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We derive and apply formulas that employ the vector-wave addition theorem and rotation matrices for quan-
titative calculations of both radial and axial optical forces exerted on particles trapped in arbitrarily shaped
tweezer beams. For the tightly focused beams encountered in optical tweezers, we shall highlight the impor-
tance of formulating the optical forces and beam symmetries in terms of the irradiance and total beam power.
A major interest of the addition theorem treatment of optical forces is that it opens up the possibility of mod-
eling a wide variety of beam shapes while automatically ensuring that the beams satisfy the Maxwell equa-
tions. In some of the first numerical applications of our method, we shall illustrate that resonance effects play
an important role in the axial trapping position of particles comparable in size with the wavelength of the
trapping beam. © 2005 Optical Society of America
OCIS codes: 140.7010, 140.3300, 120.5820, 290.4020.
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1. INTRODUCTION

Optical tweezers and traps have opened up a new domain
of laser applications in that they allow the mechanical
manipulation of particles via light-induced forces.! The
essential aspect of optical tweezers is to create large gra-
dients in the field intensity that induce optical forces that
attract dielectric particles toward regions of high inten-
sity. Outside their demonstrated usefulness to trap, dis-
place, and rotate particles, a major interest of optical
tweezers is the measurement of molecular scale forces
that, like typical optical forces, are frequently in the
1-100 (pN) l"ange.zf6 A reliable theory of optical forces is
therefore useful in this regard.

Particles commonly trapped in optical tweezers experi-
ments of characteristic size D are frequently too large to
be reliably treated in a simple dipole model,” D<)\, and
not large enough to be reliably treated via a geometrical
optics approach,® D> \. The weak dielectric contrast of
many optically trapped particles has motivated the use of
Born-type approximations9 for particles in the intermedi-
ate or resonant size regime, D~ \, but this method is re-
liable only to the extent in which the particle only weakly
modifies the incident beam, and the precise domain of va-
lidity of this approximation is not known. Consequently,
optical force experiments are frequently carried out by
one’s experimentally measuring the forces on spherical
particles and then attaching these calibrated optical
handles to the molecules, membranes, or cells under
study. '’

Optical force calculations based on transition
matrices'>'? (or a Lorentz—Mie-type theory for spheresw)
are an obvious choice for rigorous numerical calculations
of the optical force. We demonstrate in this paper that
quantitative calculations of the force along an arbitrary
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direction can be performed by invoking the translation-
addition matrices familiar from analytic multiple-
scattering calculations.” Another important aspect of
quantitative calculations is the necessity to accurately
model realistic optical tweezer beams. Space does not per-
mit a detailed discussion of the various possible beam
shapes in this paper, but we shall discuss the partial-
wave decomposition of focused laser beams and the im-
portance of irradiance when evaluating beam symmetries
and optical forces.

Although our transition-matrix formulas can be ap-
plied to arbitrary scatterers, in the interest of simplicity,
we shall restrict our attention to the optical forces on di-
electric spheres suspended in liquid dielectrics. For the
purpose of theoretical comparisons, we simply study here
some simple models based on Davis-type corrections to
Gaussian-type focused beams.!*15 Although these models
are rather poor approximations to realistic tweezer
beams, they have the advantage of having rather simple
partial-wave expansions. These models suffice, neverthe-
less, to illustrate the necessity of proper beam normaliza-
tion and the importance of an irradiance formulation of
the beam symmetries.

The principal goal of this paper is to present our tech-
nique of calculation and to illustrate its ability to perform
quantitative calculation of optical forces on resonant di-
electric particles D= \. Our techniques can be adopted to
the study of non-Gaussian beams (doughnut beams, top-
hat beams, Bessel beams, etc.) and can be used to system-
atically test the domain of application of the various ap-
proximate theories. These topics, however, shall be
treated in subsequent publications.

We use SI units throughout this paper. In view of the
scale-invariant nature of the electromagnetic equations,
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we shall formulate our results in terms of dimensionless
parameters wherever possible. Nevertheless, numerical
applications will be formulated for the commonly em-
ployed infrared optical tweezer beams with a vacuum
wavelength of \g=1.064 (um). Water is assumed for the
background liquid dielectric media, n,=1.32, and the
trapped particles will be either silica ny=1.46 or latex
ng=1.59.

We have broken this paper up into three largely inde-
pendent sections. Section 2 is dedicated to introducing the
partial-wave developments of the electromagnetic fields
and a discussion of beam symmetries and normalization.
Section 3 presents our expressions for the optical forces
derived from the Maxwell constraint tensor. The
translation-addition theorem of scattering theory permits
the calculation of the forces at different positions,
whereas the angular-momentum rotation formulas per-
mit the calculation of the forces in different directions. In-
dicative calculations are presented in this section for both
radial and axial forces. We also present some preliminary
results demonstrating the importance of resonance effects
on the trapping position of large particles.

2. ELECTROMAGNETIC PARTIAL WAVES

We adopt a time-harmonic incident field with an
exp(—iwt) time dependence and assume that trapped par-
ticles are suspended in a homogeneous absorption-free
liquid dielectric medium. The time-harmonic Maxwell
equations then require that the electric field in a homog-
enous medium satisfies the following second-order differ-
ential equation:

Vx V XE(r)-k*E(r)=0, (1)

with kzﬁsbﬂo\f'%w=nbw/c, where (ey,uo) are the per-
mittivity and the permeability of the vacuum and (g, up)
are the relative permittivity and the permeability of the
background dielectric medium. The electromagnetic par-
tial waves or vector spherical wave functions (VSWFs) are
a set of spherical waves centered on a given origin and
form a complete basis set of solutions to Eq. (1).

The set of outgoing (or irregularu) VSWFs is tradition-
ally denoted by M,, ,,,, N, ,,, and satisfies Eq. (1) with out-
going boundary conditions:
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M, (kr) = h, (k)X (6, ),

T
N,n(kr) = ;{v’n(n + D)h,(kr)Y,n(0, $)

+[krh,(kr)]'Z,,,(0,9)}, 2)

where h, are the spherical Hankel functions of the first
kind and [krh,(kr)]’ is the derivative of krh, (kr) with re-
spect to kr. We use a normalized version of the M and N
functions,'! which can be conveniently expressed in terms
of the normalized vector spherical harmonics (VSHs) X,
Y, and Z'¢:

X, (0, 8) = L (0,) X T = %,,C,,1 (0, 0),

Y,n(0,4) =Y, (6, ) = Y\ + 1P, (6, h),

7V Y,(0,¢)

Z,,(0,¢) = =1 X X,,(6,0)

\n(n+1)
= YumBum(0, 9), 3)

where Y,,,,(0, ¢) are the normalized scalar spherical har-
monics and C, P, B are the VSHs used by Tsang et al. 1
(see also Appendix A). Nondivergent (i.e., incident) fields
should be developed on the basis of regular partial waves,
Rgi{M,, 1}, ’Rg{[Nn,m]},n which are obtained by one’s re-
placing the spherical Hankel functions, 4,, in Eqgs. (2)
with spherical Bessel functions j,,.

A. Partial-Wave Developments of the Incident Field

The above results permit the development of an arbitrary
incident electric field, E;(r), on the basis of the regular
VSWFs:

Ei(r) =AY, Rg{[M, ,(kr)}adL, + RglIN,, ,(kr)}al,,

= ARg{[M(kr),N(kr)]}a
= ARg{W'(kr)}a, “

where A is an overall field amplitude coefficient with the
dimensions of an electric field and a,l\fm, afm are dimen-
sionless partial-wave expansion coefficients. The second
and third lines of Eq. (4) introduce a compact vector no-
tation that allows the suppression of the bothersome sum-
mation over index labels, n, m. 1512 In the compact nota-
tion, a is a shorthand symbol representing an infinite
column vector composed of the anM,m s aﬁm coefficients, and
W! (the ¢ indicating the transpose) represents an infinite
row vector composed of the VSWF's:

W(kr) =[M, ;(kr),M, o(kr),M,; _;(kr),...,Ny 1(kr),N; o(kr),N; _;(kr),...]. (5)
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One can find the incident magnetic field corresponding to
a given incident electric field by invoking Faraday’s law,

H;(r) = - V X Ei(r) = Reg{V X W'(kr)}la
Loty o Loty o
epeo | V2
=A( ) Rg{[N(kr),M(kr)]ja, (6)
My o

and the convenient rotational properties of the VSWFs,
VXM=kN and VX N=kM.

The most common theoretical choice for incident fields
in electromagnetic theory is that of polarized homogenous
incident plane waves of the form EP"=A exp(ik;-r)é;,
where €; is a (possibly complex) polarization vector with
unit norm |&;|=1. For this choice, the incident-field coeffi-
cients can be determined analytically and can be conve-
niently expressed in terms of the VSHs'®:

[P, = 47X, (k) - & = 4mi"X, (k) - &,

PN, = 472, (k) - & = 4mi"'Z) (k) - &,  (7)

where we replace the arbitrary incident-field coefficient
vector a with the symbol p as a reminder that the [p %H’QN
are the coefficients of an incident plane wave. It proves
convenient to define the phase-modified VSH, X,,, and
Z.m» in Eqs. (7) because these quantities appear repeat-
edly in far-field calculations.

For inhomogeneous beams such as those used in optical
tweezers, the normalization of the field amplitude coeffi-
cient A in Eq. (4) can easily become a point of confusion
and erroneous results. For the common optical tweezer
beams formed from a lowest-order 7'y )-type laser mode,
we choose to normalize the field amplitude at the maxi-
mal symmetry point of the beam (i.e., the center of the
Rayleigh region—typically being the point of maximal
field amplitude). When this maximal symmetry point is
taken to be the system origin, O, the connection with ex-
perimental irradiance is facilitated if we define A such
that

,ubuo) vz

€p€0

A?= zsi<0>|< (8)

where S;(0) is the time-averaged incident Poynting vector,
Si(r)= %Re{E? X H;}, evaluated at the origin.

For an incident homogeneous plane-polarized wave, the
normalization of Eq. (8) is consistent with A being the am-
plitude of a complex electric field, |[EP"|=A. The adoption
of Eq. (8) imposes a normalization condition on the di-
mensionless a coefficients. A computation of |S;(0)| using
the field developments of Eqs. (4) and (6) and the value
Eq. (8) of A shows that the dimensionless incident-field
coefficient vector @ must consequently be normalized such
that the dipole beam coefficients satisfy (see Appendix D)

Re{la Y [ali; - [aliy [a]}} = 6. )

One can verify that the plane-wave coefficients of Eqs. (7)
[see also Eqgs. (15) below] always satisfy this normaliza-
tion condition.
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The direction of incidence, 11;, of the incident field is de-
fined as

;= 8;(0)/[S;(0)|, (10)

with 0; characterized by two angles, 6; and ¢;. For axi-
symmetric beams, @i; will lie along the symmetry axis. We
henceforth define the incident irradiance, I(r), of the inci-
dent field as the beam power flux along the direction of
incidence:

I(r) =S;(r) - ﬁi, (11)

where it is important to note that I(r) for inhomogeneous
beams is not equal to the norm of the Poynting vector,
|S;(r)| (except at the origin).

The total beam power, P;, is a more readily obtainable
experimental quantity than 7(0). Furthermore, for more
exotic beams (doughnut beams, asymmetric beams, etc.),
the maximal symmetry point may not always be readily
identifiable or may be located in a region of near-zero ir-
radiance. We will see in Section 3 below how one can re-
formulate the force in terms of a beam power normaliza-
tion that is independent of a chosen point of system
origin. For the moment, we remark that P; can be ob-
tained by integrating the irradiance over any plane per-
pendicular to 0;; i.e., when Zz=1;, P; is given by

%0 27
P;= f I(xyyyz)d-xdylzzconst. = f Pdpf dd’I(P, ¢7z)|z=const.7
0 0
(12)
independent of z.

B. Axisymmetric Beams

In this paper, we will consider only beams whose irradi-
ance is axisymmetric. We shall see below, however, that
this does not, in general, imply an axial symmetric inten-
sity, |E|2. It suffices for this demonstration to perform cal-
culations for models based on low-order Davis
corrections'*1® to moderately divergent beams.

If one develops the partial-wave expansion of a beam
with an axisymmetric irradiance in a system whose origin
is placed at the center of the maximum beam constriction,
the partial-wave expansion coefficients can be conve-
niently expressed15 as

[aly =[glplam A=MN, (13)

where the [p]ﬁ,m are the plane-wave expansion coeffi-

cients of a plane wave with l:lzﬁi and the [g], coefficients
depend only on the n number. Following the terminology
of Gouesebet et al., we refer to these [g], coefficients as
the beam shape coefficients.

Strictly speaking, the models that we shall consider lie
somewhat outside the paraxial approximation invoked in
the derivation of a Gaussian beam. Nevertheless, the low-
order Davis corrections that we have chosen to work with
allow us to roughly apply Gaussian beam terminology
such as diffraction length, waist, etc. For near-Gaussian
beams, the tightness of the beam focusing can be param-
eterized via the dimensionless beam shape parameter s:
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1 wy, tan g,
s=——=—= , (14)
ka ZZR 2

where wg in the paraxial approximation is the minimal
beam radius or waist, zp is the Rayleigh diffraction
length, and 6, is the beam angle of divergence. The first
equality in expression (14) gives us a physically transpar-
ent expression of the s parameter as the wavelength di-
vided by beam circumference at the minimal focus (.e.,
the circumference of the beam spot).

Using the values of the plane-wave coefficients given in
Eqgs. (7) and defining the Z axis to lie along the incident-
beam direction, we find that the analytic expressions of
the |m|=1 plane-wave coefficients are

[PBY = 4mX,1(0,0) - & =i"\m(2n + 1)(i6+ $) - &,
PN, =47Z2,1(0,0)- & =i"\m(2n + 1)(i0+ @) - &

I:p]n 1_ n\””(zn*—l)(la ¢) e17

[p] 1= \,77(2n+1)(—u9+¢) (15)

with [p]™N=0, when |m|# 1. Under our chosen conditions
that the 70rigin is the maximum symmetry point of the
beam, the beam shape coefficients can be chosen to be
real.!” One further ensures that the beam expansion co-
efficients, [a]ﬁ?m [Eq. (13)], satisfy the normalization con-
dition of Eq. (9) by simply imposing [gl;=1 [in that the
plane-wave coefficients, [p]fim, already satisfy Eq. (9)].

C. Beam Power Normalization
We saw in Eq. (8) that the beam amplitude constant, A,
was determined by the irradiance at the origin 7(0). This
beam center irradiance is rarely a precisely known quan-
tity, and the relationship between I(0) and the total beam
power depends strongly on the beam shape. It is therefore
preferable to formulate the force in terms of the total
beam power P;. Dimensional arguments lead us to a con-
venient definition of a dimensionless shape normalization
parameter, ¢, defined such that
k2P,
100) = ¢o—, (16)
T

where k=2m/\y, the factor 7 is for later convenience, and
¢ is a geometric factor calculated from the irradiance pro-
file of the beam. For an axisymmetric beam, the total
power is

17

2w [~
P;= el I(r)kp(kdp)
0

z=const.

A comparison with Eq. (16) shows that ¢ is expressed as

fo ftr )k kd B 18)
" 0 1(0) p( p) z=const. ' (

The extent to which an optical tweezer beam differs
from a paraxial Gaussian beam approximation is an im-
portant question in optical tweezers, and it may therefore
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prove instructive for comparison to calculate ¢ for a
Gaussian beam. We recall that Gaussian beams are an
approximate solution of the Maxwell equations in free
space for which the irradiance is expressed as

2 2p2
I(r)=1,0)| —— () exp “oo |
2 \27] 2
w(z)=w0{1+<—):| R (19)
2R

where zR=kw(2]/2=w0/2s is the Rayleigh length and s is
the beam parameter of expression (14). The power inte-
gral of Eq. (17) for a Gaussian irradiance yields

T 1
P = 2 I 4(0) = k2 2 1,(0),

which corresponds to a normalization factor from Eq. (18)
of ¢ = 2s2.

For non-Gaussian beams, one can readily evaluate ¢
numerically by carrying out the integral of Eq. (18) in an
arbitrary z=constant plane. With a bit of effort, one can
alternatively obtain an analytic expression for ¢ in terms
of the shape coefficients. One possible derivation of this
analytic expression is outlined in Appendix C by our car-
rying out an analytic integration of the irradiance in the
z=0 plane. The result in terms of the shape coefficients,
[g],, of Eq. (13) is

(N pax-1/2

o= X

p,q=0
2p-1)!1(2g-1)!!
><(2p+2)!z(2q+2)1!

[g]2p+1[g]2q+l(4p +3)(4q +3)

(-1

/2 (N pax-1/2

max

12 > 2 [ghlglya—————

p=1 q=0
2p-1)!! (4p + 1)(4qg + 3)
2p)!! 2p2p+1)-(2¢ +1)(2g +2)

2q+1)!!
(2 )H

(- 1ot

(20)

We note that a statement has erroneously appeared in
the literature that the power of inhomogeneous beams is
simply PiOCEn,m{\anM’ [2+|aX  |2}. This result is apparently
derived through far-field considerations of the intensity
and an overly hasty appeal to the orthonormality of the
VSHs. It is worth remarking that the erroneous result
predicts that the total power flux of an inhomogeneous
beam is simply the sum of the power flux of the individual
partial waves (without interference effects). If any further
evidence were necessary, we remark that it is a relatively
simple matter to numerically compute the beam irradi-
ance over any infinite plane intercepting the beam and
that this calculation supports Eq. (20).

D. Davis-Type Beams

We have chosen to work with Davis-type models here be-
cause they allow us to use familiar Gaussian beam termi-
nology and because, in the localization approximation of
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Gouesebet et al.,'® one obtains simple analytic expres-
sions for their beam coefficients. Nonparaxial corrections
in the Davis prescription take the form of an s power se-
ries of approximations to the vector potential, and the
first-, third-, and fifth-order Davis beams are given, re-
spectively, by15

[g1], =exp[-s*(n - 1)(n + 2)],

(g3, =[g1], + exp[-s*(n - D(n + 2)](n - 1)(n +2)s*[3 - (n
-1)(2+n)s?],

lg5l, = g3, + exp[—s2(n — 1)(n + 2)[{(n — 1)%(n + 2)%s%[10
~5(n-1)(2+n)s?+0.5(n - 1)2(n +2)%*]},  (21)

where g, corresponds to the commonly used paraxial, i.e.,
Gaussian approximation to focused beams with axial, i.e.,
E,, field corrections.*

The diffraction limit of focusing is generally accepted to
be wg=2\,/2, which corresponds to an s parameter of s
=\p/27mwy=1/7=0.32, which we shall adopt from here
on. This does not mean that s=1/ is the largest possible
beam shape parameter but rather that higher s param-
eters would require corrections beyond that of the low-
order Davis corrections in order to reconcile high beam di-
vergence with diffraction considerations. Taking s=1/m
(corresponding to a beam divergence of §;=33°), we illus-
trate the focal-plane irradiance and intensity profiles for
a g5 beam in Fig. 1. The shape normalization factor for

Irradiance
0.8
0.4
g,
~
04
0.8
08 -04 0 04 08
X um
(a)
Intensity : |E|
0 y © |E|
04
1K)
=
04
)
08 04 0 04 08

X pum

(5)

Fig. 1. Focal-plane irradiance and intensity of a y-polarized
fifth-order Davis beam with s=1/.
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this beam is ¢, =0.130 (as opposed to a Gaussian value of
¢=2s2=0.2; we note that the considerable difference be-
tween these two values of ¢ is due in part to the non-
Gaussian nature of the g5 beam and in part to ambigu-
ities involving the determination of wg in terms of
irradiance or intensity).

3. CROSS SECTIONS AND OPTICAL FORCES
IN INHOMOGENEOUS BEAMS

For inhomogeneous beams, it proves essential to define
position-dependent cross sections and efficiencies. We in-
troduce our notation and justify our terminology by first
studying the position-dependent scattering cross section
in inhomogeneous beams. We then tackle the somewhat
more difficult problem of optical force cross sections and
efficiencies.

A. Position-Dependent Cross Sections

Before generalizing to inhomogeneous beams, let us first
recall the traditional definition of the scattering cross sec-
tion. For incident plane waves, the total electromagnetic
power scattered by a particle is given by P =10, where
the scattering cross section, o, has the dimension of a

surface. The irradiance is defined by I=S§;-k;=|S;|, where
S; is the complex Poynting vector of the chosen incident
plane wave. The o, depends on the physical properties of
the particle, as well as the wavelength, direction, and po-
larization of the incident field, but not on the particle po-
sition or incident-field strength. By definition, oy is the
solid-angle integral of the differential cross section,
dog/dQ):

g 2m d s 0a a015 1
(0 ) = f sin 6d6 f 4270 % b
0 0 dQ

where 6;, ¢; specify the direction of l:xi. The differential
cross section, do,/d(), is defined via the ratio of scattered
to incident flux:

, (22

das(gy (1)7 017 ¢l) f. : ss(r)
— g Slimr——, (23)

dQ o

where S, (rt) is the Poynting vector of the scattered field
and the angles 6, ¢ specify the direction of r.

For inhomogeneous beams, the irradiance [see Eqgs.
(10) and (11)] is no longer a constant, and the scattered
flux will depend on the particles’ position. For a particle
centered on x, we can generalize the cross-section formula
of Eq. (23) by dividing by the irradiance at the system ori-
gin, 1(0)=S;(0)-G;=|S;(0)|:

doy(x) - S,(r) 2 epey \V2E,(r) - E(r)
=limr? =lim—
L0 ((1) I/ 1(0)

Mo Mo
(24)

The power of the radiation scattered by a particle at po-
sition x is then Py(x)=1(0)0y(x).

The position dependence in Eq. (24) enters into the cal-
culations via the VSWF development of the scattered
field:
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E (r) = ARg{Wk(r - x)l}f(x), (25)

where r' =r-x and f(x) is the column vector composed of
the scattering coefficients for a particle centered on x.
One obtains an analytic expression for o4(x) in terms of
f(x) by inserting the partial-wave development of Eq. (25)
into Eq. (24), invoking Eq. (8) for the value of A, and car-
rying out an analytic integration over the solid angles in
Eq. (22) to obtain'!1®

1
oy(x) = e '(X)f(x). (26)

For incident-field coefficients, a(x), developed around
an origin located at x in the system reference frame, the
scattering coefficients can be conveniently obtained from
transition-matrix theory as

fx) =Ta(x), (27)

where T is the transition matrix of the scattering
particle.!> The translation-addition theorem (see Ap-
pendix B) allows us to express a(x) in terms of the
incident-field coefficients, a, established in the system ref-
erence frame:

a(x) =J(kx)a, (28)

where J(kx) is the regular translation-addition matrix.
This leaves us with a final expression for the position-
dependent cross section:

1
o(x) = Ea*JT(kx)TﬁTJ(kx)a. (29)

This expression for o4(x) has two inconvenient aspects:
The value of o4(x) will depend on the choice of the system
origin, and the formula in Eq. (29) is valid only if the sys-
tem incident-field coefficients, a, satisfy the normalization
of Eq. (9). Both problems can be removed by one’s formu-
lating the scattering power in terms of the total incident-
beam power. Invoking the shape normalization param-
eter, ¢, of Eq. (16), we can write the expression for the
scattered power, P (x)=1(0)o4(x), in terms of the total
power, P;, of the incident beam:

2
Ps(x) =Pi;‘Po—s(X) = PiQs(X)y

Q.(x)= k2fas(x) = f(fJT(lex)fl’TTJ(kx)a,
o a

(30)

where the dimensionless beam efficiency factor, Q4(x), is
independent of the normalization of the incident-field co-
efficients, a. Furthermore, Q4 (x) is independent of the
choice of system origin.

Having familiarized ourselves with position-dependent
cross sections, we will apply analogous considerations and
formulations to the force cross sections and efficiencies in
Subsection 3.B.
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B. Force Cross Formulation from the Maxwell

Stress Tensor

Starting from the Lorentz force equations, one can calcu-
late the time-averaged electromagnetic force, F, on the in-
duced charges in a material object by integrating the
time-harmonic Maxwell stress tensor, ’E over a closed
surface, I', surrounding the object:

F=jg T- fids, (31)
T

where n is the local unit normal of the closed surface. The
time-averaged optical force is then obtained by our evalu-
ating the following time-averaged constraint tensor T ex-

pressed in terms of the total complex electromagnetic
fields, E and B:

- 1 . .
T, (r) = ERe{ gpell; (r)Ej(r) + B;(r)B(r)

Mp Mo

1 [B(r)|?
——| gpeE@)? + Sij(- (32)
2 My Mo

One can readily verify that T has the dimension of pres-
sure.

To remove the dependence on the field strength, it is
convenient to define a vector radiation force cross section
oy and efficiency vector Q; such that

1(0) P.k%
F=—o0dr)=——04dr) =
Up Up T

P;
—Qr), (33)
Up

where vy =c/np=\epupeomo " is the (real) phase velocity in
the background medium. With these definitions, the vec-
tor ofr) has the dimensions of a surface, and Qgr)
=(k2¢/m) o(r) is an efficiency vector that is independent
of the normalization of the incident coefficient vector a.

Taking the closed surface in Eq. (31) to be a sphere at
infinity, invoking the far-field limits, and comparing the
result with the definitions in Eq. (33) show that oy can be
expressed as

o'f: ()'r - (]'a, (34)

where o, characterizes the contribution to the force due
to asymmetric scattering of the particle:

% f i o B -E.+ —B' B, td0
) €€ . + .
41(0) o b0 s o lho s s

1 £p€0 1/2 .
- 2 #E. - E,dQ. (35)
r—x21(0) My Mo Q

O, =

We have eliminated the magnetic field from the expres-
sions by using the vector identity (aXxb):-(eXd)=(a-c)
><(b1-3d)—(a-d)(b-c), the far-field results lim,_.r - E,=0,
and

By(r) = (speoupio) *F X Es. (36)

r—o
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The other contribution to the optical force, o, corre-
sponds to the momentum flux removed from the incident
beam:

Up . #
(rrric - 4100) r? sbeofg rRe{E,-E;+E; - E}dQ
+ f  Re{B. - B; + B - B,JdQ
MpoJ o
1 £p€0 1/2 . .
=— ——limr? I Re{E;-E; + E; - E;}dQ,
21(0) My Mo Q

(37)

where we have again eliminated the magnetic field by em-
ploying the same techniques outlined after Eq. (35) and
using lim, .. Bi(r)=(ep€qup o) /& X E;.

C. Axial Force Efficiency
In single-beam optical tweezers, trapping is consistently
stronger along the radial direction than in the axial direc-
tion. To determine the existence of trapping, one must
foremost look at the forces along the beam direction
(henceforth referred to as the axial direction), which typi-
cally go under the name of optical pressure even though
trapping can exist only when this quantity has a region of
negative values.

Without loss of generality, we can define the z axis to
lie along the z=1; direction. The optical pressure force is
thus Fy=F,= (P;/vy) (k2 @l ) op, with

O, =Z 0,—Z " 0,=0,—80g, (38)

where oy is the scattering cross section of Eq. (29) and the
asymmetry parameter, g, has a standard definition as the
projection of the scattered radiation along the direction of
incidence.'®> We obtain an analytic expression for g in
terms of the scattering coefficient vector f(x) by inserting
the development of Eg on the VSWF basis, Eq. (25), and
carrying out the angular integrations in the Z component
of Eq. (35). The result is

1 1 epen | V2 ;
g=—Z 0,=—— limr?| z-%E,-EdQ
o 21(0) o, a

Mpfho/  r—e
1
= kz_af (%)
x{ f dQ cos Q[X(H’ ¢)] [X°(6,¢),27(6, ¢>)]}f(X)
Z(6,¢)
1
= Eﬁ (®)Yf(x), (39)

where the Y matrix is obtained by one’s carrying out the
solid-angle integration of the term in brackets and takes

e =1 K ( )
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m

enm,vu = m,p,an,w

nn+1)

i

Een+1)(2v+ 1)

I

nm,vpu —

Sypy
[ P rE =)= m?)
n

5V,n+1 s T T—
VP - 1P -m?) |. (41)

14

Carrying out similar manipulations for o,, we find

1 1/2

Ep€o p

o-r(x)Ei-a',z——< ) limr2f z -1 Re{E, - E;
21(0) \ g pg Q

1
+E-EJdQ=- ﬁRe{a*(x)Yf(x)}. (42)

Recalling the defining property of the transition matrix,
Eq. (27), and invoking the regular translation-addition
matrix, J(kx) [see Eqgs. (28) and (B2)], we find that o,
=0,-g0s, and the corresponding efficiency vector, @,(x),
may be conveniently expressed as

1
op(x) = - ERe{aJ‘Jlr (Bx)YTJ (kx)a}

1 .
- EaTJr(kx)TTYTJ(kx)a,

Qy(x)=- fRe{oﬁJT(kx)YTJ (kx)a}
T

- faTJT(kx)TTYTJ(kx)a, (43)
T

where we recall that in terms of @,(x) the optical pres-
sure force is simply

P;
F,= U—pr(x). (44)

The absolute value of the efficiency vector @,(x) thus
determines the fraction of the total beam momentum that
is converted into a force along the direction of incidence.
For numerical determinations of the force, the factor 1/v,
in Eq. (44) can be approximately expressed as

—=—10%—= ——:44—N 45
=g A (45)

where, in the last equality, we took our value for the re-
fraction index of water, n,=1.32. One can therefore ob-
tain the force in piconewtons per milliwatt of beam power
by multiplying @,(x) by 4.4.

We remark that, although our force formulas are valid
for inhomogeneous beams, one retrieves for incident
plane waves the classic Debye-Mie results,
opzae—gas.ls’”’ls This can be verified by showing that
the asymmetry factor contribution, go, [Eq. (39)], is iden-
tical to the plane-wave results! by simply inserting the
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Fig. 2. Axial trapping efficiency, @,(z), for spheres of radii R
=2.1 (um) composed of silica (n,=1.46) and latex (ny=1.59) im-

mersed in water (n,=1.32) and exposed to a y-polarized fifth-
order Davis beam.

coefficients for incident plane waves. One can also show
that o,(x) is identical to the extinction cross section o, in
the plane-wave limit'®:

1
O, — O, =— 5

. k2Re{pTTp}- (46)

D. Applications to Trapping

In this paper we restrict ourselves to evaluating the
forces on spherical objects in order to avoid the complica-
tions associated with torques and particle orientation.
The transition matrix, 7', is then diagonal with matrix el-
ements corresponding to the Mie coefficients.'*® The
axial force formula of expressions (43)—(45) permits us to
quantitatively calculate the optical forces along the direc-
tion of the beam propagation and thereby determine the
trapping position and stiffness.

We show in Fig. 2 the axial trapping efficiency of silica
and latex spheres of radius R=2.1 (um) suspended in wa-
ter and a y-polarized, s=1/ fifth-order Davis beam. The
position z=0 corresponds to the beam focus (i.e., center of
the Rayleigh region). We note that the calculation pre-
dicts trapping for both the silica and the latex spheres be-
cause both curves contain regions for which the radiation
pressure is negative. The stable trapping position, zy,, is
given by the point for which @Q,(z,)=0 and
d@,(z)/ dz|2=2tr<0. We remark that the trapping positions
for the two types of sphere, though not the the same, are
~0.8-1 (um) after the beam focus, which indicates that
scattering forces (sometimes called radiation damping
forces) along the direction of beam propagation are not
entirely negligible compared with the gradient forces that
draw the particle toward the beam focus.

Our rigorous calculations permit us to demonstrate the
importance of resonance effects on optical forces. Such ef-
fects cannot be explored by any of the commonly used ap-
proximations such as dipole, geometrical optics, or Born-
type approximations. We illustrate in Fig. 3 that
resonance effects can have a sizable effect on the axial
trapping position of a particle. In Fig. 3, the trapping po-
sition is calculated as a function of the sphere radius for
silica and latex spheres trapped in water by a fifth-order
Davis beam. For radii in which the points on the trapping
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position curve lie above the z=R dotted line, R
=0.62 (um) for silica, the center of the beam focus lies
outside the particle. For larger particles, R=0.62 (um)
for silica, the trapping position lies below the z=R line,
indicating that the center of the beam focus lies within
the particle as arguments from geometrical optics indi-
cate.

We interpret the oscillations in trapping positions as a
function of the radii, observed in Fig. 3, as evidence for
geometric resonance effects on the trapping force. This is
a subject worthy of more detailed investigations. Notably,
one should also investigate the behavior of resonance on
the radial trapping force. It may also prove instructive to
study the correlation of this phenomenon with the
strengths of the scattering cross sections and with field
energy densities.

E. Radial Force Efficiency

Let us label p a radial unit vector (in cylindrical coordi-
nates) between the beam axis and the particle center
(characterized by the azimuth angle ¢). The force along
this axis is given by

A Pl/\ Pl/\
FPEP‘F=_P'Qf=_P‘(Qr_Qa)~ (47)
Up Up

The p-Q, contribution to F, can be expressed as

Ko [ epe \ 12
P Qqa= ( 1
27L(0) \ ot/ r

- 2| ¢,—,0 fdQ' | A0
= (x) ¢,2, cos 0 20,4

im r? f (p-#)E, - E,dQ
—* Q

LX), 20, )] DT<¢,§,0)f(x>, (48)

where the primed angles are measured with respect to
the p axis as the polar direction and the rotation matrix of
the VSHs, D(a, 8, v), has the form

D@,y O }

0 D(a,B,7) 49)

D(a,B,y) = [

where «, 3,y are the Euler angles. The D(«a, 8, y) matrix
elements are described in detail in Ref. 20 and are block
diagonal in the orbital (multipole) quantum number, n:

E 1.6 Latex n,=1.59
R R — Silica n,=1.46 N
= . oo
S 1.2 AR
= : A A R
b | AN
o R L R R
084 A v e v il
oh P |"I. [ |‘.,".|' v ‘l ' I ::
£ / SRR A AN AT T
£ 0.4 ! R A VEVE WL
g : . "\ [y ARUERT I :
= 0.0 . . . :
0.0 0.5 1.0 1.5 2.0
Radius um

Fig. 3. Trapping positions for silica and latex spheres in water
in a y-polarized, s=1/m, fifth-order Davis beam, as a function of
the sphere radius.
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[D(t, B, W upnm = 8. explina)d\™,(Bexp(imy). (50)

The elements di:’nl are standard,”® and expressions for
them are given in Appendix B. The integral in brackets in
Eq. (48) is the same as that encountered in the axial force,
Eq. (39), and, again, yields Y [see Eq. (40)].

Defining then the matrix

A(6,4) = D(¢,6,0)YD¥(4,6,0), (51)

and carrying out analogous manipulations on p-Q,, we
find the final result for @, is

Q,=p Q=- fRe{aU“‘(kx)TTA(;—T, ¢)J(kx)a
a

+a'J(kx)A ( g, qﬁ) TJ(kx)a:|

-faTJ‘f(kx):rﬁAG,(ﬁ)TJ(kx)a, (52)
o

where ¢ is the azimuth angle of the particle position x.

In Fig. 4(a), we present the results of calculations of the
radial efficiency on a silica sphere with the same particle
and beam parameters as in Fig. 2 with a y-polarized
Davis beam. The particle displacements are restricted to
a plane perpendicular to the beam direction Z at the axial
trapping position determined from Fig. 2, z;,,=0.75 (um).
The radial efficiencies for displacements along the direc-
tion of polarization y and perpendicular to it, the X direc-
tion, are both displayed.

031 A e X axis at trapping
0. 24 y axis at trapping
0.11
o (@
-0.11
-0.21
-0.3 x v r r r .
3 2 1 0 1 2 3
m
0.0 PH
..... X axis at trapping
0.01] y axis at trapping
QU
o 0 (®)
-0.011
-0.02 r T "
-1 -0.5 0.5 1

0
p um
Fig. 4. (a) Radial trapping efficiency, @, for a R=2.1 (um) silica
as a function of the radial displacements along the X and y axes
at the trapping position, z;,,=0.75 (um). (b) Radial trapping effi-
ciency, @, for X and ¥ axis displacements of a R=0.2 (um) silica
sphere evaluated at its trapping position z;,=0.43 (um).
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At least for the beams and particle sizes studied here,
the axial asymmetry of the forces is essentially negligible,
as can be seen in the example of Fig. 4(a). For smaller
particles, the dipole approximation becomes increasingly
valid, and it predicts forces more sensitive to the gradient
of the axially asymmetric intensity, |E;|?, than the (axi-
symmetric) irradiance, I ." We confirm this expectation by
calculating in Fig. 4(b) the radial efficiency for a R
=0.2 (um) silica sphere at its trapping position, zi,
=0.43 (um). The axial asymmetry of the optical forces in
this situation is considerably more pronounced.

4. CONCLUSIONS

We have hoped to illustrate in this paper that optical
forces can be calculated by using rigorous electromagnetic
theory in arbitrary directions and for arbitrary particle
positions. The formulas that we have developed make use
of a unique partial-wave development of the incident
beam in an arbitrarily chosen coordinate system, which
allows us to choose the system origin such that it facili-
tates the partial-wave development. Calculations for
varying force directions employ the rotation matrices of
angular momenta, and the calculation of the force at dif-
ferent particle positions employs the translation-addition
theorem. Once one has developed the necessary computer
codes, the calculation of the optical forces is generally
quite rapid on modern computers and can be used to cal-
culate optical forces in regions that fall outside the do-
main of validity of commonly invoked approximations. We
feel that we have demonstrated the necessity of making
such efforts by illustrating the important variations in
trapping position that arise owing to geometric reso-
nances within the scattered particles.

APPENDIX A: SPHERICAL WAVES AND
VECTOR SPHERICAL HARMONICS

The three normalized VSHs, can be explicitly written in
terms of the associated Legendre functions:

Y, (6, ) = ')/nm\‘“’n(n + 1)P:ln(COS Aexpimp)r=Y,,,(6,P)r,
im R
Xnm(eﬂ ¢) = Yam ,_an(COS 0)9
sin 6

d .
- @P;’f(cos 0)&3] exp(im ) = [iu) (cos 6)6

—5(cos 6) (;S]exp(im b)),

d .
an(e’ ¢) = 7nm|:d_0an(COS 0)9

A

+ L_iP;'f(cos 0)(2’)] exp(im ) =[5, (cos 0)6
sin 0

+iu)(cos 6) dlexpim ), (A1)

where the normalization coefficients v,,, are defined
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@2n+1(n-m) |V2
Ynm = y . (A2)

4mn(n+1)(n +m)!

APPENDIX B: ADDITION THEOREM AND
ROTATION MATRICES

In optical tweezers containing a single particle, we need
only the translation-addition theorem as it applies to
regular partial waves. In the context of a given fixed co-
ordinate system and origin, the translation-addition
theorem?®"% takes the form of a translation-addition ma-
trix, J(kx), which permits the development of a partial-
wave basis centered on a point x [i.e., Rg{WVi(kr')}, r'
=r-x] into the regular spherical wave basis centered on
the system origin [Rg{V(kr)}; see Eq. (5)]:

Rg{V(kr)} = Rg{V'(kr")}J(kx), V[r, (B1)

where J is a matrix of the form

|:A(kx) B(kx)]
Jkx)=| _ _ . (B2)
B(kx) A(kx)

The matrix elements Amnm and E,%nm are normalized
versions of the matrix elements derived by Stein and
Crugan, 11:21:22.23

The d(nzn of Eq. (50) can be expressed in terms of the
Jacobi poiynomlals

(n+mz(n—m!}1’2

n+m)!(n-m)

IB m+u IB m-—u
X COSE) (Sin;) P;li—#m,mw)(cos 8.

(B3)

i (B) = {

APPENDIX C: BEAM IRRADIANCE

The power of an incident beam is calculated by one’s in-
tegrating the normal component of the complex incident
Poynting vector, S;, over any infinite surface intercepting
the beam. As in the text, we find it convenient to adopt for
this surface an infinite plane whose unit normal is paral-
lel to the beam direction, 1;. The calculation of beam
power then corresponds to an integration of the beam ir-
radiance, I(r) =S;-1u;, over this plane.

The fact that we use spherical coordinates for the wave
functions makes it difficult to perform an analytical inte-
gration of I(r) in an arbitrary z=constant plane (with @;
=z). It is possible, however, to perform analytic integra-
tions in the z=0 plane. With the field VSWF field devel-
opments of Eqs. (4) and (6), the irradiance for time-
harmonic fields is explicitly
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1
I(r) = ERe{Ef XH} %

1 £p€0 1/2 . .
=—- A2 > Ref-i[a)Rg{M,, (kr)}
2 Mp Mo n,m;vu

+any, RE(N,,,, (kr)}] X [a), Rg{N,,,(kr)}
+a), Rg{M,,(kr)}]- 2}. (C1)

The z=0 irradiance integral then corresponds to taking
f6=7/2 and integrating over ¢=0— 27 and r=0—co.

An inspection of Eq. (C1) shows that an analytic calcu-
lation of the beam power, Eq. (17), will involve four inte-
grals involving vector products of the VSWFs. The contri-
bution to the total beam power involving the coefficient
product anm ™, (denoted 5PMY) is zero because Rg{M,,,}
X Rg{M,,}-2=0 in the z=0 plane. The vector product in-
volving aym ?fl (denoted sPNM) does, however, have a non-
Zero contrlbutlon to the power 1ntegral of Eq. (17),
namely,

% 2m
SPNM = f rdr f d¢ Re{- i[an,,a),Rg{N,, (kr)}
0 0

X Rg{NVﬂ(kr)}]} : 29=7T/2

1/2
v Ep€p
gl ) 3

Mp Mo n,ym=+1

Reflaly[ali,}

a(0)a’(0) { f “Ialx)
X—————x{nm+1) | —[x,x)]dx+ v(v
m 0 X
Ju(x)
+1) f [xJn(x)]’ } (C2)

where the #)'(cos 6) are defined in Eq. (Al). One finds that
@ (0)z"'(0) with |m|=1 is nonzero only if both n and v are
odd. The analytic expression for #'(0)z’'(0) with both n
and v odd is

u, (0)u}'(0)
(- 12 ~— (n-=-2)!1(w-2)!!
=—\2n+1)(2v+1) .
4 n+D!@+D!!
(C3)

The Bessel function integral gives a particularly simple
result,

ijn(x) ) fw ) J(x)
nn+1) | —[g,@]de+v(v+1) | [xj,(x)]——dx
o ¥ 0 x

=12 (ch)

to yield finally
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Re[ [a]2NI§i1,m[a]§/¢I;+1,m}]

m

[7(0)] NP

SPNM =
2k*

p,g=0 m=x1
2p-1)!1(2g-1)!!
©Cp+2)!11(2g+2)!

-
X \(4p +3)(2g +3) (C5)
where N ., is an appropriate cutoff for the VSWF devel-
opment of the incident beam and 2p+1 and 2¢ +1 are odd
integers.

Finally, using the defining property of the beam shape
coefficients, g,,, of Eq. (16) and the expressions for the
[p]nlvf;,l:I of Egs. (15), we can write this sum directly in terms
of g,:

(Npax-1)/2

PN =1(0) - D Goprifage1(4D +3)
p,q=0

@2p-1!(2g-1!!
2p+2)!1(2g+2)!!

X (4q +3) (- 1)Pe. (C6)

Evaluating the remaining 6PMM and 6PN contributions
to the total beam power in a similar manner and appeal-
ing to the defining relation, Eq. (13), for the beam shape
normalization factor, ¢, yield the analytic expression for ¢
found in Eq. (20).

APPENDIX D: NORMALIZATION
CONDITION OF THE INCIDENT-FIELD
COEFFICIENTS

From the partial-wave expression for the irradiance, Eq.
(C1), one can determine the normalization condition for
the incident-field coefficients, Eq. (9), by noting that, as
r—0, only the Rg{Ny ,,(kr)} VSWFs are nonzero, and
that

Rg{N1,, (kr)} X Rg{Ny,(kr)}- 2

V21 (kr)[erjy (Br)]' Yy, (8K, (B)
= 122
V2lkrj (k)] j1 (k)Y 1 ,(B)X (F)
k2r2
[(krj (k7)) Z,,,(6,) - X,,.(6, p)F

k2

(D1)
Using the limits

X 2x
lim j;(x) = 3’ lim[x7,(x)]" = 3 (D2)

x—0 x—0
we obtain

1 2 1 . i
oo | d¢ X alalReNG, (0} X RNy (O} 2| ooriy
0 m,u=-1
8 N* M =m —m
=—i— E mas;,ay iy (0)u7'(0)
m==1
= a{alﬂ’-ﬂllv,l-l - 011\1,’1 a11vf1}y (D3)
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where we used #7(0) =—i\53/ 7. Putting this result into
Eq. (C1), we find that the irradiance at the system origin
takes the form

1 Ep€p vz 1 * *
1(0) = —( ) A2—Re{a11\{’_1a11vf_1 - all\{’l allv’ll}
2\ motto ™

1S(0)]

N M N* M
Re{al,—lal,—l —Qa11 a1,1}a (D4)

where we have invoked Eq. (8) for A2. Because I(0)
=[S(0)|, this leads to the normalization condition of Eq. (9)
for a,, ,.

As we have seen in the text, the resulting normaliza-
tion condition, Eq. (9), is trivial to implement, but it is
principally only of use when studying and comparing
beam profiles. One should keep in mind that the final for-
mulas for the optical forces, Egs. (43) and (52), are inde-
pendent of the normalization of the incident-beam coeffi-
cients.

The authors thank Gerard Tayeb for numerous helpful
discussions and encouragement.
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