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Absorption in multiple-scattering systems of
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4 place Jussieu, 75252 Paris Cedex 05, France

Received September 30, 2002; revised manuscript received January 27, 2003; accepted February 11, 2003

We derive formulas for rigorous transfer matrix calculations of absorption in multiple-coherent-scattering sys-
tems in which the scatterers are multiply coated spheres (not necessarily concentric). Any of the spherical
coatings, cores, or host media may be composed of absorbing materials. For a nonabsorbing host media, the
total absorption may be deduced from overall energy conservation. A more detailed description of the absorp-
tion is obtained through formulas yielding the absorption within individual scatterers and/or coatings. We
present some illustrative applications of these formulas to the design of heterogeneous coated-sphere media
exhibiting enhanced absorption. © 2003 Optical Society of America

OCIS codes: 290.4010, 290.4020, 160.4670, 290.1990, 290.5850.
1. INTRODUCTION
Theoretical treatments of multiple scattering of systems
have undergone considerable progress in recent years.1–8

These developments have been fueled in part by the in-
creasing interest in exploiting multiple-scattering effects
for the fabrication of inhomogeneous media with tailor-
made electromagnetic properties. The range of proper-
ties obtainable with such media is, however, limited by
the electromagnetic characteristics of available scattering
materials. Singly and multiply coated scatterers are a
means of enlarging this range by extending the character-
istics of the scatterers. In this paper we shall consider
scatterers consisting of concentric and nonconcentric
multilayer spheres.

We shall derive procedures and formulas for evaluating
the absorption in individual scatterers and coatings in
multiple-scattering systems composed of coated spheres.
Although the total absorption for absorbing scatterers im-
mersed in nonabsorbing media may be deduced from the
total cross sections,3 the absorption within individual
spheres can provide us with a more complete picture of
the absorption. This additional information will prove
particularly important in treating systems where absorp-
tion is present in both the scatterers and the host media.
1084-7529/2003/061050-10$15.00 ©
Our derivation of the transfer matrix of coated spheres
was chosen for its particularly stable numerical behavior
in treating spheres with multiple coatings. The
multiple-scattering aspects of the problem are treated by
inserting the transfer matrices of coated spheres into a re-
liable recursive method for calculating the system trans-
fer matrix.1,4 A particularly useful property of the trans-
fer matrix formulation is that it contains all scattering
information for arbitrary incident waves. Among other
advantages, this characteristic permits analytic calcula-
tions of orientation averages of a multiple-scattering sys-
tem.

The outline of the paper is as follows. In Section 2 we
briefly review a compact notation for field developments
on a spherical partial-wave basis. In Section 3 we derive
a formula for the transfer matrix of multiply coated
spherical scatterers. Section 4 is devoted to the special
case of concentric spheres. We present therein a normal-
ization procedure of the field coefficients that further en-
hances the numeric stability of transfer matrix calcula-
tions of multiply coated scatterers.

We treat the multiple-scattering aspects of the problem
in Section 5 by invoking a reliable recursive transfer ma-
trix procedure. We treat absorption within individual
2003 Optical Society of America
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scatterers of an N-particle cluster in Section 6. We con-
clude the paper in Section 7 by presenting some illustra-
tive calculations of the effective absorption length in
multiple-scattering systems of coated spheres.

2. VECTOR PARTIAL-WAVE EXPANSIONS
This work is carried out in a time-harmonic framework
with exp(2ivt) time dependence. An arbitrary incident
field in an external (host) medium, denoted medium 0,
can be developed in terms of regular partial waves devel-
oped about some chosen origin, 0, of the system:

Einc~r! 5 E(
n51

`

(
m52n

n

~Rg$Mnm~k0r!%@a#nm
M

1 Rg$Nnm~k0r!%@a#nm
N !

5 E~Rg$M~k0r!%, Rg$N~k0r!%!S aM

aND
[ ERg$J t~k0r!%a. (1)

In the last line, we introduce a condensed notation in-
spired by Chew,8 in which a is an infinite-dimensional col-
umn vector composed of the coefficients of the incident-
wave development. The elements of the abstract row
vector J t(kr) are the normalized basis set of outgoing
vector partial waves Mn,m(kr) and Nn,m(kr),

J t~kr! [ (M1,21~kr!, M1,0~kr!,...,

N1,21~kr!, N1,0~kr!,...), (2)

where the superscript t denotes the transpose.
The Mnm (kr) and Nnm (kr) functions can be conve-

niently expressed,

Mnm~kr! [ 2hn~kr !Xnm~ r̂!,

Nnm~kr! [
1

kr
$An~n 1 1 !hn~kr !Ynm~ r̂!

1 @krhn~kr !#8Znm~ r̂!%, (3)

where Xnm( r̂), Ynm( r̂), and Znm( r̂) are the normalized
vector spherical harmonics (see Appendix A). The hn are
the spherical Hankel functions of the first kind. The no-
tation Rg$ % in Eq. (1) means ‘‘take the regular part of ’’
and corresponds to replacing the spherical Hankel func-
tions hn in Eq. (3) with spherical Bessel functions, jn .8,9

The scalar constant E in Eq. (1) is defined such that
E2 [ 2I(0)@(m0mv)/(«0ev)#1/2, where I(0) is the incident
irradiance (i.e., the norm of the incident Poynting vector)
at the origin, and ev , mv are the vacuum permittivity and
permeability, respectively. This convention for E imposes
that the incident wave coefficients @a#nm

A must be normal-
ized such that1 (m521

1 @a* #1,m
N @a#1,m

M 5 6p. For a homo-
geneous plane wave in a nonabsorbing medium, the above
definition for E corresponds to the electric-field amplitude
of the incident field, Ep.w. 5 uEincu.
3. INDIVIDUAL TRANSFER MATRICES FOR
COATED SPHERES
A. Boundary Conditions for Spheres with a Single
Coating
In this section we derive the transfer matrix of a scatterer
with a single spherical coating (see Fig. 1). A spherical
region of radius R1 , centered on x1 , is immersed in a host
medium, denoted region 0. A second spherical region of
radius R2 and centered on x2 is immersed in region 1.
Each of the homogeneous regions is characterized by com-
plex relative constitutive parameters « l(v) and m l(v),
l 5 0, 1, 2.

Labeling the coated sphere as the jth particle in an
N-particle system, we may express the total electric field
in medium 0, E0 , as the sum of an excitation field on par-
ticle j, E0

( j),e , and the field scattered by this particle,
E0

( j),s . At the surface of the scatterer, E0
( j),e and E0

( j),s

may be developed in terms of spherical waves centered on
x1

( j) ,

E0 5 E0
~ j !,e 1 E0

~ j !,s ,

E0 5 ERg$J t~k0r1
~ j !!%e0

~ j !

1 EJ t~k0r1
~ j !!f0

~ j ! , (4)

where r1
( j) [ r 2 x1

( j) .
In region 1, the field can be developed on a basis of

regular spherical waves centered on x1
( j) and outgoing

spherical waves centered on x2
( j) ,

E1
~ j ! 5 ERg$J t~k1

~ j !r1
~ j !!%e1

~ j ! 1 EJ t~k1r2
~ j !!f 1

~ j ! (5a)

5 ERg$J t~k1
~ j !r1

~ j !!%e1
~ j !

1 EJ t~k1
~ j !r1

~ j !!bk1

@1,2#f1
~ j ! (5b)

5 ERg$J t~k1
~ j !r2

~ j !!%bk1

@2,1#e1
~ j !

1 EJ t~k1
~ j !r2

~ j !!f1
~ j ! , (5c)

where Eqs. (5b) and (5c) are alternative developments
centered respectively on x1 and x2 . The bkl

@i,k# are regu-
lar translation-addition matrices (see Appendix B) with
the abbreviated notation bkl

@i,k# [ b @kl
( j)(xi

( j) 2 xk
( j))#.

Fields in the core (region 2) are developed in terms of
regular waves centered on x2

( j) ,

E2
~ j ! 5 ERg$J t~k2

~ j !r2
~ j !!%e2

~ j ! , (6)

where e2
( j) is the vector of excitation coefficients in the

core. The magnetic fields in each region l 5 0, 1, 2 are
given by the Maxwell equation,

Fig. 1. Coated nonconcentric spherical scatterer.
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ivm lmvHl~r! 5 ¹ 3 El~r!, (7)

where mv is the magnetic permeability of the vacuum.
The particle labels, superscript ( j), used above are a

nuisance as long as we are concerned with the scattering
by a single particle. We will henceforth suppress the par-
ticle labels until Sections 5 and 6, in which we shall need
to explicitly discuss the different particles in the system.
With the particle labels suppressed, then, the continuity
of the tangential electric field at the (0, 1) and (1, 2) in-
terfaces yields the equations,

k1cn~k0R1!@e0#rm
M 1 k1jn~k0R1!@ f0#nm

M

5 k0cn~k1R1!@e1#nm
M 1 k0jn~k1R1!@bk1

@1,2#f1#nm
M ,

k1cn8 ~k0R1!@e0#nm
N 1 k1jn8 ~k0R1!@ f0#nm

N

5 k0cn8 ~k1R1!@e1#nm
N 1 k0jn8 ~k1R1!@bk1

@1,2#f1#nm
N ,

(8)

k2cn~k1R2!@bk1

~2,1!e1#nm
M 1 k2jn~k1R2!@ f1#nm

M

5 k1cn~k2R2!@e2#nm
M ,

k2cn8 ~k1R2!@bk1

~2,1!e1#nm
N 1 k2jn8 ~k1R2!@ f1#nm

N

5 k1cn8 ~k2R2!@e2#nm
N , (9)

where cn(x) and jn(x) are the Ricatti functions defined by
cn(x) [ xjn(x) and jn(x) [ xhn(x).

The continuity of the tangential magnetic field at the
interfaces then yields

m1cn8 ~k0R1!@e0#nm
M 1 m1jn8 ~k0R1!@ f0#nm

M

5 m0cn8 ~k1R1!@e1#nm
M 1 m0jn8 ~k1R1!@bk1

@1,2#f1#nm
M ,

m1cn~k0R1!@e0#nm
N 1 m1jn~k0R1!@ f0#nm

N

5 m0cn~k1R1!@e1#nm
N 1 m0jn~k1R1!@bk1

@1,2#f1#nm
N ,

(10)

m2c28~k1R2!@bk1

@2,1#e1#nm
M 1 m2jn8 ~k1R2!@ f1#nm

M

5 m1cn8 ~k2R2!@e2#nm
M ,

m2cn~k1R2!@bk1

@2,1#e1#nm
N 1 m2jn~k1R2!@ f1#nm

N

5 m1cn~k2R2!@e2#nm
N . (11)

B. Transfer Matrix for a Singly Coated Sphere
Equations (8)–(11) form a set of linear equations. One
can therefore derive a linear relationship (transfer ma-
trix) between the excitation coefficients e0 and the scat-
tering coefficients f0 by eliminating all the other coeffi-
cients in the system. Numerical studies have shown10–15

however, that it is preferable to solve these equations in a
manner that emphasizes logarithmic derivatives and the
ratios of Bessel functions.

Eliminating the coefficients e1 from Eqs. (8) and (10)
yields

@ f0#nm
A 5 @T10#n

A@e0#nm
A 1 @Q01#n

A@bk1

@1,2#f1#nm
A ,

A 5 M, N, (12)
where @T10#n
A are the Mie coefficients16–18 for a homoge-

neous sphere composed of medium 1 and immersed in me-
dium 0 (i.e., taking l 5 0 in the following expression),

@Tl11,l#n
M 5

cn~klRl11!

jn~klRl11!

3

m l11

m l
Fn~klRl11! 2 r l11,lFn~kl11Rl11!

r l11,lFn~kl11Rl11! 2
m l11

m l
Cn~klRl11!

[
cn~klRl11!

jn~klRl11!
3 @T̃l11,l#n

M ,

@Tl11,l#n
N 5

cn~klRl11!

jn~klRl11!

3

m l11

m l
Fn~kl11Rl11! 2 r l11,lFn~klRl11!

r l11,lCn~klRl11! 2
m l11

m l
Fn~kl11Rl11!

[
cn~klRl11!

jn~klRl11!
3 @T̃l11,l#n

N , (13)

with r l11,l [ kl11 /kl 5 @(e l11m l11)/(e lm l)#1/2. The func-
tions F and C are the logarithmic derivatives of the
Ricatti–Bessel functions: Fn(kr) [ cn8 (kr)/cn(kr),
Cn(kr) [ jn8 (kr)/jn(kr).

It is important to recognize the definition of @T̃l11,l#n
A as

the part of the transfer matrix that can be expressed en-
tirely in terms of logarithmic derivatives of Bessel func-
tions. These and additional Q̃, P̃, Ṽ, Ũ,... matrices will
be used in Section 4 when we discuss relations among
normalized coefficients. The coefficients @Q01#n

A in Eq.
(12) are given (with l 5 0) by

@Ql,l11#n
M 5

1

jn~klRl11!cn~kl11Rl11!

3
i

m l11

m l
Cn~klRl11! 2 r l11,lFn~kl11Rl11!

5
1

jn~klRl11!cn~kl11Rl11!
@Q̃l,l11#n

M ,

@Ql,l11#n
N 5

1

jn~klRl11!cn~kl11Rl11!

3
i

r l11,lCn~klRl11! 2
m l11

m l
Fn~kl11Rl11!

[
1

jn~klRl11!cn~kl11Rl11!
@Q̃l,l11#n

N . (14)
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The notation can be compressed still further by defin-
ing matrices T10 and Q01 of the general form,

O 5 FOMM OMN

ONM ONNG , (15)

where the OAB are matrices in the partial-wave space
with elements written @O#nm,nm

AB . From Eq. (12) we see
that Tl11,l and Ql,l11 are diagonal; i.e., their elements are
of the form

@O#nm,nm
AB 5 dA,Bdn,ndm,m@O#n

A . (16)

In the matrix notation, Eq. (12) takes the compact and
transparent form

f0 5 T10e0 1 Q01bk1

@1,2#f1 . (17)

Eliminating the internal field coefficients e2 from Eqs.
(9) and (11) yields a standard Mie scattering equation,

f1 5 T21bk1

@2,1#e1 , (18)

where the addition theorem matrix bk1

@2,1# is present on ac-
count of the fact that e1 and f1 express partial-wave de-
velopments centered on x1 and x2 , respectively.

Eliminating f1 from Eqs. (8) and (10) provides the rela-
tion

e1 5 V10e0 1 U10f0 , (19)

where V10 and U10 are diagonal, and their components
given by

@Vl11,l#n
M 5 icn~klRl11!jn~kl11Rl11!

3 S m l11

m l
Fn~klRl11! 2 r l11,lCn~kl11Rl11!D

[ cn~klRl11!jn~kl11Rl11!@Ṽl11,l#n
M ,

@Vl11 ,l#n
N 5 icn~klRl11!jn~kl11Rl11!

3 S r l11,lFn~klRl11! 2
m l11

m l
Cn~kl11Rl11!D

[ cn~klRl11!jn~kl11Rl11!@Ṽl11,l#n
N , (20)

@Ul11,l#n
M 5 ijn~klRl11!jn~kl11Rl11!

3 S m l11

m l
Cn~klRl11! 2 r l11,lCn~kl11Rl11!D

[ jn~klRl11!jn~kl11Rl11!@Ũl11,l#n
M ,

@Ul11,l#n
N 5 ijn~klRl11!jn~kl11Rl11!

3 S r l11,lCn~klRl11! 2
m l11

m l
Cn~kl11Rl11!D

[ jn~klRl11!jn~kl11Rl11!@Ũl11,l#n
N . (21)

Eliminating the fields e1 and f1 from equations (17)–
(19), we obtain an expression for the generalized transfer
matrix, T10 , of a two-layer spherical scatterer,
f0 5 FT10 1 Q01bk1

@1,2#T21bk1

@2,1#V10

I 2 Q01bk1

@1,2#T21bk1

@2,1#U10
G e0 [ T10e0 , (22)

where I is the identity matrix.

C. Spheres with Multiple Coatings
Let us now generalize to the case of a sphere with mul-
tiple coatings. The media of the innermost homogeneous
sphere is labeled L. The index decreases by one with
each successive coating until we arrive at the outermost
coating, labeled 1 (see Fig. 2). A recursive relation for
the transfer matrix is obtained after we notice that in the
formula for T10 , Eq. (22), the only information required of
the interior sphere is its transfer matrix, T21 . Therefore,
if the interior sphere is itself a coated sphere, we need
only to replace T21 with T21 . The overall transfer matrix
of a multiply coated sphere can thus be obtained recur-
sively by

Tl11,l 5 FTl11,l 1 Ql,l11bkl

@l11,l12#Tl12,l11bkl

@l12,l11#Vl11,l

I 2 Ql,l11bkl

@l11,l12#Tl12,l11bkl

@l12,l11#Ul11,l
G

(23)

and is initialized by a Mie transfer matrix of the inner-
most sphere, TL,L21 5 TL,L21 .

If one is interested in detailed field information within
the scatterer, the scattering coefficients fl11 can be calcu-
lated by using the Tl11,l , via a recursion relation derived
from Eqs. (22), and (17),

fl11 5 bkl11

@l12,l11#Pl,l11~I 2 Tl11,lTl11,l
21 !fl , (24)

where PI is defined as the inverse of QI :

@Pl,l11#n
M [ @@Ql,l11#n

M#21 [ jn~klRl11!cn~kl11Rl11!

3 @P̃l,l11#n
M ,

@Pl,l11#n
N [ @@Ql,l11#n

N#21 [ jn~klRl11!cn~kl11Rl11!

3@P̃l,l11#n
N . (25)

The recurrence in Eq. (24) is initialized by the f0 , calcu-
lated by means of the multiple-scattering theory pre-
sented in Section 5 below.

The excitation coefficients are obtained from the rela-
tions

el 5 bkl

@l,l11#Tl11,l
21 fl , l 5 1,..., L 2 1,

@eL#nm
A 5 @LL,L21#n

A@ fL21#nm
A , (26)

where the @LL,L21#n
A elements are

Fig. 2. Multiply coated spherical scatterer.
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@LL,L21#n
M 5

1

cn~kL21RL!cn~kLRL!

3
irL,L21

mL21

mL
rL,L21Fn~kLRL! 2 Fn~kL21RL!

[
1

cn~kL21RL!cn~kLRL!
@L̃L,L21#n

M ,

@LL,L21#n
N 5

1

cn~kL21RL!cn~kLRL!

3
irL,L21

Fn~kLRL! 2
mL21

mL
rL,L21Fn~kL21RL!

[
1

cn~kL21RL!cn~kLRL!
@L̃L,L21#n

N . (27)

4. CONCENTRIC SPHERES
Concentric spheres are an important special case of Eq.
(23) and present useful numerical simplifications. If all
the spherical interfaces have the same center, the trans-
fer matrices become diagonal, and each individual compo-
nent @Tl11,l#n

A of the transfer matrices can then be ob-
tained recursively:

@Tl11,l#n
A 5 F @Tl11,l#n

A 1 @Ql,l11#n
A@Tl12,l11#n

A@Vl11,l#n
A

1 2 @Ql,l11#n
A@Tl12,l11#n

A@Ul11,l#n
A G ,

A 5 M, N. (28)

A. Normalized Coefficients
The numerical properties of Eq. (28) can be greatly im-
proved by adopting a normalization of the coefficients
along the lines proposed by Sitarski,12,14,19 after which
only logarithmic derivatives of Bessel functions and ratios
of Bessel functions appear in the recurrence formulas of
the transfer matrices.

We define normalized coefficients f̄ l , ē l as

@ f̄ l#nm
A [ jn~klRl11!@ fl#nm

A ~l 5 0,..., L 2 1 !

A 5 M, N,

@ ē0#nm
A [ cn~k0R1!@e0#nm

A ,

@ ē l#nm
A [ cn~klRl!@el#nm

A ~l 5 1,..., L !A 5 M, N.
(29)

@ T̃l11,l#n
A 5 F @T̃l11,l#n

A 1
jn~kl11Rl11!

jn~kl11Rl12!

c

c

1 2
jn~kl11Rl11!

jn~kl11Rl12!

cn~k

cn~k

@ T̃L,L21#n
A 5 @ T̃L,L21#n

A , A 5 M, N.
For concentric spheres in the normalized notation, we
find

@ f̄0#nm
A 5 @ T̃10#n

A@ ē0#nm
A ,

@Tl11,l#n
A [

cn~klRl11!

jn~klRl11!
@ T̃l11,l#n

A ,

(30)

where the elements @ T̃10#n
A are obtained by means of

bounded recurrence relations:

We recall that the bounded T̃, Q̃, Ṽ, and Ũ matrices
(defined in Section 3) are all expressed entirely in terms
of logarithmic derivatives of Bessel functions that can be
reliably computed by using the recurrence relations de-
veloped in the literature.14 The ratios cn(z)/jn(z) can be
calculated reliably for complex arguments by using recur-
rence relations, or, alternatively, one can calculate
@ cn(z1)#/@ cn(z2)# and @jn(z1)#/@jn(z2)#. If one wishes to
use Eq. (31) to model materials with a radial dependent
refractive index by calculating a large number of very
thin layers,15 it is preferable to avoid round-off errors by
approximating the ratios of Bessel functions Rl11
5 Rl12 1 d, d ! Rl12 to obtain a nonrecursive differen-
tial form of this equation.

The recurrence relation for the normalized f̄ l coeffi-
cients is

@ f̄ l11#nm
A 5 cn~kl11Rl11!jn~kl11Rl12!@P̃l,l11#n

A

3 ~ 1 2 @T̃l11,l#n
A@ T̃ l11,l

21 #n
A!@ f̄ l#nm

A , (32)

and the normalized excitation coefficients are given by

@ ē0#nm
A 5 @ T̃ 10

21#nm
A @ f̄0#nm

A ,

@ ē l#nm
A 5

cn~klRl!

cn~klRl11!
@ T̃ l11,l

21 #n
A@ f̄ l#nm

A ,

~l 5 1,..., L 2 1 !,

@ ēL#nm
A 5

1

cn~kL21RL!jn~kL21RL!
@L̃L,L21#n

A@ f̄ L21#nm
A .

(33)

l11Rl12!

l11Rl11!
@Q̃l,l11#n

A@ T̃l12,l11#n
A@Ṽl11,l#n

A

l12!

l11!
@Q̃l,l11#n

A@ T̃l12,l11#n
A@Ũl11,l#n

A G ,

(31)
n~k

n~k

l11R

l11R
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5. MULTIPLE-SCATTERING FORMULATION
In this section we briefly describe a reliable recursive
algorithm1 for the calculation of the body-centered
T-matrix.1,5 Unlike previous recursive algorithms,8 this
method is not plagued by severe numerical errors.20 Fur-
thermore, when employing this technique, one is no
longer obliged to consider that additional scatterers are
added outside a circumscribing sphere surrounding all
the other scatterers,8 and spheres can be added to the sys-
tem in an arbitrary order.

As we saw in Section 3, the individual transfer matri-
ces T 10

( j) give the scattering information of the entire
coated scatterer,

f 0
~ j ! 5 T 10

~ j !e 0
~ j ! [ t1

~ j !e0
~ j ! , (34)

and the T 10
( j) therefore contain all the information neces-

sary for a multiple-scattering calculation. The index 10
on T is unnecessary and repetitive in this context, and
therefore in this section we replace the transfer matrix
T 10

( j) by the notation t1
( j) . The index 1 in t1

( j) denotes that
the transfer matrix describes a single scatterer, and such
matrix shall be henceforth called the one-body transfer
matrix.

The solution of an electromagnetic wave interacting
with an N-particle system is then formulated in terms of
N-body transfer matrices tN

( j,k) , containing all multiple-
scattering information and satisfying1,5

f 0
~ j ! 5 (

k51

N

tN
~ j,k !b~k,0!a, (35)

where we recall that a are the coefficients of the field in-
cident on the entire system.

Our recursive solution for the N-body matrices, tN
( j,k) ,

is to add a new scatterer, N, to a known solution of t N21
( j,k)

matrices describing a system of N 2 1 scatterers,1,2

tN
~N,N ! 5 t1

~N !F1 2 (
j,k51

N21

a~N,k !tN21
~k, j !a~ j,N !t1

~N !G21

, (36)

where the a kl

@i,k# are the irregular translation-addition
matrices (see Appendix B) between the centers of scatter-
ers i and k, with the notation a@i,k# [ a@k0(x 1

(i)

2 x 1
(k))#.

The tN
(i,N) , tN

(N,i) matrices are then obtained by matrix
multiplications:

tN
~N,k ! 5 tN

~N,N ! (
j51

N21

a~N, j !tN21
~ j,k ! , k Þ N,

tN
~ j,N ! 5 (

k51

N21

tN21
~ j,k !a~k,N !tN

~N,N ! , j Þ N.

(37)

The readjustment of the tN21
( j,k) matrices to become tN

( j,k)

matrices is given by

tN
~ j,k ! 5 tN21

~ j,k ! 1 (
i51

N21

tN21
~ j,i ! a~i,N !tN

~N,k ! , j Þ N, k Þ N.

(38)
The tN
( j,k) matrices are thus obtained by recurrence, start-

ing with an arbitrary t1
( j) scatterer of the system and suc-

cessively adding all the other scatterers of the system.
In the case of an absorption-free media, the total-

absorption cross section of the system sa may be obtained
from energy conservation, s a

cl 5 s c
cl 2 s s

cl , where s e
cl

and s s
cl are the cluster extinction and scattering cross

sections respectively. For the case of incident plane
waves, s e

cl and s s
cl can be expressed3 as

s e
cl 5 2

1

k2 (
j,l

N

Re$exp@ik0 • ~xl 2 xj!#p
†tN

~ j,l !p%,

s s
cl 5

1

k2 ReH (
j,k,l,i

N

exp@ik0 • ~xi 2 xl!#

3 p†@T N
~ j,l !#†b~ j,k !tN

~k,i !pJ , (39)

where the p are coefficients of a homogeneous incident
wave (see Appendix A). Similarly, the orientation-
averaged absorption for plane waves can be obtained from
^ s a

cl&o 5 ^ s e
cl&o 2 ^ s s

cl&o , and the formulas1,5

^ s e
cl&o 5 2

2p

k2 (
j,l

N

Re$Tr$tN
~ j,l !b~l, j !%%,

^ s s
cl&o 5

2p

k2 ReH (
j,k,i,l

N

Tr$@tN
~ j,l !#†b~ j,k !tN

~k,i !b~i,l !%J .

(40)

6. ABSORPTION CROSS SECTIONS FOR
COATED SPHERES
The absorption flux, P l

( j) , through the outermost inter-
face bounding region l is calculated by integrating the
scalar product of the Poynting vector with the inward nor-
mal to the lth interface, 2r̂ l

( j) ,

Pl
~ j ! 5 2 R

A
r̂ l

~ j !
• S l

~ j !dA 5 2
~Rl

~ j !!2

2

3 E dV r̂ l
~ j !

• Re$E l
~ j ! 3 Hl

~ j !* %, (41)

where Rl
( j) is the radius of the interface.

Invoking Eqs. (5b), (7), (24), and the relation

el
~ j ! 5 ~Vl,l21

~ j ! @T l,l21
~ j ! #21 1 Ul,l21

~ j ! !f l21
~ j ! , (42)

we find that the sa,l
( j) can be conveniently expressed as

sa,l
~ j ! 5

1

uk l
~ j !u2

ReHAm0

«0
f l21

~ j !,†G l
~ j !f l21

~ j ! J , (43)

with
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G l
~ j ! 5 @Pl21,l

~ j ! ~I 2 Tl,l21
~ j ! @T l,l21

~ j ! #21!#†Cl
~ j !@Pl21,l

~ j ! ~I

2 Tl,l21
~ j ! @T l,l21

~ j ! #21!# 1 @Vl,l21
~ j ! @T l,l21

~ j ! #21

1 Ul,l21
~ j ! #†Dl

~ j !@Vl,l21
~ j ! @T l,l21

~ j ! # 2 1 1 Ul,l21
~ j ! #

1 @Vl,l21
~ j ! @T l,l21

~ j ! #21 1 Ul,l21
~ j ! #†Fl

~ j !@Pl21,l
~ j ! ~I

2 Tl,l21
~ j ! @T l,l21

~ j ! #21!# 1 @Pl21,l
~ j ! ~I 2 Tl,l21

~ j !

3 @T l,l21
~ j ! #21!#†Gl

~ j !@Vl,l21
~ j ! @T l,l21

~ j ! #21 1 Ul,l21
~ j ! #.

(44)

The Cl
( j) , Dl

( j) , Fl
( j) and Gl

( j) are diagonal matrices of
the form of Eq. (16) with

@Cl
~ j !# n

A [ i@h̃ l
~ j !#Ajn* ~kl

~ j !Rl
~ j !!jn8 ~kl

~ j !Rl
~ j !!,

@Dl
~ j !#n

A [ i@h̃ l
~ j !#Acn* ~kl

~ j !Rl
~ j !!cn8 ~kl

~ j !Rl
~ j !!,

@Fl
~ j !#n

A [ i@h̃ l
~ j !#Acn* ~kl

~ j !Rl
~ j !!jn8 ~kl

~ j !Rl
~ j !!,

@Gl
~ j !#n

A [ i@h̃ l
~ j !#Acn8 ~kl

~ j !Rl
~ j !!jn* ~k l

~ j !R l
~ j !!,

A 5 M, N, (45)

where the @h̃ l
( j)#A factors are defined by

@h̃ l
~ j !#M [ ~« l

~ j !/m l
~ j !!1/2,@h̃ l

~ j !#N [ ~« l
~ j !,* /m l

~ j !,* !1/2.

The absorption cross section of an entire coated sphere
j is given by sa,1

( j) . The orientation average of sa,1
( j) , de-

noted ^ sa,1
( j)&o , is readily obtained from Eqs. (43) and (35),

on which one applies an analytic average over all possible
polarizations and directions of the incident field vector
k̂i . Following the prescription in Refs. 1 and 5 for orien-
tation averages yields

^ sa,1
~ j !&o 5

2p

uk1
~ j !u2 (

i,l51

N

3 ReHAm0

«0
3 Tr$@tN

~ j,l !#†G1
~ j !tN

~ j,i !b~i,l !%J . (46)

For concentric spheres, one obtains a rather compact
and numerically reliable expression in terms of normal-
ized matrix elements:

s a,l
~ j ! 5

1

uk l
~ j !u2 (

A5M,N
(
n,m

u cn
~ j !~kl

~ j !Rl
~ j !!

3 j n
~ j !~k l

~ j !Rl
~ j !!u2u@ f̄ l21

~ j ! #nm
A u2

3 ReHAm0

«0
~iFn~kl

~ j !Rl
~ j !!@ h̃ l

~ j !#Au@Ãl
~ j !#n

Au2

1 iCn~kl
~ j !Rl

~ j !!@ h̃ l
~ j !#Au@B̃l

~ j !#n
Au2 1 iCn~kl

~ j !Rl
~ j !!

3 @h̃ l
~ j !#A@Ãl

~ j !#n
A,* @B̃l

~ j !#n
A 1 iFn~kl

~ j !Rl
~ j !!

3 @h̃ l
~ j !#A@Ãl

~ j !#n
A@B̃l

~ j !#n
A,* !J , (47)

with the definitions

@Ã l
~ j !# n

A [ @Ṽ l,l21
~ j ! # n

A@@ T̃ l,l21
~ j ! # n

A#21 1 @Ũ l,l21
~ j ! # n

A ,

@B̃ l
~ j !# n

A [ @P̃ l21,l
~ j ! # n

A~1 2 @T̃ l,l21
~ j ! # n

A@@T̃ l,l21
~ j ! # n

A#21!.
(48)
7. REDUCTION OF THE ABSORPTION
LENGTH IN COATED-SPHERE MEDIA
In this section we show how inhomogeneous media com-
posed of coated spheres may exhibit enhanced absorption
properties. Furthermore, we demonstrate that simula-
tions may be able to determine the optimal design of such
media. The model problem that we consider is the en-
hancement of absorption per unit volume of a material of
index n1 5 1.5 1 0.01i imbedded in a transparent media
of index n0 5 1.5. Without going into considerations of
an interface with an external medium, we shall simply
take that enhanced absorption corresponds to a reduced
effective absorption length l a

eff within an inhomogeneous
medium.

A. Low-Density Systems
For the purpose of comparison, let us first consider mate-
rial 1 to be dispersed as ‘‘small’’ grains (i.e., much smaller
than the in-medium wavelength) within a material 0.
The weak dielectric contrast renders scattering negligible
in comparison with absorption, which implies an approxi-
mately zero scattering cross section, s s

disp . 0, for the
dispersed grains of material 1. The absorption (extinc-
tion) cross sections of the dispersed grains are then given
by

s e
disp . s a

disp . 2n 19
v

c
V1 5

4pn 19

lv
V1 , (49)

where lv is the vacuum wavelength of the radiation and
V1 the volume of the grains of material 1. The absorp-
tion length within the inhomogeneous composite is then

la .
1

N1sa
disp 5

1

2f1kvn19
, (50)

where N1 and f1 are respectively the number density and
the volume density of absorbing material 1. To eliminate
the wavelength dependence of la , which is simply a scale
factor, it seems preferable to speak in terms of a dimen-
sionless absorption length, kvla 5 2pla /lv :

kvla .
1

2f1n19
5

50

f1
, (51)

where, we have used our chosen value of n 19 5 0.01.
We now propose to decrease the effective absorption

length by placing material 1 as concentric coatings
around spherical grains of a high-index scatterer such as
TiO2 (n2 . 2.5). The coated grains are then randomly
dispersed in medium n0 . At low concentrations, the
scattering mean free path within the medium is ls
. 1/(Nsss), where ss and Ns are respectively the scatter-
ing cross section and the number density of the coated
scatterers. The absorption mean free path is likewise la
. 1/(Nssa). The average number of scatterings that the
light undergoes before being absorbed, denoted n, is there-
fore n 5 la /ls 5 ss /sa .

The asymmetry parameter g of the individual scatter-
ings gives the projection of the scattered component of
light along the direction of incidence after a single
collision.16 With the usual transport assumption that
after m collisions, the projection of the scattered light
along the initial direction of incidence is gm, correlated
random-walk calculations yield that the average distance
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that the light travels before being absorbed, henceforth
referred to as the effective absorption length l a

eff is given
by

kvl a
eff 5

x1$n 1 2@ g~n 2 1 ! 2 ng2 1 gn11#/~1 2 g !2%1/2

n0fsQs
,

(52)

where fs is the volume density occupied by the coated
spheres and the scattering efficiency has its usual defini-
tion, Qs [ ss /(pR 1

2). If the scatterings completely ran-
domize the light propagation, then g 5 0, and one obtains
the classical diffusion result that the average distance
traveled is proportional to An, and kvl a

eff 5 kv lsAn. The
limit of entirely forward scattering, i.e., g → 1, yields
kvl a

eff → kv /Nssa , as one would expect.
With the above model parameters, calculations indicate

that kvl a
eff is minimized for optimal values of [see Fig.

3(a)] R1 2 R2 . 0.18R2 and x1 5 k0R1 . 2.2. With
these values, one obtains from Eq. (52) that kvl a

eff

. 5.1/f1 , i.e., a factor of 10 decrease in the absorption
length per unit volume compared with that of homoge-
neous absorbing grains. The asymmetry parameter
played an important role in these calculations since reso-
nant scatterings tend to scatter light in the forward direc-
tion. This is clear from Fig. 3(b), where we plot the g of
the scatterings as a function of the size parameter.

B. High-Density Multiple-Scattering Media
The predictions of Eq. (52) apply only in the low scatterer-
density limit. At high densities coherent-scattering ef-

Fig. 3. (a) Dimensionless effective absorption length plotted as
a function of the size parameter, x1 5 2pR1 /l0 for R1 2 R2
5 0.18R2 . (b) Asymmetry parameter of the scatterings plotted
as a function of x1 .
fects will come into play. Coherent-scattering effects for
a finite number of scatterers can be treated by the meth-
ods of Section 5. In the design of inhomogeneous media
however, we seek to calculate information to be put into a
transport calculation where an averaging process is being
carried at some point (e.g., configuration averaging). A
study of the best approximation to be employed is beyond
the scope of the present paper, and here we treat only one
possible approximation technique in order to estimate
coherent-scattering effects within the context of Eq. (52)
above.

Since coherent-scattering effects are largely limited to
nearest-neighbor interactions, we shall model them by
taking a coated sphere with the optimized size and coat-
ing parameters of the independent-scattering case and
surround it by 12 identical neighbors in a close-packing
configuration. We seek to calculate averaged modifica-
tions to the independent scatters of Eq. (52). The most
outstanding drawback of Eq. (52) is that it does not take
into account self-polarization effects (i.e., modifications to
the light scattered by the particle as a result of this light
returning to the particle after having undergone other
scattering events). A diagrammatic analysis of
scattering21 shows that self-polarization effects are those
diagrams whose first and last scattering events are on the
same scatterer. Adapting the diagrammatic analysis to
the exact scattering framework shows that these dia-
grams correspond to the tN

( j, j) matrices.
We therefore calculate the tN

( j, j) matrix of the central
sphere and use it to calculate modified scattering cross
sections s̃s , s̃a , which now include the self-polarization
effects that are due to the nearest neighbors. We can fur-
thermore partially take configuration averaging into ac-
count by performing an orientation average of the modi-
fied cross sections ^s̃s&o , ^s̃a&o . Results for different
densities are obtained by varying the interparticle dis-
tances. Our most severe approximation is then to insert
the modified coherent scattering cross sections into the
independent transport calculation of Eq. (52). Although
this procedure avoids overcounting problems and can be
justified for scattering events separated by a few wave-
lengths, it is only an approximation to the exact scatter-
ing calculations of neighboring spheres. More detailed
transport considerations will be the subject of future
studies, and here we simply show the predictions of our
adopted approximation.

Using the above approximation techniques, we plot in
Fig. 4 the effective absorption length from the multiple-
scattering calculations as a function of the inverse volume
fraction of coated spheres, the scale being modified such
that close packing corresponds to fs 5 1. The results in-
dicate that even at high filling fractions, the absorption
path length is a near-linear function of 1/fs , presumably
owing in part to the fact that the rather thick coatings
create a natural separation of the strong scattering cores.
Inspection of Fig. 4 leads one to predict that coherent-
scattering effects can actually shorten the effective ab-
sorption length in the high-density limit. In the limit of
close packing ( f1 ' 25%), the calculations indicate that
l a

eff could be more than five times shorter than that of a
pure n1 index material.

In order for other workers to compare their calculations
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with ours and to show that coherent-scattering effects can
influence absorption, we present orientation-fixed (Table
1) and orientation-averaged (Table 2) absorption cross
section efficiencies, Q abs

( j) [ s abs
( j) /(pR 1

2), using the same
optimal size parameters and coating thicknesses as above
in a close-packing configuration where 12 spheres are in
contact with the central sphere. In the orientation-fixed
case, the electric field of the incident plane wave is taken
to be plane polarized along the ŷ axis. The Cartesian co-
ordinates of the centers of the spheres are specified in
units where R1 5 1. Results from use of different
partial-wave cutoffs are shown. We also verified that the
sum of the individual absorption cross sections is in

Fig. 4. Twelve nearest-neighbor coherent-scattering calcula-
tions of l a

eff plotted as a function of the density 1/fs . The
independent-scattering prediction is plotted as a dashed line for
comparison.
agreement with far-field calculations of the total absorp-
tion cross sections [see Eqs. (39) and (40)].

We remark that partial-wave-space cutoffs of nmax
5 3, 4, 5, 6 yield respectively ;95%, 99%, 99.7%, 99.95%
of the total Q abs

( j) . For comparison, we give in Table 2,
the Qabs of an isolated scatterer. Two things are worth
noting. First, coherence effects do indeed increase the
absorption of the individual scatterers, as the calculations
in Fig. 4 suggest. Second, the coherence (evanescant-
wave) effects in closely packed aggregates oblige us to in-
voke higher orders in the partial-wave developments than
are necessary to describe isolated scatterers. Notably,
the nmax 5 3 cutoff for isolated scatterers already gives
more than 99% of the total Qabs , whereas in the aggre-
gate it yields only ;95% of the Q abs

(1) of the central sphere.
Although this effect remains relatively small (but nonneg-
ligible) for most dielectric scatterers, it can become quite
important for scatterers containing metallic layers.

8. CONCLUSION
We have presented recursive techniques and formulas
permitting detailed, essentially exact calculations of ab-
sorption in finite systems composed of multiply coated
spheres. We have also rapidly demonstrated the possible
applications of such calculations in determining the opti-
mum design parameters of dense macroscopic media com-
posed of coated spheres. Such simulations can poten-
tially economize both time and effort in the elaboration of
coated-sphere heterogeneous materials. Besides the ap-
plications to dielectric coatings considered here, our tech-
Table 1. Individual Absorption Efficiencies Q abs
( j) for a System of 13 Touching Coated Dielectric Spheres

with x1Ä2.2, n0Ä1.5, n1Ä1.5¿0.01i, n2Ä2.5, R1ÀR2Ä0.18R2 ,
and an Electric Field Polarized along the ŷ Axis

Orientation-Fixed Absorption Efficiencies
100 3 Q abs

( j)

Particle Positions nmax

j xj yj zj 1 2 3 4 5 6 >7

1 0 0 0 0.953 2.034 2.389 2.478 2.500 2.506 2.508
2,3,4,5 60.8502 60.5265 0 1.087 1.841 2.133 2.185 2.194 2.195 2.196

6,7 60.5265 0 0.8502 0.645 2.249 2.630 2.667 2.671 2.672 2.673
8,9 60.5265 0 20.8502 1.284 2.261 2.484 2.510 2.522 2.524 2.525

10,11 0 60.8502 0.5265 0.417 1.857 2.178 2.258 2.271 2.273 2.274
12,13 0 60.8502 20.5265 0.925 1.879 2.091 2.135 2.151 2.153 2.153

Table 2. Orientation-Averaged Absorption Efficiencies and Isolated Sphere Efficiencies for
the Same Aggregate and Parameters as in Table 1

Orientation-Averaged Absorption Efficiencies
100 3 ^Q abs

( j) &o

Particles nmax

j 1 2 3 4 5 6 >7

Central sphere, j 5 1 1.083 2.117 2.542 2.657 2.689 2.695 2.697
External spheres j 5 2,..., 13 0.898 2.091 2.359 2.412 2.423 2.425 2.425
Isolated sphere 0.853 2.019 2.223 2.243 2.244 2.244 2.244
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niques can also be applied to systems of spheres with me-
tallic coatings, thus opening the possibility of using these
techniques in the numerous applications involving sur-
face plasmon resonances. With the elaboration of new
fabrication techniques of coated scatterers, we hope to be
able to compare our predictions with experimental values.

APPENDIX A: SPHERICAL WAVES AND
VECTOR SPHERICAL HARMONICS
The three normalized vector spherical harmonics used by
us can be explicitly written in terms of the associated Leg-
endre functions:

Ynm~ r̂! 5 gnmAn~n 1 1 !Pn
m~cos u!exp~imf !r̂

5 Ynm~u, f !r̂,

Xnm~ r̂! 5 gnmF2
im

sin u
Pn

m~cos u!exp~imf !û

1
d

du
Pn

m~cos u!exp~imf !f̂G ,

Znm~ r̂! 5 gnmF d

du
Pn

m~cos u!exp~imf !û

1
im

sin u
Pn

m~cos u!exp~imf !f̂G ,

gnm 5 F ~2n 1 1 !~n 2 m !!

4pn~n 1 1 !~n 1 m !!G
1/2

. (A1)

The incident field coefficients for a homogeneous plane
wave, Ei(x) 5 Eei exp(iki • x), are given by

@ p#nm
M 5 2in4pXnm* ~k̂i! • êi ,

@ p#nm
N 5 2in114pZnm* ~k̂i! • êi . (A2)

APPENDIX B: VECTOR-WAVE ADDITION
THEOREM
The addition theorem permits the transformation of par-
tial waves centered on x (i.e., functions of r8 [ r 2 x)
into partial waves centered at the origin.22,23 Using the
condensed notation introduced in Section 2, we may write
the translation-addition theorem as8

J t~kr! 5 J t~kr8!b~kr0!, r8 . r0 ,

J t~kr! 5 Rg$J t~kr8!%a~kr0!, r8 , r0 ,

Rg$J t~kr!% 5 Rg$J t~kr8!%b~kr0!, ;urju, (B1)

where a(kr0) and b(kr0) are respectively the irregular
and the regular normalized translation-addition matrices.
They have the form

a~kr0! 5 F Ā~kr0! B̄~kr0!

B̄~kr0! Ā~kr0!
G , b~kr0! [ Rg$a~kr0!%,

(B2)

where the Ān,m;n,m and B̄n,m;n,m matrix elements are those
for normalized vector partial-wave functions.1,9
Corresponding author Brian Stout may be reached by
e-mail, brian.stout@fresnel.fr; phone, 33-4-91-288729; or
fax, 33-4-91-674428.

REFERENCES
1. B. Stout, J. C. Auger, and J. Lafait, ‘‘A transfer matrix ap-

proach to local field calculations in multiple scattering
problems,’’ J. Mod. Opt. 49, 2129–2152 (2002).

2. J. C. Auger and B. Stout, ‘‘A recursive centered T-matrix al-
gorithm to solve the multiple scattering equation: numeri-
cal validation,’’ J. Quant. Spectrosc. Radiat. Transfer. (to be
published).

3. B. Stout, J. C. Auger, and J. Lafait, ‘‘Individual and aggre-
gate scattering matrices and cross sections: conservation
laws and reciprocity,’’ J. Mod. Opt. 48, 2105–2128 (2001).

4. J. C. Auger, B. Stout, R. G. Barrera, and F. Curiel, ‘‘Scatter-
ing properties of rutile pigments located eccentrically
within microvoids,’’ J. Quant. Spectrosc. Radiat. Transfer.
70, 675–695 (2001).

5. D. W. Mackowski, ‘‘Calculation of total cross sections of
multiple-sphere clusters,’’ J. Opt. Soc. Am. A 11, 2851–2861
(1994).

6. D. W. Mackowski and M. I. Mishchenko, ‘‘Calculation of the
T matrix and the scattering matrix for ensembles of
spheres,’’ J. Opt. Soc. Am. A 13, 2266–2278 (1996).

7. Y. L. Xu, ‘‘Electromagnetic scattering by an aggregate of
spheres,’’ Appl. Opt. 34, 4573–4588 (1995).

8. W. C. Chew, Waves and Fields in Inhomogeneous Media,
IEEE Press Series on Electromagnetic Waves (IEEE Press,
New York, 1994).

9. T. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave
Remote Sensing, Wiley Series in Remote Sensing (Wiley,
New York, 1985).

10. B. R. Johnson, ‘‘Light scattering by a multilayer sphere,’’
Appl. Opt. 35, 3286–3296 (1996).
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