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Optical properties of an eccentrically located pigment within an air bubble
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Abstract

We study the orientational average of the scattering efficiencies of scatterers composed by an eccentrically located spherical TiO2

pigment within an air bubble embedded in resin. This study is carried out within a general T-matrix formalism and takes into account
the contributions of the asymmetry parameter to the photon transport mean-free path. We perform a detailed comparison of the scattering
efficiency of this system with the one corresponding to the same pigment particle embedded directly in resin. We showed that placing a
TiO2 pigment eccentrically into an air bubble embedded in resin could not increase the scattering efficiency of the pigment in comparison to
a system consisting of the same fractional volume of pigment particles and the same fractional volume of air bubbles acting independently
within the same resin.
© 2003 Published by Elsevier B.V.
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1. Introduction

Opacity, also called hiding power, is an important optical
property of white-paint coatings. It describes their capabil-
ity to hide a substrate to the human eye. The main ingredi-
ent of a white coating is the pigment, and it usually consists
of TiO2 (rutile) crystallites embedded in a non-absorbing
resin. These crystallites are also non-absorbing in most of
the visible range, and scatter light very strongly. Therefore,
the incident light undergoes an efficient process of multiple
scattering, which in absence of absorption and for a suffi-
ciently thick film, will yield complete hiding, that is, all the
incident light will be eventually reflected backwards. The
requirement that the pigment should be non-absorbing is re-
lated to the whiteness of the coating. It is well known that
small additions of black pigment to a white paint will con-
tribute to a larger hiding, however, it will make it look gray.

A simple way to picture the interaction of light with
a white coating is to regard the multiple-scattering phe-
nomenon as the diffusion of photons through a random
arrangement of scatterers, and to borrow the concepts used
in kinetic theory of transport. Within this picture, the pho-
ton mean-free pathlS, is defined as the average travel
distance of the photon between two scattering events, and
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is inversely proportional to the number density of scattering
particles times their scattering cross-section. The thickness
of the system (coating film), measured in units of mean-free
paths is known as the optical thickness, and for the diffu-
sion picture to be valid the optical thickness should much
greater than one.

Consequently, in a coating of a given thickness, one could
enhance multiple scattering (photon transport) by minimiz-
ing, for example, the photon mean-free path, that is, by
preparing a concentrated mixture of strong scatterers. The
strength of the scattering is measured by the size of the
scattering cross-section per unit volume, and this usually in-
creases with the contrast in the index of refraction between
the pigment and the resin, and shows resonance peaks as a
function of the size and shape of the scatterers.

However, the transfer of radiation through multiple scat-
tering in a system of randomly located spheres depends not
only on the size of the scatterer (total cross-section) but also
on its angular distribution (differential cross-section). The
size parameter, defined as the circumference of the particle
divided by the wavelength of the incident radiation, deter-
mines the angular distribution of the scattering, and the ef-
fects of this angular distribution in the transport of photons
are taken into account through the so called asymmetry pa-
rameter. This parameter serves to define the photon transport
mean-free pathlT, and the transport cross-section, which
are the relevant parameters in transport theory. As the size
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parameter increases, the angular distribution of the scattering
is directed more towards the forward direction yielding an
increase in the transport mean-free path and a decrease in the
reflectance, for a given filling fraction of particles. Neverthe-
less, the reflectance will tend to 1 for a non-absorbing sys-
tem with thickness much larger than the transport mean-free
path, that is, all the scattered light will eventually come back.

For non-absorbing particles with size parameter of the
order or greater than 1, the transport scattering cross-section
per unit volume as a function of the radius of particles,
starts growing as the volume of the particles, then displays
a resonant structure and for large particles it decays as the
inverse of the radius. Therefore, each pigment should have
an optimum size to maximize opacity for a fixed wavelength.
In the case of rutile, the diameter turns out to be around
0.25�m. One can recall that in case of a colored paint,
absorption phenomena contribute also to opacity. To some
extent, the shape of the pigment particles can also have an
influence on the scattering and absorption properties of the
pigment. In this work, we will consider only white paint
with spherical pigment particles.

Due to the large value of the refractive index of rutile
(around 2.8) and its transparency in the visible range, ru-
tile particles with a size of 0.25�m are the most effective
pigment in white-paint fabrication. However, due to its high
cost, which can reach up to 40% of the total cost in a paint
formulation, the coating industry has been forced to inves-

Fig. 1. Different systems under study—air bubble and TiO2 pigment isolated into the resin: system of TiO2 pigment located at (a) the center of the air
bubble and (b) the inner surface of the air bubble, surrounded by the polymer resin.

tigate plausible alternatives for its total, or at least partial
substitution. Within this perspective, it has been proposed to
use air bubbles as a pigment. This kind of product already
exists in the market with the commercial name of Rhopaque.
In this product, the air bubbles are encapsulated in a hard
polymer resin. However, since the contrast between the in-
dex of refraction of air (=1) and the resin (around 1.5) is
smaller than the one between resin and rutile (around 2.8),
the air bubbles scatter light much less efficiently than rutile.

Consequently, the substitution of rutile by air cannot be
total, and its use is also limited by the total amount of solids
that a paint can sustain. Therefore, encapsulated air bubbles
are not the definitive solution for the substitution of rutile.
However, since rutile scatters more in air than in the resin
due to a higher contrast in index of refraction, it has been
suggested to place the rutile crystallites in the encapsulated
air bubble in order to increase their scattering efficiency.

The first theoretical study on this system was made by
Ross[1] and Kerker et al.[2] at the beginning of the seven-
ties. They calculated the scattering efficiency of system com-
posed by a spherical particle of rutile placed at the center of
spherical air bubble surrounded by a boundless medium of
polymer resin. They showed that due to the interference of
the fields radiated by the pigment and the induced charge at
the air–resin interface, the encapsulated pigment could never
scatter light with a greater efficiency than the optimum size
isolated pigment embedded directly into the resin (Fig. 1a).
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Nevertheless, Ross and Kerker pointed out two distinctive
phenomena: (i) for small size parameters of the air bubble
and some specific size of the pigment, the scattering effi-
ciency of the encapsulated system could come close to 0,
optically speaking the system would not be seen; they call
this invisibility, and (ii) for large size parameters of the air
bubble, and some specific sizes of the pigment, the encapsu-
lated system could scatter more than the air bubble and the
pigment isolated separately within the resin; they call this
a synergetic effect. However, due to the lack of theoretical
tools and computer power at that time, the calculations were
only performed placing the pigment right at the center of the
air bubble. Obviously, due to gravity or sticking forces, it is
not likely to expect that the TiO2 particle would be located
precisely at the center of the bubble.

In this work, we propose a more realistic study of the op-
tical parameters of the systems analyzed by Kerker assum-
ing that the pigment is stuck at the internal face of the air
bubble (Fig. 1b). Besides complicating the theoretical for-
malism by breaking the spherical symmetry of the concen-
tric system, one should evaluate the average of the optical
parameters over all possible positions of the pigment on the
internal surface of the air bubble. Indeed, this averaging pro-
cedure simply recognizes that the position of the pigment
cannot be controlled and would be randomly located on the
internal side of the air bubble.

Kerker also studied the strength of the synergetic effect,
by comparing the scattering properties of the concentric sys-
tem with those of a system composed of the same pigment,
and the same air bubble but acting independently within the
resin. This comparison has a limited validity in paint for-
mulation because in the systems that are compared the frac-
tional volume of the pigments are different. Indeed, since the
fraction of solids in paints is one of the main control param-
eters, the scattering properties of different pigments must
be compared in systems with equivalent fractional volumes.
Therefore, in our study here we compare the scattering prop-
erties of a system with the pigment eccentrically located on
the inner face of the air bubble, simply called the eccentric
system, with a system consisting of an identical volume of
pigment particles and a certain volume of air bubbles acting
independently within the resin; the volume of the air bubbles
is determined by demanding that the total volume occupied
by the scatterers (pigment plus air bubbles) is the same as
the volume occupied by the bubbles in the eccentric system.

2. Theory

2.1. Scattering by a homogeneous dielectric sphere

The analytical solution of Maxwell’s equations for the
scattering of a monochromatic plane wave by a spherical
particle, embedded in an infinite non-absorbing media, was
first developed by Mie[3]. It was later extended to an
arbitrarily shaped particle[4–6] using a T-matrix formal-

ism. The fundamental procedure in both approaches can be
summarized as follows: one considers the scattering of a
monochromatic plane wave of frequencyω and wavevector
k0 by a spherical dielectric particle of radiusa1 embedded
in a homogeneous non-absorbing matrix. The indices of
refraction of the sphere and the medium areN1 andN0.

The incident, scattered and internal fields, denoted by
Einc,1, Esca,1 and Eint,1, respectively, are expanded on the
vectorial spherical wave basis�(1)

σnm,1 and�
(3)
σnm,1 as:

Einc,1 = E0

2∑
σ=1

∞∑
n=1

n∑
m=−n

aσnm�
(1)
σnm,1(k0r) (1)

Esca,1 = E0

2∑
σ=1

∞∑
n=1

n∑
m=−n

fσnm�
(3)
σnm,1(k0r) (2)

Eint,1 = E0

2∑
σ=1

∞∑
n=1

n∑
m=−n

bσnm�
(1)
σnm,1(k1r) (3)

wherer is the position vector andE0 the amplitude of the
incident plane wave with wavelengthλ0 and wavevector
k0 = 2π/λ0N0. The superscripts (1) and (3) indicate that the
radial dependence of the corresponding vectorial waves is
either a spherical Bessel functionjn(kr) or a spherical Hankel
function h

(1)
n (kr), respectively. The subscript 1 means that

the origin of the basis is located at the geometrical center of
the sphere defined inO1.

Using the boundary conditions for the electromagnetic
fields at the surface of the sphere yields a linear system
of equations which couples the coefficientsaσnm, fσnm and
bσnm. Eliminating the internal field coefficientsbσnm, allows
one to express directly the unknown scattered-field coeffi-
cients fσnm as function of the known incident-field coeffi-
cientsaσnm, through a matrix relationf = T̄ · a, whereT̄ is
a diagonal matrix, usually called the T-matrix.

The elements of the T-matrix in this spherical represen-
tation depend on the radiusa1 of the sphere and the magni-
tude of the wavevectors in the matrixk0 and in the sphere
k1 = k0N1/N0 (seeAppendix A). They are independent of
the orientation and polarization of the incident wave, thus
they represent an intrinsic property of the scattering system.
Once the T-matrix and thefσnm coefficients are evaluated,
Eq. (2) yields an explicit analytical expression of the scat-
tered field. Also, with this procedure, quantities like the to-
tal scattering and extinction cross-sections or the elements
of the scattering matrix, can be calculated.

2.2. Scattering by a concentrically arranged dielectric
sphere

The analytical solution of the scattering by aconcentri-
cally arrangedsphere, i.e. a dielectric sphere containing a
concentric spherical inclusion of radiusa2, and complex in-
dex of refractionN2, was performed by Kerker[7]. The in-
cident and scattered fields can be expressed as inEqs. (1)
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and (2), while the general form of the electric field in the
region internal to the host and external to the inclusion is
a superposition of incoming and outgoing spherical waves.
The analytical expression for the fieldEint,1 in this region
is thus given by

Eint,1 = E0

2∑
σ=1

∞∑
n=1

n∑
m=−n

× [eσnm�
(3)
σnm,1(k1r) + gσnm�

(4)
σnm,1(k1r)] (4)

where the superscript (4) means that the radial dependence
of the corresponding wave depends on the spherical Hankel
functionh

(2)
n (kr).

The internal field of the inner inclusion has the same kind
of expansion as that given inEq. (3), but taking into account
the fact that the wavevector in the inclusion is defined by
k2 = k0N2/N0, that is,

Eint,2 = E0

2∑
σ=1

∞∑
n=1

n∑
m=−n

pσnm�
(1)
σnm,2(k2r) (5)

where the subscript 2 means that the coordinate system has
its origin located at the geometrical center of the inclusion
defined inO2. In this case, it does not add any further com-
plications because the center of the inclusionO2 coincides
with the center of the sphereO1.

Using the boundary condition for the fields on the host
and inclusion interfaces, yields two linear systems of cou-
pled equations involving the coefficientsaσnm, fσnm, eσnm,
gσnm andpσnm. Solving these linear systems, one obtains the
matrix relationf = T̄ · a, whereT̄ is the diagonal T-matrix
of the concentricsystem. The analytical expressions of its
elements are given inAppendix A.

2.3. Scattering by an sphere containing a spherical
eccentric inclusion

The first study on the scattering of light by a host sphere
containing an eccentric spherical inclusion were first per-
formed by Borghese et al.[8], and later on by Videen et al.
[9] and Ngo et al.[10]. In those studies, the position of the
inclusion was limited to lie along theOzaxis. We extended
this analytical solution to an arbitrary location of the inclu-
sion using a T-matrix approach[11]. Below, we recall briefly
the fundamental equations of this formalism.

The incident, scattered and internal fields of the host
sphere, denoted byEinc,1, Esca,1 andEint,1, respectively, are
expanded in the coordinate system centered inO1, yielding
the expressions given byEqs. (1), (2) and (4). The difficulty
now is that the inclusion is located at an arbitrary position
denoted by (r0, θ0, φ0) in the spherical coordinate system of
the host. In order to impose boundary conditions at the inter-
face of the inclusion, it is necessary to expand the incident,
scattered and internal fields of the inclusion in a second basis
centered atO2. The internal field of the inclusion, however,

has the expression given byEq. (5), and the expression of
the field external to the inclusion, which is a superposition
of incoming and outgoing spherical waves, is now given by
the expression:

Eext,2 = E0

2∑
σ=1

∞∑
n=1

n∑
m=−n

× [rσnm�
(3)
σnm,2(k1r) + tσnm�

(4)
σnm,2(k1r)] (6)

Applying the boundary conditions at the interfaces of the
inclusion and the host, yields two linear systems of cou-
pled equations between therσnm, tσnm, pσnm andaσnm, fσnm,
eσnm, gσnm coefficients. The first set of equations leads to
r = Q̄ · t, where the coefficients of thēQ matrix are given
in Appendix A. It is clear thatEext,2 andEint,1 describe the
field in the same region of space, and in fact they describe
the same fields, but with field expansions in two different
basis sets. In order to replacerσnm by eσnm andtσnm by gσnm

one must express the basis vector of the inclusion�
(q)

σnm,2
in terms of the basis vector of the principal coordinate sys-
tem, �(q)

σnm,1. This translation is performed with the aid of
the translation theorem of the vectorial spherical wave func-
tions introduced by Stein[12]. Truncating now the infinite
multipole expansion to the firstn = Nmax orders, and af-
ter some algebra, one finds that the two linear systems lead
to one set of 8Nmax(Nmax + 2) equations which relate the
components of the vectorsa, f andt corresponding to the in-
cident, scattered and internal field, respectively. Eliminating
the components of the internal field, one finds

f = D̄ · M̄−1 · a ≡ T̄ · a (7)

whereT̄ is now the T-matrix of the entire system composed
of a dielectric spherical particle containing a spherical di-
electric eccentric inclusion. The matricesM̄ andD̄ are de-
fined bya = M̄ · b andf = D̄ · b, and explicit expressions
for their components are given inAppendix A.

We remind the reader that although the T-matrix for-
malism involves an infinite expansion of the electric and
magnetic fields on the partial spherical wave basis, for fi-
nite sized particles, only a finite number of coefficients are
non-negligible. Therefore, the infinite-series expression for
the electromagnetic fields can be truncated at an orderNmax,
which is defined as the maximum value ofn after which the
series converges. The order of truncation depends on the size
parameter of the particle, and Wiscombe’s criterion[13] is
used to give an upper bound forNmax.

2.4. Scattering parameters

The scattering parameters of an homogeneous, concentric
or eccentric system can be evaluated once the T-matrix and
the scattering fields coefficients of the systems are known.
One of the main parameter in scattering theory is the scat-
tering cross-sectionCsca, which measures the strength of the
scattering process, and is defined as the total power scattered
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by the sphere over the incident flux.Csca has the units of
area, and for particles large with respect to the wavelength of
the incident direction, it has a limiting value of twice the ge-
ometrical projected area. The analytical expression forCsca
in the T-matrix formalism is given by

Csca = 1

k2
0

2∑
σ=1

∞∑
n=1

n∑
m=−n

|fσnm|2 (8)

The opacity of a white coating, however, depends not only on
the strength of the scattering process, but also on the angular
distribution of the scattered radiation. A parameter that helps
to measure the magnitude of the angular distribution is the
asymmetry parameterg, defined as

g = 1

Csca

∫ 2π

0

∫ π

0

dCsca

dΩ
cosθ dΩ (9)

where dCsca/dΩ is the differential scattering cross-section
(scattering cross-section per unit solid angle). One can see
thatg takes values from 1 to−1, corresponding to the lim-
iting cases where all the radiation is either scattered in the
forward or in the backward direction, respectively, while
isotropic scattering hasg = 0. In our formalism the ana-
lytical expression of the asymmetry parameter inEq. (9) is
given by

g = 1

k2
0Csca

Re[f† · �̄ · f ] (10)

where the matrix̄� has the form

�̄ =
[
Ξ Θ

Θ Ξ

]

with

Θnm,νµ = m

n(n + 1)
δm,µδn,ν,

Ξnm,νµ = iδm,µ√
(2n + 1)(2ν + 1)

×
(
δn−1,ν

n

√
(n2 − 1)(n2 − m2)

− δν,n+1

ν

√
(ν2 − 1)(ν2 − m2)

)
(11)

The result of Eq. (10) is valid only when the incident
wavevector is parallel to theOz axis. In order to charac-
terize the general scattering efficiency of a pigment, one
invokes the scattering coefficientS, defined as the inverse
of the transport mean-free path:

S = fps ≡ fp
Csca

v
(1 − g) (12)

wherefp is the volume filling fraction of the pigment andv
the volume of a single pigment inclusion. One can see that
for a fixed volume concentration of pigment, the optimum
scattering coefficientS can be attained by simultaneously
maximizingCsca/v and minimizingg.

In a previous work[11], we studied an eccentrically lo-
cated TiO2 pigment within an air bubble but our calculation
was restricted only to the average scattering cross-sections
per unit volume. As mentioned inSection 1, however, the to-
tal scattering cross-section gives limited information on the
light transport within the scattering system, since this quan-
tity by itself does not take into account the angular distribu-
tion of the scattered intensity, which is taken into account
by g. Furthermore, a relevant study of the usefulness of the
eccentric system in the formulation of paints, must consider
the properties of the scattering coefficientSaveraged over all
possible orientations related to the location of the pigment.

In order to avoid the difficulties related to an analytical
derivation of the orientational average〈s〉θ of the scatter-
ing parameter[6], which involves the rotational theorem of
the spherical wave functions, we perform instead a straight-
forward numerical average. We first evaluate the scattering
coefficient for different locations of the inclusion, but since
the average should be independent ofφ, we takeφ = 0,
and numerically integrate over different values ofθ. We then
perform the average over all these different locations, and
also over two orthogonal field polarizations, i.e.

〈S〉θ = 1

2V

∑i=N
i=1

∑j=2
j=1C

i,j
sca(1 − gi,j) sinθi 'θ∑i=N

i=1 sinθi 'θ
(13)

wherej = 1,2 for TE and TM polarizations, respectively.
C

i,j
sca and gi,j are, respectively, the scattering cross-section

and the asymmetry parameter for a fixed locationi of the
inclusion and a fixed polarizationj of the incident field.
Each term in the sum is weighted by the factor sinθ, to take
into account the assumption of equal probability at each
azimuthal angle.

In order to check the numerical accuracy ofEq. (13), we
compare the analytical orientational average of the scatter-
ing cross-section given by〈Csca〉θ = 2π Re{Tr[T̄† · T̄]}/k2

0
[14], with the corresponding numerical average for different
values of'θ, that is,

〈Csca〉θ = 1

2

∑i=N
i=1

∑j=2
j=1C

i,j
scasinθi'θ∑i=N

i=1 sinθi 'θ
(14)

We found that for'θ = 10◦, the numerical and analytical
evaluations of〈Csca〉θ had similar values up to the fifth deci-
mal figure. We presume that the evaluation of〈S〉θ in Eq. (13)
should be as accurate as〈Csca〉θ for the same value of'θ.

3. Results and discussion

First we display the value of the orientation average of
the scattering parameter〈S〉θ, given in Eq. (13), as a func-
tion of the radius of the air bubble and the filling fractionp
of the TiO2 pigment. We have chosen the values of the ra-
dius to run between 0.116 and 0.323�m, and the values of
p to vary between 0 (pure air bubble) and 1 (pure pigment).
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Throughout this study, the wavelength of the incident radi-
ation is taken to be 0.546�m. The indices of refraction for
air, resin and TiO2 are taken as 1.0, 1.51 and 2.97, respec-
tively. These latter values are the one taken by Ross[1].
Fig. 2a and b represent the scattering efficiencies of the ec-
centric and concentric systems, whereasFig. 2c represents
the system composed of the TiO2 pigment particles and the
air bubbles acting independently. We will refer to these sys-
tems by〈Sa〉θ, 〈Sb〉θ and〈Sc〉θ, respectively. The scattering
efficiency of the isolated TiO2 pigment embedded in the
resin reaches its maximum of 17.84�m−1 for radii between
0.090 and 0.092�m.

The first important observation of this work is that the
encapsulated eccentric pigment never scatters light with a
higher efficiency than an optimum-sized pigment particle
embedded directly in the resin, as in the case of the concen-
tric system. Moreover,〈Sa〉θ exhibits a dramatic decrease
compared to〈Sc〉θ throughout all values ofp and r1 under
study. This decrease becomes stronger as the size of the air
bubble increases. Also, when the size of the inclusion is
close to the optimum size of the a single TiO2 pigment par-
ticle, the scattering efficiency of the concentrically arranged
system is increased, but it is still quite small compared to
the efficiency ofSc.

In order to give a more detailed account of the quantitative
difference of the scattering efficiencies of the three different
systems mentioned above,Fig. 2d and e display a 2D plot of
a cut in the 3D graphs shown inFig. 2a–c. The radius of the
air bubble is fixed at 0.122 and 0.300�m, respectively. One
can clearly see that the concentric and eccentric systems have
a very similar variation, independently of the dimension of
the air bubble, but with an magnitude much lower than the
optimum size of the TiO2 pigment.

The faint scattering efficiency of the eccentric system can
be mainly attributed to two causes. The first, is that the size
of the air bubble is smaller than the wavelengthλ0 in air, so
there is actually no wave propagation within the air bubble.
The main concept of the study was taken from the fact that
TiO2 pigment have a better scattering efficiency in air than
in a polymeric resin. However, this result was obtained by
assuming that the pigment is embedded in a infinite medium.
Here, this is clearly not the case. Furthermore, the complex-
ity of the fields in encapsulated region results in destruc-
tive interferences between the incoming and outgoing fields.
The consequence of these destructive interferences is weakly
scattered fields which leads to a small scattering efficiency
of a coated system of spheres. The second explanation is
that in order to optimizeS, one should minimize g and op-
timize Csca/V. However, it is well known that at least for
spherical particles, as the size parameter increases,Csca/V
decreases andg increases, resulting in a small scattering ef-
ficiency amplitude of the composite system.

The other important result of this work is the analysis of
the effect of the translation of the inclusion from the center
of the air bubble to its inner interface. ComparingFig. 2a
and b, one can see that both systems have relatively the

same scattering efficiency. We represented inFig. 3 the dif-
ferent zones of scattering efficiency for each system, as a
function of the radius of the air bubbler1 and the filling
fractionp. The black surfaces represent the zones where the
concentrically arranged system has a greater scattering ef-
ficiency than the eccentric system, while the white zones
represent the contrary. One can see that the eccentric pig-
ment has, on the average, a largerC than the concentric
system.

Indeed, the electromagnetic interactions between the in-
clusion and the air bubble increases as the pigment comes
closer to the host surface. This can be shown by compar-
ing the truncation index of the electromagnetic fields that
is needed in order to obtain a numerical convergence of the
scattering efficiency. Let us takeNmax to be the truncation
value of then summation, for the concentric system, that is
necessary to describe the scattering for a fixed size param-
eter of the air bubble and a fixed filling fractionp of the
inclusion. Then, the corresponding truncation index neces-
sary to describe the eccentric system, denoted byN ′

max, will
becomeN ′

max > Nmax. One should notice that an increase
in the interactions does not always reflect an increase of the
overall scattering efficiency, but on the average this is the
case.

The concentrically arranged system has a larger〈S〉θ
mainly when the size of the inclusion is close to the opti-
mum size of TiO2 in the resin. This could be due to modes
of resonance that exist around this size and which can be
better amplified when the inclusion is placed at the center of
the host cavity. When the inclusion is shifted, the symmetry
is broken, and the effect disappears.

The fact that both systems have a similar value of their
scattering efficiency can be explained by the following rea-
soning: for a small value ofp, both configurations are very
different because the difference between the position of the
inclusion in the concentric and eccentric system is very large
(r0 is comparable tor1). This change of configuration could
create a large difference in the scattering efficiency. How-
ever, the size of the particle is so small that, independent of
the position of the inclusion, the scattering efficiencies of
both system are close to the scattering efficiency of the air
bubble alone, and do not greatly differ from one another.
Whenp has a value close to unity, the size of the inclusion
is comparable to the size of air bubble and the effect of the
pigment should be considerable. However, in this case the
shift in the position of the inclusion between both configu-
rations is quite small, and the scattering efficiency of both
systems remains comparable.

The last important result of this work is the study of the
“synergetic effects” observed by Kerker. We recall that these
effects appear when the concentric system has a larger scat-
tering efficiency than the system with the air bubble and the
pigment particles acting independently within the resin. One
should notice that those effects are linked to the parameter
〈S〉θ, and they no longer exist if one compares the differ-
ences inCsca/V in our study.
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Fig. 2. Orientational averaged scattering efficiency, noted: (a)〈Sa〉θ of the system composed by the TiO2 pigment located at the inner interface of the air
bubble; (b)〈Sb〉θ of the system composed by the TiO2 pigment located at the center of the air bubble; (c)〈Sc〉θ of the system composed by the isolated
TiO2 pigment and the air bubble as function of the radius of the air bubble (r1) and the filling fraction (r1/r2)3. (d) and (e) Orientational averaged
scattering efficiency of the systems composed by: (a) the TiO2 pigment located at the inner interface of the air bubble, (b) the TiO2 pigment located at
the center of the air bubble, (c) the isolated TiO2 pigment and the isolated air bubble, as function of the filling fractionp = (r1/r2)

3. The radius of the
air bubble is constant and set tor1 = 0.122 and 0.300�m, respectively.
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Fig. 3. Relative values〈Sb〉/〈Sc〉 of the scattering efficiency as a function
of the radius of the air bubbler1 and the filling fractionp. The black
surfaces represent the zones where the concentric system has a greater
scattering efficiency than the eccentric system (〈Sb〉θ > 〈Sa〉θ), while the
white zones represent the contrary (〈Sb〉θ < 〈Sa〉θ).

The synergetic phenomena start at relatively large sizes of
the air bubble (a ≈ 0.280�m) and for large filling fractions
(p ≈ 0.65) when the eccentric and the system composed by
the pigment particles and air bubbles acting independently
have a very similar scattering efficiency. For smaller sizes
of the air bubble and smaller value of the filling fractionp,
the difference between the〈S〉θ for both system is huge, and
there is no synergetic effect. We have plotted the relative
values〈Sb〉/〈Sc〉 as function of the radius of the air bubble and
the filling fractionp (Fig. 4) and the radius of the inclusion
r2 (Fig. 5) at which the synergetic effect occurs. The size
of the circles in the plot is proportional to the amplitude of
〈Sb〉/〈Sc〉 which has a maximum value of 1.13 in our range

Fig. 4. Relative values〈Sb〉/〈Sc〉 as function of the radius of the air bubble
and the filling fractionp at which the synergetic effect occurs. The size
of the circles is proportional to the amplitude of〈Sb〉/〈Sc〉 which has a
maximum value of 1.13.

Fig. 5. Relative values〈Sb〉/〈Sc〉 as function of the radius of the air bubble
and the radius of the inclusionr2 at which the synergetic effect occurs.
The size of the circles is proportional to the amplitude of〈Sb〉/〈Sc〉 which
has a maximum value of 1.13.

of calculation. One can see that there is a certain correlation
between the relative size of the air bubble and the pigment
for the synergetic effects. However, in order to make a more
complete study of this phenomenon, one should increase the
range of the size parameters under study.

4. Conclusion

We showed that placing a TiO2 pigment eccentrically into
an air bubble embedded in resin could not increase the scat-
tering efficiency of the pigment in comparison to a system
consisting of the same fractional volume of pigment parti-
cles and the same fractional volume of air bubbles acting
independently within the same resin. In this case, one could
not assume that the TiO2 pigment was embedded in an infi-
nite system. On the contrary, the path length covered by the
wave in the air bubble was smaller than the extension of the
wave itself. Consequently, the comparison with the scatter-
ing efficiency of a TiO2 pigment in air cannot be applied.
For a legitimate comparison in the scattering efficiency of
these two systems one adjusts the filling fraction of the air
bubbles so both systems have the same filling fraction of
scatterers. We also showed that the scattering efficiency of
the eccentric system was quite similar to the concentric sys-
tem where the inclusion is placed at the center of the air
bubble. We explained this result by showing that optically
speaking both configurations were never very different.

Our study was performed for a fixed wavelength of the
incident field and a limited range of radius for the air bub-
ble. One could wonder if this range of sizes is representa-
tive enough. We showed that at least for spherical system,
it seems that there is no need to extend the study for larger
size of the air bubble because the scattering cross-section
by unit volume will decrease proportionally while the asym-
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metry parameter will increase. Also, extending the study to
different wavelengths of the incident field to all the visible
range, could probably change the different modes of reso-
nance of the eccentric systems, changing the number and
positions of the synergetic effects. However, the gap be-
tween the scattering efficiency of the eccentric system, and
the optimum size of the TiO2 pigment directly into the resin
is so large that it not likely yield a change in the general
tendency.

Finally, we mention that throughout this work, we have
evaluated the scattering efficiency of independent scatter-
ers. It is now well known that cooperative effects between
scatters in a dense medium tends to decrease the scattering
efficiency of the sum of the individual particles, thus the ex-
trapolation of these results to non-isolated systems should
be made with precaution.
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Appendix A. Analytical T-matrix coefficients

In the following formulae, we useψn(x) = xjn(x), ξ
(1)
n =

xh(1)n (x), and a prime applied to these functions denotes a
derivative with respect to the argumentx.

A.1. Homogeneous spherical dielectric particle

The T-matrix is of the form[
T 1

HS 0

0 T 2
HS

]

whereT1 and T2 are diagonal matrices whose matrix ele-
ments are given by [T 1

HS]nm,νµ = δnνδmµT
1
HS,n, [T 2

HS]nm,νµ =
δnνδmµT

2
HS,n, with

T 1
HS,n =

[
k1ψn(k2a2)ξ

′(2)
n (k1a2)−k2ξ

(2)
n (k1a2)ψ

′
n(k2a2)

k2ξ
(1)
n (k1a2)ψ′

n(k2a2)−k1ψn(k2a2)ξ′
n
(1)(k1a2)

]
,

T 2
HS,n =

[
k1ξ

(2)
n (k1a2)ψ

′
n(k2a2) − k2ψn(k2a2)ξ

′(2)
n (k1a2)

k1ψn(k2a2)ξ
′(1)
n (k1a2) − k1ξ

(1)
n (k1a2)ψ′

n(k2a2)

]

Here,a2 is the radius of the sphere andk1 andk2 = k1N2/N1
are the magnitude of the wavevectors in the matrix and in
the sphere, respectively.

A.2. Spherical dielectric particle containing a concentric
dielectric spherical inclusion

The T-matrix is of the form[
T 1

CS 0
0 T 2

CS

]

whereT1 and T2 are diagonal matrices whose matrix ele-
ments are given by [T 1

CS]nm,νµ = δnνδmµT
1
CS,n, [T 2

CS]nm,νµ =
δnνδmµT

2
CS,n, with

T 1
CS,n =

[
B

(1)
n − B

(2)
n

B
(3)
n − B

(4)
n

]
, T 2

CS,n =
[
C

(1)
n − C

(2)
n

C
(3)
n − C

(4)
n

]

and

B(1)
n = k1ξ

′(2)
n (k1a2)[T

1
HSξ

(1)
n (k2a2) + ξ(2)n (k2a2)],

B(2)
n = k2ξ

(2)
n (k1a2)[T

1
HSξ

′(1)
n (k2a2) + ξ′(2)

n (k2a2)],

B(3)
n = k2ξ

(1)
n (k1a2)[T

1
HSξ

′(1)
n (k2a2) + ξ′(2)

n (k2a2)],

B(4)
n = k1ξ

′(1)
n (k1a2)[T

1
HSξ

(1)
n (k2a2) + ξ(2)n (k2a2)]

C(1)
n = k1ξ

(2)
n (k1a2)[T

2
HSξ

′(1)
n (k2a2) + ξ′(2)

n (k2a2)],

C(2)
n = k2ξ

′(2)
n (k1a2)[T

2
HSξ

(1)
n (k2a2) + ξ(2)n (k2a2)],

C(3)
n = k2ξ

′(1)
n (k1a2)[T

2
HSξ

(1)
n (k2a2) + ξ(2)n (k2a2)],

C(4)
n = k1ξ

(1)
n (k1a2)[T

2
HSξ

′(1)
n (k2a2) + ξ′(2)

n (k2a2)]

A.3. Spherical dielectric particle containing an eccentric
dielectric spherical inclusion

The general expressions for theM̄ andD̄ matrix elements
are given by:

M̄ =
[
M̄

nm(1,1)
νµ M̄

nm(1,2)
νµ

M̄
nm(2,1)
νµ M̄

nm(2,2)
νµ

]
and

D̄ =
[
D̄

nm(1,1)
νµ D̄

nm(1,2)
νµ

D̄
nm(2,1)
νµ D̄

nm(2,2)
νµ

]
(A.1)

where

M̄nm(1,1)
νµ

= Anm(1)
νµ

[
Z

(c)
νn ξ

(1)
n (k0a1) − (k0/k1)Z

(a)
νn ξ

′(1)
n (k0a1)

ψ′
n(k0a1)ξ

(1)
n (k0a1) − ψn(k0a1)ξ′

n
(1)(k0a1)

]
,

M̄nm(1,2)
νµ

= Bnm(1)
νµ

[
Z

(d)
νn ξ

(1)
n (k0a1) − (k0/k1)Z

(b)
νn ξ

′(1)
n (k0a1)

ψ′
n(k0a1)ξ

(1)
n (k0a1) − ψn(k0a1)ξ′

n
(1)(k0a1)

]
,

M̄nm(2,1)
νµ

= Bnm(1)
νµ

[
Z

(a)
νn ξ

′(1)
n (k0a1) − (k0/k1)Z

(c)
νn ξ

(1)
n (k0a1)

ψn(k0a1)ξ
′(1)
n (k0a1) − ψ′

n(k0a1)ξ′
n
(1)(k0a1)

]
,
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M̄nm(2,2)
νµ

= Anm(1)
νµ

[
Z

(b)
νn ξ

′(1)
n (k0a1) − (k0/k1)Z

(d)
νn ξ

(1)
n (k0a1)

ψn(k0a1)ξ
′(1)
n (k0a1) − ψ′

n(k0a1)ξ′
n
(1)(k0a1)

]

(A.2)

and

D̄nm(1,1)
νµ

= Anm(1)
νµ

[
(k0/k1)Z

(a)
νn ψ′

n(k0a1) − Z
(c)
νn ψn(k0a1)

ξ
(1)
n (k0a1)ψ′

n(k0a1) − ξ
′(1)
n (k0a1)ψn(k0a1)

]
,

D̄nm(1,2)
νµ

= Bnm(1)
νµ

[
(k0/k1)Z

(b)
νn ψ′

n(k0a1)−Z
(d)
νn ψn(k0a1)

ξn(1)(k0a1)ψ′
n(k0a1)−ξ

′(1)
n (k0a1)ψn(k0a1)

]
,

D̄nm(2,1)
νµ

= Bnm(1)
νµ

[
(k0/k1)Z

(c)
νn ψn(k0a1) − Z

(a)
νn ψ′

n(k0a1)

ξ′
n
(1)(k0a1)ψn(k0a1) − ξ

(1)
n (k0a1)ψ′

n(k0a1)

]
,

D̄nm(2,2)
νµ

= Anm(1)
νµ

[
(k0/k1)Z

(d)
νn ψn(k0a1) − Z

(b)
νn ψ′

n(k0a1)

ξ′
n
(1)(k0a1)ψn(k0a1) − ξ

(1)
n (k0a1)ψ′

n(k0a1)

]

(A.3)

and

Z(a)
νn = [T 1

HS,νξ
(1)
n (k1a1) + ξ(2)n (k1a1)],

Z(b)
νn = [T 2

HS,νξ
(1)
n (k1a1) + ξ(2)n (k1a1)],

Z(c)
νn = [T 1

HS,νξ
′(1)
n (k1a1) + ξ′(2)

n (k1a1)],

Z(d)
νn = [T 2

HS,νξ
′(1)
n (k1a1) + ξ′(2)

n (k1a1)] (A.4)

TheAνµ(q)
nm andBνµ(q)

nm are the translation coefficients needed
for the transformation from theith to thekth coordinate sys-
tem [12]. They depend on the position vector,rki, between

the centers of the two spheres, and the amplitude of the local
medium wavevector,k1.
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