
because we have included a rather small quenching factor of 4
obtained from relating the °Co — $°Fe transition to the 5°Fe
f-decay.

We have included only the lowest excited 1* state in °°Co in
our calculation, making a shell model calculation in which the
angular momentum recoupling also gave a rather small factor.
The calculations of FFN (1982a) obtain large contributions

(39
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from more highly excited states. We are presently trying to
estimate such contributions from large shell model calcu-
lations, but at the present the results are very uncertain. Poss-
ibly it is better to obtain information from (n, p) experiments.
Unfortunately, they cannot presently be done on the ¢°Co
state, which is an excited state.

However, very detailed (n, p) experiments have been per-
formed on 3*Fe (Vetterli et al. 1989). The main transition here
is to the 1" excited state in *Mn at 1.45 MeV. In the naive
shell model, this involves the same f;,, proton to f,, neutron
transition as in °Co, although the recoupling coefficients are
different. In the 3*Fe(n, p)>**Mn reaction (Vetterli et al. 1989)
substantial strength is found in excited states, but when multi-
plied by Boltzmann factors for T, of 3 to 4, this would increase
the strength from the lowest 1.45 MeV state by less than a
factor of 2. On the basis of the low temperatures we expect, we
do not think our electron capture will be increased by a large
factor upon the inclusion of excited states, although we will
work further on this problem. Increased electron capture
would only help in establishing our conjectured scenario,
because it would more rapidly reduce Y, to the neutron-rich
region where the cobalt f-decays begin.

Data on (n, p) reactions are presently accumulating, and
much more is known about quenching factors than when
Fuller and collaborators performed their' calculations, so it
clearly will be worthwhile to redo their calculations, and we
plan to do this. The new (n, p) data from TRIUMF is mostly
still in the analysis stage. It should give us good indications
about the amount of strength in excited states, which we have
not included. Furthermore, extensive shell model calculations
will be helpful in estimating these strengths. However, if the
rapid f-decays keep the core cool, these excited states may not
contribute much.

We would like to thank Stan Woosley and Tom Weaver for
helpful discussions and access to their stellar evolution calcu-
lations, George Fuller for many useful insights into how weak
interaction rates have been calculated for stellar evolution
codes, and Ed Baron and Jerry Cooperstein for many useful
discussions. This work was supported in part by the US
Department of Energy under contract DE-AC02-76CH00016,
and grants DE-FG02-88ER40388 and DE-FG02-88ER40397.

APPENDIX A

For ease of calculation, we derive a general formula for 0* — 1* even-even to odd-odd weak interaction transitions. The shell
structure for other transitions are more complicated and need to be considered on an individual basis. To be specific, we consider
here f-decay. From Bohr and Mottelson (1969, Vol. 1, p. 410), we have

1
le/Z = E‘('(}—T) X (6250 S) s

where

1
BGT) = @I+ 1)

2
RATIEA (Z—‘) :

(A1)

(A2)

v

We take our initial state to consist of a closed core with n, valence neutron particle pairs in the j,-shell and n, proton hole pairs in
the j,-shell. In this language, $2Fe is considered to be a two-neutron particle pair one-proton hole pair state. Our general even-even

initial state is thus written

|G = 0%,

(A3)
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where the tilde (~) reminds that these are proton hole states. Our final state is likewise
|G2Ye *GYee Gnd)s +aas - (A4)
Using the language of second quantization we can write the final state as '
B (s Jp s IM)I GRS G0 (A3)
where
B, jps M) = Y, Cinlon (—1Y""™a;,, al,,, . (A6)
mp mp
By definition, a one-body operator is
Xf;: Z <]1 mlIXﬁ|j2m2>a}1m1 ajzmz . (A7)
Jjimi
j2m2

With this definition and a little angular momentum algebra, we find

(_ l)j‘ —j2—n A
6,= ) —F7=<illollj>B(j. 1 — ). (A8)
" jlzjz \/5 1 2 1J2
We now put it all together. From our definition of reduced matrix elements, we have
<‘I’,||Zw(k)||‘l’i>=\/§<‘P,1+Mf|r&”|‘l’,~0+>. (A9)
k

Inserting equation (A8) into the right-hand side of equation (A9) and using the fact that equation (A9) is independent of x, we have

¥y Ilelta(k) [ % —\/— I 0 17> <GS Yo 1 [Bins s DBUims Jips DI GRERE (A10)

where
[B(jn> jps DB(jn jps D1° = %CM%OB(J'", Jps IM)B(j,, j,5 1 — M) . (A11)

Note that the T operator does not directly appear in this formula, as its only role is to change a neutron into a proton.
These zero-coupled operators are easily transformed via the renormalized nine-j symbol i.e.,

Jp Jp O
[BUin> 3 DB(nsjps DI° =X\ ju Jn O | AU ju 04U Jp; 0) (A12)
1 1 0
where A'(j,,j,; JM)is the two-particle creation operator
At(jl’jZ; JM) Z C{nll {nzzlbl ]1 my a'j"z my (A13)
mim3

Inserting equation (A12) into equation (A10) and using the fact that

Jp Jp 0 J_
X 1
(R N S W (419

along with
DB GE 1 Aljns s OA s Jips O1GRES G = 2/ny/my (AL5)
we obtain the rather simple and intuitively appealing result
<'{J ’ Zk:w(k) | ‘P,~> ’ =< llo > ? 2}31" N 2}3’1 T (A16)
We might prefer to express the result in terms of particle numbers, in which case the previous expression becomes ‘
<‘l’f Y. (k) ” ‘P.~> =[plallial? N, (1 - .N" ) , " (A17)
I3 2, +1 2, +1

where N, and N, are the number of neutrons and protons within the j, and j, shells, respectively. This result is a generalization of
that found by Towner (1985), and reduces to his formula.
We thus see that our final result under the seniority assumption is intuitively appealing. The full transition rate is simply the
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TABLE 5
SINGLE-PARTICLE REDUCED MATRIX ELEMENT
1< o li>I?
s Ji I+ % - ]2'
I+ 1 21+ 1¥21 + 3) 8i(1+ 1)
27 20+ 1 21+ 1
! 1 81+ 1) 2121 - 1)
T 20+ 1 2+ 1

single-particle transition rate milltiplied by the probability of having a neutron particle in the shell j, and the probability of having

an unoccupied proton state in the shell j,.

To achieve the numerical result, we still need to know the single-particle reduced matrix element {j, || o | j;>. This is readily done

with angular momentum algebra in Table 5.
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