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Mie scattering by an anisotropic object.
Part 1. Homogeneous sphere

Brian Stout, Michel Neviéere, and Evgeny Popov

Institut Fresnel, Unité mixte de Recherche 6133, Case 161 Faculté des Sciences et Techniques,
Centre de Saint Jéréme, 13397 Marseille Cedex 20, France

Received July 18, 2005; accepted October 21, 2005; posted November 8, 2005 (Doc. ID 63390)

Establishing a vector spherical harmonic expansion of the electromagnetic field propagating inside an arbi-
trary anisotropic medium, we extend Mie theory to the diffraction by an anisotropic sphere, with or without
losses. The particular case of a uniaxial material leads to a simpler analysis. This work opens the way to the
construction of a differential theory of diffraction by a three-dimensional object with arbitrary shape, filled by
an arbitrary anisotropic material. © 2006 Optical Society of America
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1. INTRODUCTION

Resonant scattering from anisotropic particles is a field of
growing interest due to an increasing number of techno-
logical and biological applications. By “resonant scatter-
ing” we mean particles comparable in size to the wave-
length of the incident radiation. By “comparable in size,”
we mean any particle size approaching an order of mag-
nitude smaller than the wavelength and within a few or-
ders of magnitude larger than the wavelength. Scattering
from anisotropic particles much smaller than the wave-
length is well understood from dipolar considerations,!
while one generally considers that particles a few orders
of magnitude larger than the wavelength can be reason-
ably well treated with geometric op‘cics2 (despite some no-
table exceptions already known from scattering by large
isotropic scatterers.?) Scattering of electromagnetic radia-
tion from a homogeneous isotropic sphere as originally
addressed by Lorenz*® and later by Mie® has been the
source of a vast quantity of scientific and technological
studies over the last 50 years (at least). The Lorenz—Mie
solution is expressed analytically as an infinite series in-
volving spherical Bessel functions. The complexity in-
volved in evaluating these special functions largely pre-
vented detailed studies from being performed before the
availability of electronic calculators.

In view of the wide popularity and success of studies
based on Mie theory and the numerous questions posed
by anisotropic scattering, a number of attempts have been
made in the literature to extend Mie theory to the prob-
lem of scattering by a sphere composed of anisotropic me-
dia. Studies involving analytical calculations have usu-
ally chosen to simplify the problem by addressing some
particular geometries and/or anisotropic configurations in
order to facilitate analytic or near analytic calculations
(anisotropy in a spherical layer,” radial or uniform,® ra-
dial anisotropy in a sphere.’) A notable exception is the
recent paper by Geng et al.,10 who presented an analytic
solution for the uniaxial anisotropic sphere and of which
we became aware during the preparation of this paper.
Concerning general homogeneous anisotropy, however,
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the recent work of Ref. 10 declares it to be not “exactly
soluble,” while the well-known book of Bohren and
Huffman!! says only that no exact solution has been pub-
lished and concentrates on the Rayleigh—Gans approxi-
mation. In this paper, we solve the problem of scattering
by a sphere composed of an arbitrary homogeneous aniso-
tropic medium. By arbitrary, we mean that the sphere is
composed of a medium described by an arbitrary permit-
tivity tensor, including the possibility of absorption. This
solution, like the Mie solution, is analytic in the sense
that it involves only mathematical formulas that can be
readily evaluated on a computer so that the only source of
error comes from selection of a finite partial wave cutoff
(as in ordinary Mie theory), as well as machine errors.

2. ELECTRIC PERMITTIVITY IN SPHERICAL
COORDINATES

In Cartesian coordinates, the tensor of relative permittiv-
ity has the most general form:

E=|€x €&y €|, (1)

Ex €y €

where no restricted symmetry properties are assigned
and the elements may be complex numbers. The sphere is
assumed to be homogeneous, which means that the ele-
ments of the permittivity tensor are independent of the
spatial position. In spherical coordinates, its expression &
can be derived through the Cartesian-to-spherical trans-
formation matrix R using the formula

e=ReRT (2)

where T stands for transpose.

We denote with a circumflex the unit vectors along the
coordinate axis. The transformation matrix R is ex-
pressed using the scalar products of these unit vectors:
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The unit vectors are linked by the relations

=X cos ¢ sin 6+ ¥ sin ¢ sin 6+ Z cos 6,

P=—-Xsin ¢+ ¥ cos ¢,

0=-1 X $=Xcos ¢cos O+ sin ¢ cos #— 2z sin 6,
(4)
and thus the matrix % takes the form
cos ¢sin f sin¢sin f cos 6
MR=|cosepcosh singpcosh —sinf |, (5)

—sin ¢ cos ¢ 0

Equations (1), (2), and (5) give the elements gij,i,j
=r,0,¢ of & Since the spherical coordinate system is
orthogonal, it is not necessary to distinguish between co-
variant and contravariant components, and all vector and
tensor components will be denoted by subscripts. It is
worth noticing that the elements of é depend on (6, ¢),
contrary to Ref. 9, but do not depend on (x,y,z), as al-
ready mentioned.

3. PROPAGATION EQUATION OF PLANE
WAVES

The monochromatic propagation equation has the form
curl curl E - £3EE = 0, (6)

where ky=w/c is the vacuum wavenumber, o is the angu-
lar frequency, and ¢ the speed of light in vacuum. As is
well known, this equation permits solutions in the form of
plane waves,

E(k,roy) = A(K)exp(ik - rop) (7

where rp), is the radius vector of an arbitrary point M
and k is the wave vector of this wave with k=|k|¢. In the
case of isotropic media, E is a solution of the Helmholtz
equation, and the wave vector k becomes isotropic, its
norm being independent of the direction of propagation.
Anisotropy complicates the form of the solution, since |k
then depends on the direction of propagation. Neverthe-
less |k| can be determined analytically from the elements
of the permittivity tensor. Noting that

curl[A exp(ik - roy)] =ik X A exp(ik - rpy), (8)
one obtains from Eq. (6) that A must satisfy
kX (kXA)+k2EA=0. 9)

Introducing the tensor (kk) whose (i, j) element is equal
to k;kj, Eq. (9) can be written in the form

[kl - (kk) - kZ€]A(k) =0, (10)

where k%=|k|?=Tr(kk) and I is the unit matrix. Equation
(10) shows that £2 must be a nonlinear eigenvalue of the
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operator (kk)+k(2)§ and that A(k) is the corresponding ei-
genvector. The eigenvalue equation reads

det[#%] - (kk) — £2€] = 0. (11)

4. SOLUTION OF THE EIGENPROBLEM

A. Eigenvalues

Following the work of Papadakis et al.,l2 we express Eq.
(11) in spherical coordinates. As the wave vector k of the
plane wave is invariant with respect to translation, its
only nonzero component is along ¥; however, in aniso-
tropic media k,=%,(6, ¢) depends only on the direction of
propagation, as already discussed. This fact considerably
simplifies the form of the tensor (kk) in spherical coordi-
nates:

(Kk) = k21,5 (12)
with
100
Iiy3=|0 0 0, (13)
000

and Eq. (11) then reads

€p €4 Er(p
k2 -
detllg(l—ll/g)— 21 =0< |€or 690_k2 €op =0,
0 ~
€¢r etpﬂ 6<P‘P - k2

(14)

where k=k/k,.
Equation (14) represents a biquadratic algebraic equa-

tion for , which can be written in the form
akt— pE2 + y=0, (15)
where

A= €,y

B = rr(690+ E(p<p) ~ €0€or — €rp€or)

y=det(d). (16)

Defining A=g%2-4ay, Eq. (15) has two roots for 152, (152)’
=(B+\A)/2a and (k2)"=(8-\A)/2a. From there, we ob-

tain four eigenvalues of % noted l;j (j=1-4), which give
four values of k;:

kilko=ky=\ (k) =—ky=—kylkg,

kolko=Fky=\(k2)" = —ky=—k4lk,. (17)

For lossless materials, energy conservation requires that
the tensor é (and thus &) is real and symmetric. It can be
shown that for each real direction of propagation (6, ¢),
two real positive values k7 and k&, exist, which, in general,
depend on (6,¢). The other two values correspond to
waves propagating in the opposite direction.
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For lossy materials, € and € have complex elements,
and their real and imaginary parts cannot in general be
diagonalized in the same basis. However, the analysis of
this subsection can be directly generalized to lossy media
by searching for complex solutions of Eq. (11). This could
be done numerically, but by applying a simple procedure,
one can directly use Eqs. (17). To that end, it is necessary
to define a complex spherical coordinate system in the fol-
lowing manner. A complex unit vector #-=k/|k| is intro-
duced, from which two complex angles 6. and ¢ are de-
rived using the simple trigonometric relations:

cos(0p) =¥ -z

cos(pp) =1 - X/sin(6) (18)

A complex orthogonal basis is then constructed by extend-
ing the second and the third of Egs. (4) to complex angles.
Using this coordinate system, Eqgs. (12)—(14), (5), and (16)
are still valid and Eq. (17) holds for lossy media as well,
taking VA, k1, and k9 with nonnegative imaginary parts.

B. Eigenvectors

1. Arbitrary Anisotropy

As solutions of a linear homogeneous equation, all eigen-
vector are determined through interrelations among their
components. Let us take as an independent component
Aj,=A(k;t) T, j=1,2 (the case when this component is
zero is discussed further on). Due to the fact that A(k;t)
depends on %2 only, Eq. (10), the eigenvectors can be sepa-
rated into two pairs, each corresponding to +k; and -k;
and having the same vector components. However, these
vector components are expressed in two opposite local tri-
hedrals (r,0,¢), so that A(kst)=-A(k¥) and A(k,r)=
—A(kor). Equation (10) reads

€A+ €A o+ €A =0,
€gAj + (€gg— ];?)Aj,a +€pAj =0, (19)
€t €gih ot (€5~ kDA = 0.

The first two equations give the relations

‘ — €&y €y

—€g. €
Ajg= s Aj,r7 (20)

Js
€0 Er(p

02
€p—k; €y

€rr ~ %re

02
€or ki — €y

; . 21)
Js® \J,r (
€0 er(p

02
€p—k; €op

Denoting A;, by Aj’,zﬁj, Eqgs. (20) and (21) provide the
components of the eigenvectors A(k;t) as functions of Aj.
Moreover, all the particular cases discussed in the next
subsections enable us to define known vectors I';, which
allow the eigenvector components to be expressed in

terms of one free parameter A;:
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As mentioned before, this analysis excludes the possibil-
ity of having A; ,=0. However, this is a quite common situ-
ation, since it corresponds to a transverse wave, when the
electric field vector has no component along the direction
of propagation. This concerns all waves in isotropic homo-
geneous media, ordinary waves in uniaxial materials, and
extraordinary waves traveling along the optic axis of
uniaxial materials. These cases require a special analysis.

2. Uniaxial Materials

If the z axis is chosen to be parallel to the optic axis, the
permittivity tensor of a uniaxial material has a diagonal
form in Cartesian coordinates:

e 0 0
€= 0 €, 0 . (23)
0 0 ¢

Its form in spherical coordinates is obtained by applying

the transformation defined by Egs. (2) and (3):

€, sin? 0+ ¢, cos? 0 (e,—¢€,)sin fcos § 0

(e,—€,)sin Ocos @ ¢, sin? O+ ¢€,cos?0 0|, (24)
0 0 €,

ma
1l

ie., €,=€,=€,0=€4,=0. The set of equations (19) then re-
duces to

ErrAj,r + ErﬂAj,B =0 ’ (25)
€nd;, + (egg— kDA, =0, (26)
(€pp— kDA ,=0. 27)

There are two possible classes of solutions. The ordinary
wave is characterized by refractive index k;=+e,= \s““é'(’w

and eigenvalue k1=kol<;1; i.e., the coefficient in Eq. (27)
vanishes for the ordinary wave:

=k2=0, (28)
and it is then possible to have
Ay, #0. (29)

If we take into account that for uniaxial materials €, # €,,
then it can be shown that Eqs. (25) and (26) are incom-
patible under condition (28), leading to A; ,=A; ,=0, and
thus the ordinary eigenvector has the form

A=Ay, withT;=¢andA =4, (30)

The extraordinary wave is described by the second solu-
tion of Eqgs. (25)—(27), characterized by

Ajo=A5,=0. (31)

The corresponding eigenvalue (k2=kol;2) is obtained pro-
vided that there exists a nontrivial solution of Eqgs. (25)
and (26), i.e., provided that
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€r €0

=0, (32)

02
€or €gg— ky

which provides the value of the extraordinary refractive
index /;2 (Ref. 13), which depends on the polar angle:
1  sin?60 cos?d
— = + . (33)
k%(ﬁ) € €x

The extraordinary eigenvector A, can then be obtained

within a multiplicative constant A2’95A2. We get from
Eq. (25)

€ (e, - €.)sin Hcosb _ -
A2,r=__ 2,0 = ) 3 Ay = Ag=Ayly,
€., €, sIn” 0+ €, cos” 0

(e,—€J)sin fcos 6
Wlth F2 = ) P r+ 0}
€, sIn” 0+ €, cos” 0

Ay=A,, (34)

Along the optic axis (§=0), I'y ,=0 and the extraordinary
solution becomes a transverse wave like the ordinary one,

since then I'y= 6. However, the polarizations of the ordi-
nary and extraordinary waves are orthogonal.

3. Isotropic Medium

The isotropic case is obtained from the uniaxial one by
stating that e,=¢,. The tensor of permittivity is propor-
tional to the unit tensor, and from Eq. (25) it is evident
that the wave has a transversal character with A;,
=A;,=0. The eigensystem is degenerate, i.e., the eigen-
values are equal with 2, =ks=k\€,, as obtained from Egs.
(15) and (16) or, more directly, from Eqgs. (26) and (27).
Equations (30) and (34), respectively, provide two inde-
pendent eigenvectors, transverse to the direction of the
wave vector:

A2 = Az 0. (35)

5. GENERAL FORM OF THE PLANE WAVE
EXPANSION

At an arbitrary point M in space with radius vector rgy,
the nondiverging electric field vector can be expressed as
a superposition of plane waves propagating in each direc-
tion. For each given direction, the wave vector can take
two possible values; thus the general form of the field is
given by a three-dimensional Fourier transform (having
only two Fourier components along k),

2
E(roy) =,

J=1Jo

Xexplik;(6, Q)F . ropl, (36)

T 2
sin 6 dﬂf deA(6,¢)
0

where the different components of A; are interrelated as
discussed in Section 4, each vector being determined
within a multiplicative factor. During the numerical

treatment of the problem, this double integral has to be
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discretized into N, values along 6 and N, values along ¢.
In Section 6 we introduce a multipole expansion of the
field. Let nyp,, be the cutoff associated with the multipole
cutoff of the n index [see Eq. (52) below]. We shall dis-
cretize the Fourier integral by defining a generalized Fou-
rier space discretization index ve([1,...,N,]. As we dem-
onstrate in what follows, the two cutoffs have to be linked
by the relation N,=(ny+1)2 to obtain a well-determined
system of equations for the unknown field amplitudes A;.
Each value of v will specify a unique direction in % space
associated with a unique pair of indices n4 and n,. The po-
lar index goes over a range

np=1,2, ..., 20 + 1, (37)

with the Fourier polar angle 6, associated with its dis-
cretization index given by

(38)

0,=1m .
2nMax

We thus realize that this yields values for 6, that are
evenly spaced over the interval 6<[0, 7]:

T 27

0,=0 T (39)

> ’ .
2nMax anax

and that when ny=ny+1, then 6=m/2.

For the same density of discretization directions to be
preserved, the number of discretization points along ¢
must depend on 6. In the upper half-space, the polar in-
dex nyis in the range ny<np.+1 and the azimuthal in-
dex n, covers the range

n,=1,...,ny, (40)

while the azimuthal angle ¢, is given by

(41)

=27
v nyg+ 1
and the generalized index v in the range ng<npp+1,
n,<ny, is given by

nynyg—1)

v=n,+ (42)

¢ 2

The inverse relations for going from the generalized index
v to nyand n, provided that the index » is in the range

(nMax + 1)(nMax + 2)
<

= < 43
v 2 (43)
are

1+\18V—7

ng=Int| —— |,
2

nyny-1)

ny=v-———. (44)

In the lower half-space where n,>ny,x+1, to obtain the
same density of discretized directions as in the upper
half-space, the azimuthal index covers the range
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ne=1,...,2(npax+ 1) =1y (45)

and the associated azimuthal angle ¢, is given by

2mmn,

Py (46)

T 2y + 1) —ng+ 17

while the generalized index v in this range is given by the
expression

(2npax— 1o+ 3)2nya—np+ 2)
2 b

v=(Npax+ 12 +1,—

Ny> Nyax + 1, Ny <2(nyux+ 1) —ng. (47)

The inverse relations are

1+ 8(nypax + 1)2 - 8v + 1)
2 b

ng=2Mnyae+ 1) — Int(

(2nppax— g+ 3)2npax — g+ 2)
SV 5 — (Mpax + 1)2.

n

(48)

These rules might seem a bit complicated at first, but
they are easy to program. The total number N, of dis-
cretized values of v can be obtained by taking into account
that the maximum value taken by 7, is equal to n4in the
upper half-space, Eq. (40), where n, varies from 1 to nyy.
Thus the number of discretized directions in the upper
half-space is equal to Ny,=Z1M7 = (1 p1ax/ 2) (Mpax+1). In
the lower half-space, as already explained, we preserve
the same number of discretized directions as in the upper
half. In the equatorial plane the number of discretizations
is equal to (nyax+ 1). Thus the total number N, is the sum
of the numbers in the upper and lower half-spaces and in
the equatorial plane:

Nv = 2Nup + (nMax + 1) = (nMax + 1)2 (49)

By explicitly writing out the values of v and its corre-

sponding n, and n,, values as illustrated in Tables 1 and

2, we can easily see that the rules of discretization create

a rather symmetric sampling of the phase space integral.
In its discretized form, Eq. (36) can be written as

2 N,
E(roy) = E E Aj,v eXp(ikj,vf'u' Yom)

Jj=1 »=1
2 N,

=2 DAL expliky b, vou),  (50)
J=1 =1

with

Table 1. Discretization Corresponding to a Dipolar
Representation (ny,=1)

v 1 2 3 4
ng,n, 1,1 2,1 2,2 3,1
T 27 T 47
0,,, 0,m PEEY 23 T,
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Aj,v = Aj( 01/7 (PV)Sin 01/7
Fj,V = Fj(em (Py) 5
kj,v = kj(ew ¢V) )

r,=1(0,,¢,). (51)

Thus, the general form of the field in Eq. (50) depends on
2N, coefficients A ; ,, which determine the norm of each ei-

genvector. These jl’lnknown field amplitudes could be ob-
tained by matching the tangential field components on
the boundaries between different physical regions, in par-
ticular on the surface of the optically anisotropic sphere
under study. However, this standard procedure requires
separation between incident (known) and diffracted (un-
known) waves. While it is evident how to do this in Car-
tesian coordinates and isotropic media, anisotropy and
spherical geometry complicate considerably the separa-
tion into incident and diffracted waves, in particular in-
side the sphere. To this aim, we first project the field onto
the basis of vector spherical harmonic functions Y,,,,(6, ¢),
X, n(0,0), and Z,,(0,¢). This enables us to explicitly
separate the field into two parts, proportional to the
spherical Bessel functions j, and %;. The second part,
which diverges at the origin of coordinates has to be elimi-
nated inside the sphere.

6. FIELD EXPANSION ON VECTOR
SPHERICAL HARMONICS

In spherical coordinates, several different bases are avail-
able to represent the electromagnetic field in any isotropic
or anisotropic material. We shall use the basis of vector
spherical harmonic functions Y,,,(0,¢), X,,.(6,¢), and
Z,,.(60,0) (Ref. 14), in which basis the electric field takes
the form

NMax n

Er,0,0)= > > [EvunYum(6,0) + Exypn()X,(6,¢)

n=0 m=-n

+Ean(r)an(07 ¢)] (52)

Appendix A establishes the development of the field of a
single plane wave on the basis of vector spherical har-
monic functions. Each term in Eq. (50) can then be repre-
sented by an expansion having the form of Eq. (A20). As it
was done in Section 5, we simplify the notation by intro-
ducing a single summation index p defined in terms of the
two integers n and m through the relations

p=nn+1l)+m+1,

PMax = (nMax + 1)2, (53)
or vice versa:

n(p) = InW’p -1,

m(p)=p-1-n(p)n(p)+1], (54)
with Int(x) standing for the integer part of x.
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Table 2. Discretization Corresponding to a Quadrupolar Representation for ny,,=2
v 1 2 3 4 5 6 7 8 9
ng,n, 1,1 2,1 2,2 3,1 3, 2 3,3 4,1 4,2 51
T 2 T 4T T T T T 37 37 2m 37 4
00 0 0,m 43 43 2’2 27 22 473 473 ™,

Thus, each term in Eq. (50) takes the form of Eq. (A20)
with a summation with respect to the simple subscript p:

I'; , exp(ik; =,  Tou)

PMax

= 2> 1 @hpiilkin o)X
p=1

jn(kj,erM) .
+ apae,p,j,v + au,p,j,VJn(kj,VrOM)

kj,erM

L (Oom Pom)

(kj,vromn(kj,erM)),

XYp(aoM’ (POM) + Qe pj,v 3
v oM

Jn(kjuTom)
+a,a —

p“o.p.j,v
kj,urOM

:|Zp(00M7 <P0M)}, (55)

where rom, Oom, ¢om are the spherical coordinates of M,

a,=\n(p)[n(p)-1], and

. * A n— * A
Appjv= 47Tl”Xp(r,,) . Fj’,,, Qa, =4m" IZp(r,,) . Fj,y,

e.p.j,v

o pj =AY (#,) T, (56)

N-NAY

In a region that does not contain the origin (for example,
outside the sphere or in an additional separate layer cov-

PMax NV,-1 2

E 2 EA‘](TI)/ ah,p,j,vjn(kj

p=1 »=1 j=1

E(rgy) =

kj,erMjn(k ',VrOM))’

+{ae,p,i,v ki rom +Aplopjv k
I

v o) Xp(8ons Pom) + |:apae,p,j,v A

Jn(kj,Tom)

jowToMm

ering the sphere), there exist other solutions of the Max-
well equations, containing terms that would diverge at
the origin. These solutions represent fields radiated from
the origin and propagating outward in the direction r
— . They can be described in terms of %, another set of
spherical Bessel functions, as mentioned at the end of
Section 5. These solutions can be obtained as a linear

combination with amplitudes A of the terms participat-
ing in the expansion given on the right-hand side of Eq.
(55) by substituting j, with A}. Inside the inner region,
these amplitudes are null in order to avoid field diver-
gence at the origin. Outside the sphere, they represent
the outgoing (scattered, diffracted) solutions; thus the use
of superscript (d). The bounded part, containing j,, plays
the role of incident waves in the outermost region and will
have amplitudes A/(‘f)w the superscript (i) standing for inci-
dent, which are known outside the sphere from the am-
plitude and polarization of the incident wave. If the

sphere is covered by a layer(s), both A(’) and A(d) will be
unknown constants. Thus the most general form of the
electric field vector will contain two terms:

E=EY+E@, (57)

The incident (bounded) part has the form, resulting from
Egs. (50) and (55),

jn(kj,v rOM) 3
—————+ 0oy 00n ki Tor) | Y, (O0a1, ©om)
v oM

]Zp(aoM, ‘POM)} , (58)

while the scattered (diverging at the origin) part can be obtained by replacing (i) by (d), and j, by A;:

PMax N,-1 2

2 2 AN G ik

p=1 v=1 j=1

E“(roy) =

k. romhy (k) Tom))' hy(k;,

+lae,p,i,v ki rou tAplopjv 3
Jv

Given the definition of vector spherical harmonics (Ap-
pendix A), it can be observed that X;=7Z;=0, while Y;
#0. In isotropic media the longitudinal field components
are null, so the sum in p starts from 2 instead of 1. If we
consider that the outside medium is isotropic (having re-
fractive index n,,), the eigenvalues are equal to k1=£k,
=nyuko, and the incident and the diffracted eigenvectors
are given by Eq. (35). The orthogonality between

rom) X, (0o om) + [apae,p,i,v

rom)

jwTom

h;(kj,v rOM)

k. Tom Dp,jvh JVrOM :|Yp('90M7‘POM)
JV

] Z,(0om, Pom) | - (59)

Y,..(0,p) (parallel to r) and
@ gD _p

onmj,v" Tonmgj,v

I, [Eq. (35)] leads to
a

7. RESOLUTION OF THE

BOUNDARY-VALUE PROBLEM

The unknown field amplitudes A(d and A , can be found
as functions of the incident field amphtudes Aj(lzj by apply-
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ing the boundary conditions on the surface of the sphere.
They imply the continuity of the tangential field compo-
nents. Here we can take advantage of the orthogonality of
the basis functions. First, we observe that Y,(6owm, om) is
parallel to roy, while X,,(6om, ¢om) and Z (OOM, ©oM) are
perpendicular to it. Second the latter functlons are mu-
tually orthogonal for different values of their indices n
and m and thus of p. Consequently, it suffices, for each
value of p, to consider the continuity of Ex,, Ez ,, Hx
and Hyz, at [roy|=R, radius of the sphere.
The continuity of Ex , gives

P’

N1 2
2 EAJ('TI)/ah,PJ,an(noutkOR)
r=1 j=1
N1 2
2> EA( )ahp,/v n(MoutkoR)
=1 j=1
N1 2
= E EAj,Vah,p,f,an(kj,yR), VYp=2,...,PMax-
v=1 j=1

(60)

Since X;=0, it is evident from Eq. (56) that for p=1, Eq.
(60) is written 0=0 and thus has to be excluded from the
set. The requirement to preserve an equal number of un-
knowns and equations leads to disregarding one term in
the sum in », too. However, we are not losing information
concerning the longitudinal field components carried by
the terms proportional to a,;; , in Egs. (568) and (59), be-
cause the amplitudes Ajﬂ, are independent of the subscript
p and once determined can be used to obtain the longitu-
dinal terms corresponding to p=1.

Equation (60) can be further simplified by using the
fact that the argument of the spherical Bessel functions j,,
and A} in the isotropic medium does not depend on the di-
rection of propagation, i.e., on v. We can thus introduce
new amplitudes of the field in the isotropic region outside
the sphere, which amplitudes contain the sum over j and
v

N,-1 2 N,-1 2
AL =D YA a4y, = > DAVATX (&)1,
v=1 j=1 v=1 j=1
N,-1 2 N,-1 2
(z) 2 EA(z) Aopjn = E ZA(L)ALWLH A (r)
v=1 j=1 r=1 j=1
N,-1 2 N,-1 2
= > 2 A%, = > DAV X (#,) T,
v=1 j=1 v=1 j=1
N,-1 2 N,-1 2
=> X A%, = > > AD4mZ (#,) T,
v=1 j=1 r=1 j=1

(61)

Here, A() are derived from the amplitude and the polar-
ization of the incident wave. For example, a plane inci-
dent wave has a non-null amplitude A? only in its direc-
tion of propagation (6;,¢;). Denoting its polarization
vector by é®, the first two of Egs. (61) simply give A;f))p
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=47mi"X(6;, ¢;)-€VAD and AY) =4mi"1Z (6;,¢;)-€PDAD, as
seen in Eqs (134) and (135) of Ref. 14.

Finally, the field inside the isotropic medium takes the
same form as in Ref. 14, and Eq. (60) takes the form

(L)p]n(noutkOR) + Bh ph (noutkOR)
N,-1 2

= > DA a0k R),

v=1 j=1

Vp=2,...DMax-
(62)
The continuity of Ey ,,, gives

0} [noutk()Rjn(nouthR)]’ [noutkORh;(noutkOR)]/
+

P n outk OR o noutk OR

N1z [k;., Rjn(k; , R))
= EAJ,V ae,p,j,v k R
a4

Jn(kj, R)

pYo.p.j,v kj,uR }’ Vp=2,...PMax- (63)

Equation (63) can be expressed in a different form, more
common in the studies using spherical coordinates:

A(i) lp;l(noutkOR) gr,z(noutkOR)

+B,
P noutkOR ? noutkOR
N1 ig [ U (k; ,R) Jn(kj, R)
= /. ae ',V— +a au, ‘,V— »
e J D kj,VR P D] kj,vR
(64)
where i, and &, are Ricatti-Bessel functions,'* which are
linked, respectively, with j, and &, by
(@) =2j,(2),  &(2)=zhy(2). (65)

The second two sets of equations are obtained from Max-
well equations projected onto the vector spherical har-
monic basis:

EX,p .
a’pT = leOHY,pv (66)
Ey, Ez, dE;,
I topoHx p, (67)
Ex, dEx
—+ —" =iomHy,, (68)
r dr
Hy
ap—’p =—iwDy,, (69)
r
Hy, Hz, dHZ,p .
a, - _T_Tz_leX’p’ (70)
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Hy, dHx,
+

r dr

=—iwDZ’p. (7]—)

Equations (67), (58) and (59) enable us to express Hx, as
a function of E7 ,. After some transformations using the
properties of j,, k', &, and ¢, (described in detail in Ref.
14), the continuity of Hy ,,, gives the third relation:

noutkO[Ag,})ujn(noutkOR) + Be D n(noutkOR)]
N,-1 2

= > DA apjvkivink R). (72)

v=1 j=1

Equation (68) represents Hy, as a function of Ex,, and
its continuity gives

(l) l//' (noutkOR) +Bhp§ (noutkOR

N-1 2

=22

v=1 j=1

Equations (62), (64), (72), and (73) form a set of equations
sufficient to find the unknown diffracted amplitudes A, ,,
B, ,, and B, , when the incident field amplitudes A(” and
A;ff are given, a set that contains 4py.—4 equatlons In
order that the number of unknowns be equal to the num-
ber of equations, it is necessary to impose that N,=pyrax;
i.e., the number of unknowns in the outside medium must
be equal to the number of unknowns inside the sphere. It
is worth noticing that the system of 4py.,—4 equations is
decoupled with respect to the subscript p, i.e., with re-
spect to the angular coordinates of the observation point
M. For each value of p, it is possible to eliminate half of
the unknowns, B, , and By, ,, and to obtain a linear sys-
tem for Aj’,,. In order to simplify the formulas and to ob-
tain relations similar in form to Mie coefficients, let us in-
troduce the symbolic notation. First, we define four
diagonal matrices with elements given by

(\I’O)pq = 5pq‘//n(noutkOR), (wé)pq = 5pq¢y’z(noutk0R),

A, an,; bk R). (73)

(§o)pq= pqgn(noutkOR)a (g(,))pq= pqgr,L(noutkOR);
(74)
Second, we introduce five matrices,

a= (\Ph,al:\yh,az)’ with (\Ph,aj)pv= ah,pJ,an(kj,VR)f
\I,I,z,a = (\I,;l,al’\lj;t,az)’ with (\Ifllz,aj)pv = ah,pJ,Vl//r,L(kj,VR)i
§h a= (gh’al’ gh,az); with (fh,aj)pv = ah,pJ,Vén(kj,VR)’

f}’z,a = (é}’z,ala f}’z,az), Wlth (é}’l,aj)pv = ah,p,j,vgrll(kj,VR)’

( o alyJo,aZ)a with (Jo,aj)pv=

apao,p,j,vjn(kj,VR)7
(75)

and similar definitions by exchanging the subscript A
with e and o. Third, the wavenumbers of different waves
are grouped in a diagonal matrix:
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0 kout
kin,2

With this notation, the four equations (62), (73), (64), and
(72) take the matrix form

(76)

. Rout |
\vo[Aﬁf]+§O[Bh]=~lfh,a(k—_t>[AJ, (77)
WA+ &[B,] =V}, [A], (78)

. kou
WA+ &[B,]= (¥, +J,,a>( - )[A] (79)

VAT + &[B,]1 =, [A], (80)

where the columns in the square brackets contain the cor-
responding field amplitudes, for example [B,],=B, ,.

Let us at first eliminate the amplitudes B;, , and B, ,
To this end, Eqgs. (77) and (78) are multiplied, respectively,
by & and ¢, and the results subtracted. With the Wronsk-
ian identity,

()&, (x) = 4, (0) &, (x) = £, Vn, (81)

the resulting equation takes the form

. Rou
i[A})]= {fowha( - ) fo\lfha}[A] (82)

By multiplying Egs. (79) and (80) by &, and ¢, and sub-
tracting them, we can eliminate B, ,, and the result has a
similar form:

e,p’

k,
zA“)]—{éo\Pea &P, +J0a)(k )][A] (83)

Equations (82) and (83) form a set of 2(N,—1) equations
that can be solved by a unique matrix inversion,

[Aﬁf)]>

4 5

[A]:iU-l(

where

Eou
EVha . - &V,
U~ in ) (85)

kout
f(’)\Pe,a - gO(\Pe’,a + Ja,a) k.

Multiplying Egs. (77) and (78) respectively by ¥, and ¥,
and subtracting the results permits the elimination of
[AY):
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Eour\ | -
i[B,] = {%% - wawh,a(kft) } [A]. (86)

By multiplying Eqgs. (79) and (80) by ¥, and ¥ and sub-
tracting them we can eliminate [Ag)]:

L‘“) - %‘Ife,a}[ﬁ]. (87)

k
i[B.]= [\Ifo(\[’é’a + Jo,a)< 2

Combining Egs. (84), (86), and (87) gives the link between

By, B, , and AY A(‘) in a matrix form,

h,p>
[B}] Tin Tae\([A}]
([Be]>=<Teh Te)([Aé”])’ o

where the 7' matrix is equal to
Twr The
. ( e T ) _
Teh Tee
ou

&V a( - ) &V,
X " . (89)
é:(,)qle,a - §o(‘lfé,a +d, )< out)

lIl

, kout
VoW, = VoW, .
mn

, kout ,
\IIO(\Ije,a + Jo,a) - |~ \PO\I}e,a
kin

-1

Thus the field is determined everywhere. The amplitudes
B, , and By, , serve to obtain the physical quantities, such
as total scattering, extinction and absorption cross sec-
tion, and radar and differential cross section, using clas-
sical formulas, as recalled in Ref. 14.

In the case when the sphere is optically isotropic, the
wavenumber does not depend on the direction of propaga-
tion, and it is possible to make the same change of un-
knowns inside the sphere as was done in the outer region
using Eq. (61). We thus introduce the amplitudes A;Ll) and
A(l) given by

N,-1 2
A(l) = E 21 i Qb p v

N-1 2

AEB= 2 Egj,vae,p,j,v- (90)

v=1 j=1

Moreover, as a, , ;,=0, the matrix J, , becomes null. The

product of matrices ¥, , and V¥, , with [A] gives diagonal
matrices equal to

(¥}, [AD), = ,(n1koR)AL,

(qle,a[A])p = lpn(nlkOR)Aé,l}Z’ (91)

and similar expressions for ¥; , and ¥, ,
and (83) become diagonal and yield

. Equations (82)
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Nout

(l) |: g (noutkOR) wn (n lkOR)

- gn(noutkOR) l//r’t(n 1k0R) :|A;lll)7

iAY) = [g,xnmkoR)wn(nlkoR)

gn(noutk()R)wn(nlk()R) :|A(l (92)

The same is valid for Eqgs. (86) and (87):

iBh,p = |: l//n(noutkOR)lﬁr’L(nlkOR)

Nou
- ¢;L(n0utk0R)‘r//n(n1k0R)n_t:|A;Ll,L’
1

Nou
lBep = |: lvzfn(noutkOR)l//;l(nlkoR)n—t
1

- l/fr/L(noutkOR)l/fn(nlkOR):|A(e,1I); (93)

Matrix U becomes diagonal, and thus the T' matrix takes
a diagonal form with elements generally referred to as
Mie coefficients:

(Thh)pq
UnoukoR) U (ko) = U (ouckoR)  (nihoR) — oue
B nout 617(1’
fr’l(noutkoR)%(nlkoR)n— = & (noukoR) ¥, (n1koR)
1
(Tee)pq
nOll
UnoutkoR) U (nikoR) " = U (ouckoR) b (n1hoR)
1
= 5pq‘

nOll
1rouckoR) U (n1koR) = & (mouihoR) ) (n ko)~
1

Teh = The = 0 . (94:)

In that case, there is no coupling between the two funda-
mental polarizations nor between different p components.
In other words, scattering by an isotropic sphere does not
mix electric and magnetic degrees of freedom, nor does it
mix multipole orders. On the other hand, anisotropy can
mix multipole orders as well as electric and magnetic de-
grees of freedom.

8. UNIAXITAL MATERIALS

As already observed in Subsection 4.B.2, the equations
are simplified for a uniaxial material. First, the wave-
number of the ordinary wave does not depend on the di-
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rection of propagation, kl’,,=k0\£'e_x, V. Second, the ordi-
nary wave is transverse, and thus a,,;,=0. Third, the
ordinary-wave eigenvector does not depend on 6, I'; ,=¢.
The fourth simplification concerns the extraordinary
wave. Its eigenvalue and eigenvector are independent of
¢, as obtained from Eqs. (33) and (34). As a result, the ¢
dependence in Egs. (58) and (59) remains only in the un-

known amplitudes Aj’y=gj(0,,,<p,,)sin 0, and in the coeffi-
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cients ap,p . Gepjwm and a,,;,. However, the ¢ depen-
dence of these coefficients has a very simple form when
the eigenvectors I';, do not depend on ¢. This can be
observed in Egs. (7)—(10) and (13)—(17) of Ref. 14, summa-
rized here in Eq. (A22). Taking them into account, as
well as the above-mentioned arguments, it is possible to
separate the variables in the coefficients defined in
Eq. (56):

App1,=A4m"X (&) - Ty, =4m"X (6,,0,) - &, =270y, 1(6,)explim(p)e,],

ae,p,l,v = 4mn_lz;(f'v) : Fl,v = 47Tin_lz;(0w (PV) . ¢V = 27Tae,p,l(0v)exp[im(p)¢v]’

Al
Qop,1,,=4m" Y (F,

)Ty, =4m" Y, (0,,0,)- &,=0,

U2y =AT"X () - Ty, = 4m"X (6, .@,) . 0,=27ay, , 5(6,)exp[im(p)e,],

ae,p,Z,V = 4mn_lz;(f‘v) : F2,V = 47Tin_lZ;(0w (Py) : A0V= 27Tae,p,2(01/)exp[im(p)()ov )

Uopo,n=4m" Y (8,) - Ty, =4m" Y, (0,015, = 270, , (6,)explim(p)e,]. (95)

The new coefficients « can be obtained by using Egs.
(A22) and are expressed by using the normalized associ-

ated Legendre functions Pf(cos 0,):

2" df’? (cos 6,)

«@ 0,)=—-— ,
h,p,l( ) ap dﬂv
2i"m  _
a 0,)=————P}(cos 6,),
e,p,l( ) ap sin 0]} ( )
2in+1
ap p2(0,) == ————P'(cos 0,),
ap sin 6,
21 dP™(cos 6,)
a’e,p,z(ev) ==

a, de, ’

am (€, — €,)sin 6, cos 6,
«a 0,) =2i1"""P}'(cos 6, - , (96
op.2(0)) w )ex sin? 0, + €, cos? 6, (96)

where n and m are determined from p through Eq. (54).
Quite important is that the new coefficients « depend on
0, but not on ¢,. This fact enables us to reduce signifi-
cantly the size of the set of equations to solve by introduc-
ing new amplitudes in a manner similar to the way they
are used in Egs. (61), which are, in fact, Fourier trans-
forms of Aj,,, with respect to ¢:
- 1 2
Aj,p,n(,: ZT 2 Aj,v(nﬁ,n‘P) eXP[im(p)Qan]- (97)
ng=

With this substitution, the set of Egs. (82) and (83)
changes into a set having a much smaller number of un-

[
knowns. When explicitly written, it takes the form

2nMax
out 0
(L) E 2 Jpngah,p,j,n9|: ( outkOR)lﬂn( Jin )
ng=1 j=1 J"e
gn(noutkOR)l/f ( _],n )]
2nyax 2
lAg,I)U= E A]png ep,]n(_}g (noutkOR)‘pn( jnﬁ )
ng=1 j=1
gn(noutk(}R)[aep,],nolr//n( Jon g )
out 0
+apao,p,j,n9Jn Jing )] (98)

J’L(.)

In addition to the change of the coefficients a — a, much
more important is to notice that the summation in v gen-
erally containing N,— 1 =ny,«(nyax+2) terms has been re-
duced to only 2nyp,, terms for each p, i.e., almost nypy
times. Since pyx=NN,, a significant reduction of the re-
quired number of vector spherical harmonics is achieved.

After the amplitudes AJ?P,ne are determined by solving
the linear system of algebraic equations, the diffracted
amplitudes in the outermost medium, B, , and By, ,, are
found by using Eqgs. (72) and (73). In addition, the inverse
Fourier transform of Eq. (97) gives the amplitudes of each

plane wave Aj,p,v(ng,%) inside the uniaxial material.

9. CONCLUSIONS

Using vector spherical harmonic functions as a basis, we
succeeded in obtaining the general form of the electro-
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magnetic field in an arbitrary anisotropic homogeneous
medium. Applying the boundary conditions across the
surface of a sphere allows us to find the components of the
diffracted field from those of the incident field through a
matrix inversion. This semianalytical method reduces, of
course, to the analytic Mie theory when the sphere is
filled with isotropic medium. The case of uniaxial mate-
rial, characterized by a ¢-independent permittivity ten-
sor, leads to some simplifications and to a significant re-
duction of the size of the matrix to be inverted.

This work presents the first step toward resolving the
problem of diffraction by an arbitrary-shaped anisotropic
object or an inhomogeneous anisotropic sphere, for which
the permittivity tensor is a function of the Cartesian co-
ordinates. This problem is treated in detail in Part II (this
issue):'% its solution is based on this work and extends the
differential theory, published in Ref. 14 to anisotropic
bodies.

APPENDIX A: VECTOR SPHERICAL
HARMONICS DEVELOPMENT OF AN
ARBITRARY PLANE WAVE

In order to establish the development of an arbitrary vec-
tor plane wave, let us recall that it is well known that an
arbitrary scalar plane wave can be represented in terms
of Legendre polynomials,

exp(ik - r) = ) (2 + 1)i%,(kr)P, (&} - #), (A1)
q=0
where P, are the Legendre polynomials, ¥=r/r, and &,
=k=Kk/k.
The addition theorem for Legendre polynomials repre-

sents them in terms of scalar spherical harmonics
qu(ﬂ, ®):

o 4
Py (&), 1) = 2

Y, (B Y g (). (A2)

The scalar spherical harmonics are expressed in terms of
associated Legendre functions PZ‘ or of normalized asso-

ciated Legendre functions 1321 :

2m +1(q —m)!

Yom(0,0) = [ ] P} (cos f)exp(im¢)

47 (g+m)!
=P} (cos f)exp(im¢). (A3)

Equation (A2) allows us to write the expansion of a scalar
plane wave in terms of the scalar spherical harmonics:

* q
exp(ik-r)=4my, > i, (kr)Y,

q=0 m=-¢q

n(B)Y g, (). (A4)

The next step is to generalize these expressions to a vec-
tor plane wave with arbitrary vector amplitude. To this
end we invoke a set of vector spherical harmonics. The
first set, denoted Y}, ., Y;',, Y, _; is obtained through
the so-called angular couphng formalism ° by using the

Cartesian spherical unit vectors:
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1
Xi=-=&+1y),
\!’2
XO = i:
~ 1 A - A
X-1= —=&=i¥). (A5)
V2

They form a complete orthogonal basis for the three-
dimensional vectors:

1
> Kke=1,
pu=-1

X" Xo= O (A6)

Making use of Clebsch—Gordon coefficients, we define the
first set of vector spherical harmonics in terms of the sca-
lar spherical harmonics:

1

= 2 (‘Lm - ,u,,l,,u|n,m)Y

qm-pXw
u=-1

g=n-1,n,n+1. (A7)

These vectors form a complete and orthogonal basis for
functions depending on angular variables:

4
f dQYm( ) Ymr r(r) mm’aqqy

0

> Y M@)Y,

n,m,q

THE) = 180(R,8). (A8)

The vector analog of the scalar addition theorem, Eq. (A2)
is

41
1P, (£ - #) = q—E (B Y (R), (A9)

which allows us to write the vector analog of Eq. (A4):

lexp(k - 1) =47 >, i%,(kr)Y, (@) Y0 ). (A10)

n,m,q

This expression can be used to express the vector plane
wave polarized in direction I'" in the following form:

I'exp(ik-r)=1-Texp(ik-r)

=47 Y, i%,(kr)Y, (@) Yo (&) - T

n,m,q

(A11)

When working in spherical coordinates, it is convenient to
define a second set of vector spherical harmonics Y,,,,
Xnm’ an, These
are related to Y

sometimes known as Y(") Yflmn)z, Y(e)

nnils Ynns Yono1 via the relatlons
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1
X, = Yn’ YZ,L,
n+1l 1/2 n 1/2
Zyp =Y, = " et
n,m (2n+1) n,n-1 (2n+1) n,n+1
" n 1/2 . n+1 1/2 -
YnmEYnm= o+ 1 Ynnl o +1 n,n+1»

n+ 1 1/2 n 1/2
Z,, + Y,
=1 <2n+1) o <2n+1> o

Ym
n 1/2 n+1 1/2
Y — Z,-|—— | Y.un. A13
nn+l = on+1 nm om+1 nm ( )

With these new vector spherical harmonics, the three
terms in the sum in g=n-1,n,n+1 in Eq. (A10) become

g=n-1

4my, i" Y, k)Y, (R)YT, i (F)

n,m

=4m>, " Y,y (kr)

n,m

n+1 @ n o, &
X\ ——Z,,,(*)Z, —Y,,,(1)Y
ont 1 nm (D) ( )+2n+1 wm (DY, (K)

yn(n+1) . A
+—[Ynm(r)Z K +Z,, @)Y, K],
2n+1
(A14)
q=n
4772 " (b)Y, (k)Y (#)
=47, ", (kr) X, @)X, (k), (A15)
g=n+1
4#2 "Y1 R)Y, (KX, (R)
= 4772 " (r)
nz 7' (k n+1Y Y (k
0 L n+l
o+ 1 (8 ( )+2n+1 ()Y, (k)

yn(n+1)

2 (Y (B)Z,, (k )+an(r)Ynm(k)]}
n+1

(A16)
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We thus obtain

lexp(ik - ) =47, i",(kr)X,,,®)X, (k)

n,m

n-1

14
4
’ 7,% 2 +1
~ a1 (k1)1 Z, (P Z,,,, ()
n-1
4
+ wn% 5
+ 1>jn+1<kr)]Ym<f>Y:ma%>
-1
+ 4772

XY, (#)Z;,,(K) + Z,,,,(#)Y,,,,(K)]. (A17)

[( +1)j,-1(ker)

{n-1kr) = (n

\rn(n n(+ Dljpor(kr) +jar (k)]

This formula can be simplified by invoking the spherical
Bessel function recursion formulas,

n+1 )
Jn(x),

jn—l(x) +.jn+1(x) =

Njn-1(x) = (0 + 1)j41(x) = (2n + 1)j, (%),

n+1

(n+ 1)jp1(x) = N1 () = (2, ()], (A18)

to obtain

lexp(ik-r) =47y, {injn(kr)xnm(f)xj;m(ﬁ)

n,m

meny
e 2,12, (K)

Yt (Rr)Y ()Y ()

—J(
+i7 1 yn(n+1) -

r)
[Ynm(r)Z (k)

+an<f>Y:m<f<>]}. (A19)

Equation (A1l1) is then written in the basis of Y,,,,,, X,,s,
Z

nm»

n,m

eXp(ik ‘r)l'= 2 {ah,nmjn(kr)xnm(f')

Jnlkr)
+ |:ae,nm k \;’n(n + 1) + ao,nmj;(kr)]Ynm(f')
r

{ [krj, (k7))
Ll I e —
kr

julkr )} ) }
+ \n(n + 1)ao nm nm(r) s (A20)
kr
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where

U = 471K, (R) T, @ =4m"Z,, (k) - T,

Qo pm = 4" 1Y, (K) - T. (A21)

It is useful to recall the additional relations between the
vector spherical harmonics and the normalized associated

Legendre functions Pgl established in Ref. 14:

Y,,..(6,¢) = £P(cos )exp(im )

r —
Z,,,(6,p) = ———=grad[P}}(cos f)exp(im
(6,¢) \’mglf [P (cos f)exp(im¢)]

exp(ime) im . d [_
=——| o——+ 60— [P"(cos 0
yn(n +1) ¢sin 0 de n )

Xnm(ea ®) = an(e, Q) X1

exp(ime)| . im d |_
= ———| 0—— - o— |P(cos 0).

yn(n+1)[ siné deo
(A22)
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brian.stout@fresnel.fr.
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