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Abstract

We study the orientational average of the scattering efficiencies of scatterers composed by an eccentrically located spherical TiO
pigment within an air bubble embedded in resin. This study is carried out within a general T-matrix formalism and takes into account
the contributions of the asymmetry parameter to the photon transport mean-free path. We perform a detailed comparison of the scatterir
efficiency of this system with the one corresponding to the same pigment particle embedded directly in resin. We showed that placing ¢
TiO, pigment eccentrically into an air bubble embedded in resin could not increase the scattering efficiency of the pigment in comparison to
a system consisting of the same fractional volume of pigment particles and the same fractional volume of air bubbles acting independentl
within the same resin.
© 2003 Published by Elsevier B.V.
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1. Introduction is inversely proportional to the number density of scattering
particles times their scattering cross-section. The thickness
Opacity, also called hiding power, is an important optical of the system (coating film), measured in units of mean-free
property of white-paint coatings. It describes their capabil- paths is known as the optical thickness, and for the diffu-
ity to hide a substrate to the human eye. The main ingredi- sion picture to be valid the optical thickness should much
ent of a white coating is the pigment, and it usually consists greater than one.
of TiO (rutile) crystallites embedded in a non-absorbing  Consequently, in a coating of a given thickness, one could
resin. These crystallites are also non-absorbing in most of enhance multiple scattering (photon transport) by minimiz-
the visible range, and scatter light very strongly. Therefore, ing, for example, the photon mean-free path, that is, by
the incident light undergoes an efficient process of multiple preparing a concentrated mixture of strong scatterers. The
scattering, which in absence of absorption and for a suffi- strength of the scattering is measured by the size of the
ciently thick film, will yield complete hiding, that is, all the ~ scattering cross-section per unit volume, and this usually in-
incident light will be eventually reflected backwards. The creases with the contrast in the index of refraction between
requirement that the pigment should be non-absorbing is re-the pigment and the resin, and shows resonance peaks as a
lated to the whiteness of the coating. It is well known that function of the size and shape of the scatterers.
small additions of black pigment to a white paint will con- However, the transfer of radiation through multiple scat-
tribute to a larger hiding, however, it will make it look gray. tering in a system of randomly located spheres depends not
A simple way to picture the interaction of light with  only on the size of the scatterer (total cross-section) but also
a white coating is to regard the multiple-scattering phe- on its angular distribution (differential cross-section). The
nomenon as the diffusion of photons through a random size parameter, defined as the circumference of the particle
arrangement of scatterers, and to borrow the concepts usedlivided by the wavelength of the incident radiation, deter-
in kinetic theory of transport. Within this picture, the pho- mines the angular distribution of the scattering, and the ef-
ton mean-free paths, is defined as the average travel fects of this angular distribution in the transport of photons
distance of the photon between two scattering events, andare taken into account through the so called asymmetry pa-
rameter. This parameter serves to define the photon transport
* Corresponding author. mean-free patht, and the transport cross-section, which
E-mail addressjcauger@cip.org (J.-C. Auger). are the relevant parameters in transport theory. As the size
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parameter increases, the angular distribution of the scatteringigate plausible alternatives for its total, or at least partial
is directed more towards the forward direction yielding an substitution. Within this perspective, it has been proposed to
increase in the transport mean-free path and a decrease in thase air bubbles as a pigment. This kind of product already
reflectance, for a given filling fraction of particles. Neverthe- exists in the market with the commercial name of Rhopaque.
less, the reflectance will tend to 1 for a non-absorbing sys- In this product, the air bubbles are encapsulated in a hard
tem with thickness much larger than the transport mean-freepolymer resin. However, since the contrast between the in-
path, that is, all the scattered light will eventually come back. dex of refraction of air £1) and the resin (around 1.5) is
For non-absorbing particles with size parameter of the smaller than the one between resin and rutile (around 2.8),
order or greater than 1, the transport scattering cross-sectiorthe air bubbles scatter light much less efficiently than rutile.
per unit volume as a function of the radius of particles,  Consequently, the substitution of rutile by air cannot be
starts growing as the volume of the particles, then displays total, and its use is also limited by the total amount of solids
a resonant structure and for large particles it decays as thethat a paint can sustain. Therefore, encapsulated air bubbles
inverse of the radius. Therefore, each pigment should haveare not the definitive solution for the substitution of rutile.
an optimum size to maximize opacity for a fixed wavelength. However, since rutile scatters more in air than in the resin
In the case of rutile, the diameter turns out to be around due to a higher contrast in index of refraction, it has been
0.25um. One can recall that in case of a colored paint, suggested to place the rutile crystallites in the encapsulated
absorption phenomena contribute also to opacity. To someair bubble in order to increase their scattering efficiency.
extent, the shape of the pigment particles can also have an The first theoretical study on this system was made by
influence on the scattering and absorption properties of theRoss[1] and Kerker et al[2] at the beginning of the seven-
pigment. In this work, we will consider only white paint ties. They calculated the scattering efficiency of system com-
with spherical pigment particles. posed by a spherical particle of rutile placed at the center of
Due to the large value of the refractive index of rutile spherical air bubble surrounded by a boundless medium of
(around 2.8) and its transparency in the visible range, ru- polymer resin. They showed that due to the interference of
tile particles with a size of 0.2bm are the most effective  the fields radiated by the pigment and the induced charge at
pigment in white-paint fabrication. However, due to its high the air-resin interface, the encapsulated pigment could never
cost, which can reach up to 40% of the total cost in a paint scatter light with a greater efficiency than the optimum size
formulation, the coating industry has been forced to inves- isolated pigment embedded directly into the resiig( 1a).

[] air
Pigment
@) D Polymer resin

(b)

Fig. 1. Different systems under study—air bubble and  Tiflgment isolated into the resin: system of }i@Pigment located at (a) the center of the air
bubble and (b) the inner surface of the air bubble, surrounded by the polymer resin.
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Nevertheless, Ross and Kerker pointed out two distinctive ism. The fundamental procedure in both approaches can be
phenomena: (i) for small size parameters of the air bubble summarized as follows: one considers the scattering of a
and some specific size of the pigment, the scattering effi- monochromatic plane wave of frequeneyand wavevector
ciency of the encapsulated system could come close to 0,kg by a spherical dielectric particle of radias embedded
optically speaking the system would not be seen; they call in a homogeneous non-absorbing matrix. The indices of
this invisibility, and (ii) for large size parameters of the air refraction of the sphere and the medium BieandNo.
bubble, and some specific sizes of the pigment, the encapsu- The incident, scattered and internal fields, denoted by
lated system could scatter more than the air bubble and theEinc 1, Esca1 and Eint 1, respectively, are expanded on the
pigment isolated separately within the resin; they call this vectorial spherical wave baS‘E(alr?m , and \yff?gm L as:
a synergetic effect. However, due to the lack of theoretical ) s
tools and computer power at that time, the calculations were Einci = EOZZ Z aanm‘l’f,ln)ml(kor)

only performed placing the pigment right at the center of the (1)

air bubble. Obviously, due to gravity or sticking forces, it is o=ln=lm=-n

not likely to expect that the Ti@particle would be located 2 0o n

precisely at the center of the bubble. Escal = EOZZ Z f(,nm\Ilgml(kor) (2)
In this work, we propose a more realistic study of the op- o=In=1m=—n

tical parameters of the systems analyzed by Kerker assum- 2 o n

ing that the pigment is stuck at the internal face of the air Eint1 = EOZZ Z banm‘l’g-,)ml(klr) 3)

bubble Fig. 1b). Besides complicating the theoretical for-
malism by breaking the spherical symmetry of the concen-
tric system, one should evaluate the average of the opticalWherer is the position vector anfip the amplitude of the
parameters over all possible positions of the pigment on theincident plane wave with wavelengtiy and wavevector
internal surface of the air bubble. Indeed, this averaging pro- ko = 27/A0No. The superscripts (1) and (3) indicate that the
cedure simply recognizes that the position of the pigment radial dependence of the corresponding vectorial waves is
cannot be controlled and would be randomly located on the €ither a spherical Bessel functipytkr) or a spherical Hankel
internal side of the air bubble. function 1Y (kr), respectively. The subscript 1 means that
Kerker also studied the strength of the synergetic effect, the origin of the basis is located at the geometrical center of
by comparing the scattering properties of the concentric sys-the sphere defined ;.
tem with those of a system composed of the same pigment, Using the boundary conditions for the electromagnetic
and the same air bubble but acting independently within the fields at the surface of the sphere yields a linear system
resin. This comparison has a limited validity in paint for- of equations which couples the coefficieats,, fon» and
mulation because in the systems that are compared the fracbenm . Eliminating the internal field coefficients,, ,, allows
tional volume of the pigments are different. Indeed, since the one to express directly the unknown scattered-field coeffi-
fraction of solids in paints is one of the main control param- cientsfs,,, as function of the known incident-field coeffi-
eters, the scattering properties of different pigments must Cientsag,, through a matrix relatioh = T - a, whereT is
be compared in systems with equivalent fractional volumes. @ diagonal matrix, usually called the T-matrix.
Therefore, in our study here we compare the scattering prop- The elements of the T-matrix in this spherical represen-
erties of a system with the pigment eccentrically located on tation depend on the radiag of the sphere and the magni-
the inner face of the air bubble, simply called the eccentric tude of the wavevectors in the matiks and in the sphere
system, with a system consisting of an identical volume of k1 = koN1/No (seeAppendix A). They are independent of
pigment particles and a certain volume of air bubbles acting the orientation and polarization of the incident wave, thus
independently within the resin; the volume of the air bubbles they represent an intrinsic property of the scattering system.
is determined by demanding that the total volume occupied Once the T-matrix and thg,,, coefficients are evaluated,
by the scatterers (pigment plus air bubbles) is the same as=q. (2)yields an explicit analytical expression of the scat-
the volume occupied by the bubbles in the eccentric system.tered field. Also, with this procedure, quantities like the to-
tal scattering and extinction cross-sections or the elements
of the scattering matrix, can be calculated.

o=1ln=1m=—n

2. Theory
2.2. Scattering by a concentrically arranged dielectric

2.1. Scattering by a homogeneous dielectric sphere sphere

The analytical solution of Maxwell's equations for the The analytical solution of the scattering bycancentri-
scattering of a monochromatic plane wave by a spherical cally arrangedsphere, i.e. a dielectric sphere containing a
particle, embedded in an infinite non-absorbing media, was concentric spherical inclusion of radias, and complex in-
first developed by Mie€[3]. It was later extended to an dex of refractionNy, was performed by Kerkdi7]. The in-
arbitrarily shaped particl4—6] using a T-matrix formal- cident and scattered fields can be expressed &g (1)
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and (2) while the general form of the electric field in the has the expression given IBg. (5) and the expression of
region internal to the host and external to the inclusion is the field external to the inclusion, which is a superposition
a superposition of incoming and outgoing spherical waves. of incoming and outgoing spherical waves, is now given by
The analytical expression for the fiekn 1 in this region the expression:

is thus given by y
2 © =n Eext,2 = EOZZ Z
Eint,1 = EOZZ Z o=In=lm=—n

Ftn=tn= . X [ronm® oo k10) + fonm¥ (] (6)
X [eonm‘I’((m)ml(klr) + gonm‘I’((m)ml(klr)] 4)

Applying the boundary conditions at the interfaces of the

where the superscript (4) means that the radial dependencdnclusion and the host, yields two linear systems of cou-

of the corresponding wave depends on the spherical HankelPled equations between thg, tonm, Ponm andasum, fonm,

function h(z)(kr) €mm, Jonm COe€fficients. The first set of equations leads to
The internal field of the inner inclusion has the same kind © = Q - t. where the coefficients of th@ matrix are given

of expansion as that given Eyg. (3) but taking into account ~ IN Appendix A Itis clear thatex;2 andEint1 describe the
the fact that the wavevector in the inclusion is defined by fi€ld in the same region of space, and in fact they describe

ko = koN2/No, that is, the same fields, but with field expansions in two different
basis sets. In order to replacg,, by €y, andty., bY Qonm
2> one must express the basis vector of the incluskéﬁ
. — @ m2
Bint2 = EOZMZI _Z Ponm¥gnm 2 (k2r) (5) in terms of the basis vector of the principal coordinate sys-
o tem, \P((Tqrfml This translation is performed with the aid of

where the subscript 2 means that the coordinate system hasghe translation theorem of the vectorial spherical wave func-
its origin located at the geometrical center of the inclusion tions introduced by Steif2]. Truncating now the infinite
defined inOy. In this case, it does not add any further com- multipole expansion to the first = Nmax orders, and af-
plications because the center of the inclus@ncoincides ter some algebra, one finds that the two linear systems lead
with the center of the sphef@;. to one set of 3/max(Nmax + 2) equations which relate the
Using the boundary condition for the fields on the host components of the vectossf andt corresponding to the in-
and inclusion interfaces, yields two linear systems of cou- cident, scattered and internal field, respectively. Eliminating
pled equations involving the coefficieras,,,, fonm, €nm, the components of the internal field, one finds
Gonm @NdpPs,, - Solving these linear systems, one obtains the f_D.M1l.a=T.a )
matrix relationf = T - a, whereT is the diagonal T-matrix - -

of the concentricsystem. The analytical expressions of its whereT is now the T-matrix of the entire system composed

elements are given iAppendix A of a dielectric spherical particle containing a spherical di-

electric eccentric inclusion. The matrickk andD are de-
2.3. Scattering by an sphere containing a spherical fined bya= M - b andf = D - b, and explicit expressions
eccentric inclusion for their components are given fppendix A

We remind the reader that although the T-matrix for-

The first study on the scattering of light by a host sphere malism involves an infinite expansion of the electric and
containing an eccentric spherical inclusion were first per- magnetic fields on the partial spherical wave basis, for fi-
formed by Borghese et g8], and later on by Videen et al.  hite sized particles, only a finite number of coefficients are
[9] and Ngo et al[10]. In those studies, the position of the non-negligible. Therefore, the infinite-series expression for
inclusion was limited to lie along th@z axis. We extended  the electromagnetic fields can be truncated at an dvglgy,
this analytical solution to an arbitrary location of the inclu- Which is defined as the maximum valueroéfter which the
sion using a T-matrix approa¢hl]. Below, we recall briefly series converges. The order of truncation depends on the size
the fundamental equations of this formalism. parameter of the particle, and Wiscombe’s criterid8] is

The incident, scattered and internal fields of the host used to give an upper bound fiNfax.
sphere, denoted W¥inc 1, Esca1 andEint 1, respectively, are
expanded in the coordinate system centere@sinyielding 2.4. Scattering parameters
the expressions given gs. (1), (2) and (4)The difficulty
now is that the inclusion is located at an arbitrary position  The scattering parameters of an homogeneous, concentric
denoted by, 8o, ¢o) in the spherical coordinate system of or eccentric system can be evaluated once the T-matrix and
the host. In order to impose boundary conditions at the inter- the scattering fields coefficients of the systems are known.
face of the inclusion, it is necessary to expand the incident, One of the main parameter in scattering theory is the scat-
scattered and internal fields of the inclusion in a second basistering cross-sectio@sc5 Which measures the strength of the
centered a0». The internal field of the inclusion, however, scattering process, and is defined as the total power scattered
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by the sphere over the incident flu€sca has the units of In a previous worl{11], we studied an eccentrically lo-
area, and for particles large with respect to the wavelength of cated TiQ pigment within an air bubble but our calculation
the incident direction, it has a limiting value of twice the ge- was restricted only to the average scattering cross-sections

ometrical projected area. The analytical expressiorCigy per unit volume. As mentioned Bection 1 however, the to-
in the T-matrix formalism is given by tal scattering cross-section gives limited information on the
2 oo n light transport within the scattering system, since this quan-
1 2 (8) tity by itself does not take into account the angular distribu-
Csca= — | forml ) ) ) o )
- kg ;;;m;n o tion of the scattered intensity, which is taken into account

) ) ) by g. Furthermore, a relevant study of the usefulness of the
The opacity of a white coating, however, depends notonly on gccentric system in the formulation of paints, must consider

the strength of the scattering process, but also on the angulage properties of the scattering coeffici@averaged over all
distribution of the scattered radiation. A parameter that helps possible orientations related to the location of the pigment.
to measure the magnitude of the angular distribution is the | order to avoid the difficulties related to an analytical
asymmetry paramete, defined as derivation of the orientational averags), of the scatter-

1 (% ("dCsca ing parametef6], which involves the rotational theorem of
8= /0 o de cosf ds2 ©) the spherical wave functions, we perform instead a straight-

C
sea . ) ) . . forward numerical average. We first evaluate the scattering
where Csc/ds2 is the differential scattering cross-section  coefficient for different locations of the inclusion, but since

(scattering cross-section per unit solid angle). One can seghe average should be independentgofwe take¢ = 0,
thatg takes values from 1 te-1, corresponding to the lim-  anqg numerically integrate over different value®ofVe then

isotropic scattering hag = 0. In our formalism the ana-

lytical expression of the asymmetry parameteEm (9)is S 1 Zj:llv ijicéga(l — gJ)sing; A (1)
H 9 = —-_— A A
given bi/ 2V > i=Vsing; A6
8= 55 RefT-¥-f] (10) where j = 1, 2 for TE and TM polarizations, respectively.
0sea Cslaandg’ are, respectively, the scattering cross-section
where the matrixy has the form and the asymmetry parameter for a fixed locaiiaf the
Z o inclusion and a fixed polarizatiop of the incident field.
y= = Each term in the sum is weighted by the factorgsito take
e & into account the assumption of equal probability at each
ith azimuthal angle.
wi In order to check the numerical accuracyksf. (13) we
. _ . m compare the analytical orientational average of the scatter-
Onm,m - Bm,usn,u, . . ) _1. — 2
n(n+1) ing cross-section given b§Cscao = 27 Re(TI[T " - T]}/k3
= _ 18m, 11 [14], with the corresponding numerical average for different
ST S on+ D(2v + D values ofAd, that is,
Sn— = =2 ]
% ( n—1,v \/(nz — 1)(112 — mz) 1 Z;:in‘jl.=1ClséaS|n9[A9
n (Csca>0 = 5 i=N . (14)
P > iZ1sing; Ao
_ ﬂ\/(‘,z — 12— m2)> (11) . -
v We found that forA9 = 10°, the numerical and analytical

evaluations of Csca)g had similar values up to the fifth deci-
mal figure. We presume that the evaluation®f in Eq. (13)
should be as accurate &8scq)¢ for the same value af\g.

The result ofEg. (10) is valid only when the incident
wavevector is parallel to th®z axis. In order to charac-
terize the general scattering efficiency of a pigment, one
invokes the scattering coefficie® defined as the inverse
of the transport mean-free path:

Cseay _g) (12)

v First we display the value of the orientation average of
wherefy, is the volume filling fraction of the pigment and the scattering parameté®)y, given inEq. (13) as a func-
the volume of a single pigment inclusion. One can see thattion of the radius of the air bubble and the filling fractipn
for a fixed volume concentration of pigment, the optimum of the TiQ, pigment. We have chosen the values of the ra-
scattering coefficien can be attained by simultaneously dius to run between 0.116 and 0.323, and the values of
maximizing Csca/v and minimizingg. p to vary between O (pure air bubble) and 1 (pure pigment).

3. Results and discussion
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Throughout this study, the wavelength of the incident radi- same scattering efficiency. We representeBim 3 the dif-

ation is taken to be 0.546m. The indices of refraction for ~ ferent zones of scattering efficiency for each system, as a
air, resin and TiQ are taken as 1.0, 1.51 and 2.97, respec- function of the radius of the air bubbla and the filling
tively. These latter values are the one taken by Ra$s fractionp. The black surfaces represent the zones where the
Fig. 2a and b represent the scattering efficiencies of the ec-concentrically arranged system has a greater scattering ef-
centric and concentric systems, wher&dg. 2c represents  ficiency than the eccentric system, while the white zones
the system composed of the HiQigment particles and the  represent the contrary. One can see that the eccentric pig-
air bubbles acting independently. We will refer to these sys- ment has, on the average, a largethan the concentric
tems by(Sy)e, (Sh)e and (S)g, respectively. The scattering  system.

efficiency of the isolated Ti@ pigment embedded in the Indeed, the electromagnetic interactions between the in-
resin reaches its maximum of 17.8t~1 for radii between clusion and the air bubble increases as the pigment comes
0.090 and 0.092m. closer to the host surface. This can be shown by compar-

The first important observation of this work is that the ing the truncation index of the electromagnetic fields that
encapsulated eccentric pigment never scatters light with ais needed in order to obtain a numerical convergence of the
higher efficiency than an optimum-sized pigment particle scattering efficiency. Let us takémax to be the truncation
embedded directly in the resin, as in the case of the concen-value of then summation, for the concentric system, that is
tric system. Moreover(S;)y exhibits a dramatic decrease necessary to describe the scattering for a fixed size param-
compared toS:)¢ throughout all values op andr; under eter of the air bubble and a fixed filling fractignof the
study. This decrease becomes stronger as the size of the aiinclusion. Then, the corresponding truncation index neces-
bubble increases. Also, when the size of the inclusion is sary to describe the eccentric system, denotet¥ by, will
close to the optimum size of the a single iffigment par- becomeN],.x > Nmax. One should notice that an increase
ticle, the scattering efficiency of the concentrically arranged in the interactions does not always reflect an increase of the
system is increased, but it is still quite small compared to overall scattering efficiency, but on the average this is the
the efficiency ofs.. case.

In order to give a more detailed account of the quantitative  The concentrically arranged system has a lar{®p
difference of the scattering efficiencies of the three different mainly when the size of the inclusion is close to the opti-
systems mentioned aboveg. 2d and e display a 2D plot of  mum size of TiQ in the resin. This could be due to modes
a cut in the 3D graphs shown iig. 2a—c. The radius of the  of resonance that exist around this size and which can be
air bubble is fixed at 0.122 and 0.3@6n, respectively. One  better amplified when the inclusion is placed at the center of
can clearly see that the concentric and eccentric systems havéhe host cavity. When the inclusion is shifted, the symmetry
a very similar variation, independently of the dimension of is broken, and the effect disappears.
the air bubble, but with an magnitude much lower than the  The fact that both systems have a similar value of their
optimum size of the TiQ pigment. scattering efficiency can be explained by the following rea-

The faint scattering efficiency of the eccentric system can soning: for a small value g, both configurations are very
be mainly attributed to two causes. The first, is that the size different because the difference between the position of the
of the air bubble is smaller than the wavelengghin air, so inclusion in the concentric and eccentric system is very large
there is actually no wave propagation within the air bubble. (rg is comparable to1). This change of configuration could
The main concept of the study was taken from the fact that create a large difference in the scattering efficiency. How-
TiO, pigment have a better scattering efficiency in air than ever, the size of the particle is so small that, independent of
in a polymeric resin. However, this result was obtained by the position of the inclusion, the scattering efficiencies of
assuming that the pigment is embedded in a infinite medium. both system are close to the scattering efficiency of the air
Here, this is clearly not the case. Furthermore, the complex-bubble alone, and do not greatly differ from one another.
ity of the fields in encapsulated region results in destruc- Whenp has a value close to unity, the size of the inclusion
tive interferences between the incoming and outgoing fields. is comparable to the size of air bubble and the effect of the
The consequence of these destructive interferences is weaklyigment should be considerable. However, in this case the
scattered fields which leads to a small scattering efficiency shift in the position of the inclusion between both configu-
of a coated system of spheres. The second explanation igations is quite small, and the scattering efficiency of both
that in order to optimiz&, one should minimize g and op-  systems remains comparable.

timize Csc{V. However, it is well known that at least for The last important result of this work is the study of the
spherical particles, as the size parameter incre&3ggV “synergetic effects” observed by Kerker. We recall that these
decreases arglincreases, resulting in a small scattering ef- effects appear when the concentric system has a larger scat-
ficiency amplitude of the composite system. tering efficiency than the system with the air bubble and the

The other important result of this work is the analysis of pigment particles acting independently within the resin. One
the effect of the translation of the inclusion from the center should notice that those effects are linked to the parameter
of the air bubble to its inner interface. Comparifty. 2a (S, and they no longer exist if one compares the differ-
and b, one can see that both systems have relatively theences inCscdV in our study.
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Fig. 2. Orientational averaged scattering efficiency, noted{%a) of the system composed by the Bi@igment located at the inner interface of the air
bubble; (b)(S)¢ of the system composed by the Ti@igment located at the center of the air bubble; (&) of the system composed by the isolated
TiO, pigment and the air bubble as function of the radius of the air bubhleahd the filling fraction 1/r2)3. (d) and (e) Orientational averaged
scattering efficiency of the systems composed by: (a) the Pi@ment located at the inner interface of the air bubble, (b) the, Ti@ment located at

the center of the air bubble, (c) the isolated Fifigment and the isolated air bubble, as function of the filling fracgios (r1/r2)%. The radius of the
air bubble is constant and set tp= 0.122 and 0.30Q.m, respectively.
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Fig. 3. Relative value$s,)/(S) of the scattering efficiency as a function ) _ _ ) _
of the radius of the air bubble; and the filling fractionp. The black Fig. 5. Relat.lve vaIue$S_3)/(&? as functlpn of the radius 9f the air bubble
surfaces represent the zones where the concentric system has a greatétd the radius of the inclusiony at which the synergetic effect occurs.
scattering efficiency than the eccentric systeiSh)p > (Sa)), while the The size of the circles is proportional to the amplitudg /() which
white zones represent the contraf$y < (Sa)e)- has a maximum value of 1.13.

The synergetic phenomena start at relatively large sizes ofof calculation. Ong can see that th_ere is a certain corr_elation
the air bubble 4 ~ 0.280um) and for large filling fractions between the rel_atlve size of the air _bubble and the pigment
(p ~ 0.65) when the eccentric and the system composed byfor the synergetic eff_ects. However, in order to mgke a more
the pigment particles and air bubbles acting independently complete study of this phenomenon, one should increase the
have a very similar scattering efficiency. For smaller sizes "ange of the size parameters under study.
of the air bubble and smaller value of the filling fractipn
the difference between th&)y for both system is huge, and
there is no synergetic effect. We have plotted the relative 4. Conclusion
values($,)/(&:) as function of the radius of the air bubble and
the filling fractionp (Fig. 4) and the radius of the inclusion We showed that placing a Tigpigment eccentrically into
r» (Fig. 5 at which the synergetic effect occurs. The size an air bubble embedded in resin could not increase the scat-
of the circles in the plot is proportional to the amplitude of tering efficiency of the pigment in comparison to a system
(S$5)/(S:) which has a maximum value of 1.13 in our range consisting of the same fractional volume of pigment parti-

cles and the same fractional volume of air bubbles acting
T T T independently within the same resin. In this case, one could
® not assume that the Tipigment was embedded in an infi-
] A I nite system. On the contrary, the path length covered by the
0.85- ™. ® L wave in the air bubble was smaller than the extension of the
1 ™ ® | wave itself. Consequently, the comparison with the scatter-
‘® s ing efficiency of a TiQ pigment in air cannot be applied.
] ", i For a legitimate comparison in the scattering efficiency of
a 1 . i these two systems one adjusts the filling fraction of the air
0.75 . - bubbles so both systems have the same filling fraction of
] . i scatterers. We also showed that the scattering efficiency of
0.70- o the eccentric system was quite similar to the concentric sys-
1 '\..‘ [ tem where the inclusion is placed at the center of the air
] e i bubble. We explained this result by showing that optically
0.65 N speaking both configurations were never very different.
0280 0280 0509 0310 0.320 Our study was performed for a fixed wavelength of the
incident field and a limited range of radius for the air bub-
ry (um) ble. One could wonder if this range of sizes is representa-
_ . . _ . tive enough. We showed that at least for spherical system,
Fig. 4. Relative value$S,)/() as function of the radius of the air bubble 4 seamg that there is no need to extend the study for larger
and the filling fractionp at which the synergetic effect occurs. The size . . . .
of the circles is proportional to the amplitude (8)/(S) which has a size (_)f the air bgbble because the_scatterlng cross-section
maximum value of 1.13. by unit volume will decrease proportionally while the asym-

0.90

0.80
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metry parameter will increase. Also, extending the study to A.2. Spherical dielectric particle containing a concentric
different wavelengths of the incident field to all the visible dielectric spherical inclusion

range, could probably change the different modes of reso-

nance of the eccentric systems, changing the number and The T-matrix is of the form

positions of the synergetic effects. However, the gap be- -

tween the scattering efficiency of the eccentric system, and [ Tcs g }
the optimum size of the Ti@pigment directly into the resin Tes
is so large that it not likely yield a change in the general
tendency.

Finally, we mention that throughout this work, we have
evaluated the scattering efficiency of independent scatter-
ers. It is now well known that cooperative effects between A @ A @

_|:Bn _Bni| 2 |:n_nj|
S - 9

where T! and T2 are diagonal matrices whose matrix ele-
ments are given bylEdlnmu. = SnudmuTdg - [TEJnmwe =
8uvdmpu Tég » With

scatters in a dense medium tends to decrease the scatteringcl
efficiency of the sum of the individual particles, thus the ex-
trapolation of these results to non-isolated systems should
be made with precaution.

CSn —

Br(ls) _ Br(;4) Cr(l3) _ Cr(:4)

and

BY = k& (kiap)[ Tt (koaz) + &7 (koa2)],

B = kot ? (knap)[ Trigt, D (kaaz) + £,2 (k2a2)].

BY = k&P (knap)[ Trist, Y (kaa2) + £12 (k2a2)],
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Appendix A. Analytical T-matrix coefficients
A.3. Spherical dielectric particle containing an eccentric

In the following formulae, we us#, (x) = Xj, (x), £ = dielectric spherical inclusion
xhﬁ,l)(x), and a prime applied to these functions denotes a _ _
derivative with respect to the argumeat The general expressions for thkandD matrix elements
are given by:
A.1. Homogeneous spherical dielectric particle _ MQ}Q‘(M) Mgljﬂsz)
M = m2D  pnm2.2) and
The T-matrix is of the form VI VI

B D]r)m(l,l) Dnn‘(l,Z)
1 _ 58 v
THS 0 D |:Dnr’r(2,l) Dan‘(Z,Z) (All)
2 v VL
0 Tgs
where
where T! and T2 are diagonal matrices whose matrix ele- _
: 1 1 2 mnmdD
ments are given bylFiglnms = 8nu8mu Tis > [Tslnmoy = Vi

i B 1 1
Suvdm T, With _ g | 206 (koay) — (ko/ k) 2461 (ko)
" L koan)&s (koas) — i (koan)&, @ (koay) |

. [klwn (kea2)” (kaaz)—kot” (kaaz) ¥, (kaaz) a2
o D 1 ’
ka&n” (kiaz)yr, (kaaz)—kayn (k2az)&, D (kiaz) - .
’(’2) " ! " _ gy |26 (koay) — (ko/ k) Z4n' 61 (koa)
/ - ’
TI-ZISn _ |:k1§n (kla2)1£$(k202) - kz’,ﬁzzl()kzaz)én (klaz):| Vi v (koa) €Y (koa1) — vn (koa1)&, D (koaz) |
’ kin (k2a2)n ™ (k1a2) — k1&y (kra2) ¥, (k2a2) MY

Here,az is the _radius of the sphere ahplandkg = klNz_/Nl _ _ pm i Zﬁ‘,‘l)s,’fl) (koa1) — (ko/kl)Zﬁf)s,(ll) (koa1) }
= T ,
?hrs ;r;] er?:grnelggdeitgetlge wavevectors in the matrix and in Vi | Y (koar) £D (koar) — v (koan)&,® (koar)
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]\_/ISIT(Z’Z)
_ Annﬂ)[ 247 & (koay) — (ko/ ko) Zi7 1" (koar) }

O Y (koan)Er® (koa) — ¥, (koa1)€, D (koaz)
(A.2)

and
Dgz{l 1)

B A”m(l)|: (ko/ kD) Z\5 ¥, (koar) — Z\) s (koay) }

" LY (koan) vy (koar) — &1 (koar) Y (koar)
pm.2)
Vi

_ B”m(l)|: (ko/ k1) Zu v, (koa1)— Zy n (koaz) }
- V, )
* | 8@ (koar) ¥, (koar) —En™ (koar) Yru (koaz)
phm2.1)
Vi

(ko/ k1) Z'%)ra (koar) — Z2 W (koaz)
| & O (koar)yn (koar) — &5 (koar) ¥, (koa1) |

= BL‘I’I‘(D

2 2,2
DQL“ )

(ko/ k1) ZD v, (koar) — Z8) W) (koay)

| £ D (koar) ¥ (koar) — & (koar) ¥, (koa) |
(A.3)

— AT

and

ZW = [Ths &P (kaay) + £2 (kray)],

z8) = 135,60 (k1ap) + &2 (kyap)],

Z) = [Ts &7 (ka1) + §2 (k1av)],

Z = [T &Y (ka1) + &2 (kray)] (A.4)
The APM? and BYM? are the translation coefficients needed

for the transformation from thigh to thekth coordinate sys-
tem[12]. They depend on the position vectog;, between

the centers of the two spheres, and the amplitude of the local
medium wavevectolk;.
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