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Abstract

The model presented here is based on the resolution of the radiative transfer equation, by the Discrete Ordinate

Method, in the steady-state domain. A matricial formulation leads to the resolution of the problem of light scattering

through multislabs, with index mismatch at each interface. In that way, the angular distribution of out-going fluxes is

obtained. A complete dissociation between volume and interfaces behaviors allows the introduction of elaborated

theories to describe them properly. An analytical scattering theory based on the T-matrix formalism is introduced to

account for interactions between scatterers, when high volume fractions are considered. Theoretical calculations are

compared with experiments obtained with a spectro-scatterometer.

r 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Optical properties of media scattering and
absorbing light and their calculation are problems
of interest in many disciplines. When weak
scatterers volume fractions are considered, these
properties are commonly calculated by solving the
radiative transfer equation (RTE) [1]. As this
equation supposes no electromagnetic interactions
between scatterers, for high volume fractions, an
exact calculation accounting for interactions be-
tween fields scattered by all particles is to be
performed. Even if it can theoretically be made,
the techniques usually developed are time con-
suming, and become non-realistic for high optical
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thickness. As a first step, to account for dependent
multiple light scattering phenomenon in dense
media, we suggest a two-fold approach: (i) we
define a coherence volume in which we carry an
exact calculation of the scattering parameters
(extinction, scattering cross sections and phase
function for the set of particles), using Analytical
Scattering Theory (AST) [2,3], based on a T-
matrix method [4], (ii) these parameters are then
introduced in the RTE, and macroscopic optical
properties (reflected and transmitted angular dis-
tribution of flux) are then determined. In the
second section of this paper, we briefly present the
theoretical models used. We chose to solve RTE
by using the Discrete Ordinate Method (DOM) [1].
The treatment has been extended to a multiple slab
formulation, by dissociating volume scattering
behavior from interfaces and using a matrix
d.
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formulation. In Section 3, we describe an experi-
mental device (spectro-scatterometer) especially
designed for validation of the theoretical model.
We performed experiments on gauged media such
as latex beads in water. The results are presented
and commented in Section 4.

2. Theories

2.1. Radiative transfer equation

The RTE stems from an energy balance and
describes the spatio-temporal evolution of flux F at
a point r and in direction u. Experiments were
performed for steady-state case, for slab geometry
and under non-polarized normal illumination. F

depends only on z and the scattering detection
direction m ¼ cos y: If F ðz; mÞ denotes the total
flux, at depth z in the medium and scattered in the
direction m:

@F ðz;mÞ
@z|fflfflfflffl{zfflfflfflffl}

flux variation in element dz

¼ �
kext

m
F ðz;mÞ

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
loss by scattering and absorption in direction m

þ ksca

Z 1

�1

F ðz;m0Þ
m0

*pðm;m0Þ dm0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
gain by scattering from all directions m0 towards direction m

:

ð1Þ

The properties of the scattering medium are then
totally described by: (i) extinction and scattering
coefficients (respectively kext and ksca); (ii) the phase
function *pðm;m0Þ representing the probability for a
radiation, incident in direction m0 to be scattered in
direction m: In that condition, the integral in Eq. (1)
can be efficiently evaluated by DOM, consisting on
a spatial discretization into N directions. One can
then rewrite (1) with vector notations:

dF

dz
¼ S F; Sij ¼

ksca

mi

*pðmi;mjÞoi; Sjj ¼ �
kext

mj

: ð2Þ

The general solution of this equation is

Fi ¼
XN

a¼1

AiaCae
laz; iA½1;N�; ð3Þ
where la and Aia are respectively the eigenvalues
and the eigenvectors of matrix S. Coefficients Ca

are weighting coefficients issued from boundary
conditions. The easiest way to solve multilayered
systems problem is to uncouple the behavior of the
scattering medium from its interfaces, in order to
relate out-going flux Fout directly to incident flux
Fin. Let Z be the total thickness of the scattering
medium. By applying boundary conditions inside

the medium (z ¼ 0þ and z ¼ Z�), one can define a
‘‘transfer’’ matrix Q (see Ref. [5] for expression):
Fout ¼ QFin: It is then shown that the matrix
equivalent to a multislab is nothing than the
product of individual Q matrices of each slab.

2.2. Scattering parameters

As mentioned above, the solutions depend on
the extinction and scattering coefficients, kext ¼
nsext; ksca ¼ nssca; where n is the number of
scatterers by unit volume, sext and ssca; are
respectively the total extinction and scattering
cross sections; and on the phase function inte-
grated over all azimuthal directions:

*pðmi;mjÞ 	
Z 2p

0

pðui 
 ujÞ df: ð4Þ

The phase function pðui 
 ujÞ is defined [6] as the
ratio of the differential scattering cross section to
the total scattering cross section. When weak
volume fractions are considered, there is no
interaction between fields scattered by the parti-
cles, and we can deduce the differential and the
total cross sections from Mie theory [7] for a single
spherical particle. For high volume fractions,
electromagnetic interactions have to be taken into
account. These interactions extend over a coher-
ence length defining a coherent unit volume,
containing N particles, in which an exact electro-
magnetic calculation has to be performed. Our
calculation is based on a recursive T-matrix
algorithm [8], modified in order to avoid the
convergence problems inherent to this formula-
tion. The scattering parameters for a set of N

particles are deduced from the sum of the different
scattering parameters calculated for each scatterer
k, and expressed in an external base, the base of
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Fig. 1. Scheme of the spectro-scatterometer.

Table 1

Description of media M1 and M2. Incoherent (Mie) and

coherent (AST) extinction parameters, and average interparticle

distance D used for AST calculation

M1 M2

Spheres diameter (mm) 0.1 3

Scatterers volume fraction (%) 1.5 4

Medium thickness (mm) 5000 100

D (mm) 0.23 4.2

Extinction coefficient (mm�1)

Incoherent 1.963� 10�7 0.03357

Coherent (average) 2.410� 10�7 0.03167
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the applied field:

@saggsca ðui; ujÞ
@O

¼
X

k

@sk
scaðui; ujÞ
@O

; saggsca ðujÞ

¼
X

k

sk
scaðujÞ; s

agg
ext ðujÞ

¼
X

k

sk
extðujÞ: ð5Þ

Each individual parameter depends on the indivi-
dual scattered field defined by a scattering matrix

SðkÞðuj ; uiÞ expressed in the same external base. We

calculate this matrix in two steps: (i) Addition-
translation theorem [9] is invoked to calculate the
individual T-matrix on the base centered on
particle k, in order to account for the field
scattered by a single particle k placed in an
environment of N � 1 other scatterers; (ii) a
translation gives the final expression of matrix

SðkÞ in the external base. Expressions (5) depend on
the scatterers spatial configuration. The media we
studied are composed with isotropically distribu-
ted scatterers. Unfortunately, there is no possibi-
lity, for the moment, to give an exact expression
for the different scattering parameters averaged
over all possible positions in the coherence
volume. As a first approximation, we calculate
these parameters for an average interparticles
distance D. Another remark is that total scattering
cross sections depend on the direction and
polarization of the incident field. We showed [10]
that scattering parameters averaged over orienta-
tions could be simply expressed as the trace of the
matrix defining the cross sections (Eq. (5)) multi-
plied by a factor 2p.

3. Experiments

Measurements were obtained thanks to a
spectro-scatterometer designed in our laboratory.
It is composed with two rotating arms (Fig. 1),
supporting incidence and detection optical fibers.
The incidence angle is manually fixed at the
beginning of each measurement session. The
detection arm is motorized and has two angular
movements ðy;jÞ: The sample is placed in a
rotating plate, in order to explore all space
directions. This mechanical device is coupled to a
white Xenon source for illumination and an
optical multichannel analyzer for detection. We
consider latex beads in water as scattering
elements, with gauged size in order to perform a
comparison between experiments and calculations,
that we placed inside silica tanks (index of
refraction: nsilica ¼ 1:46). The results are given for
the wavelength l ¼ 0:589 mm, for which the index
of refraction of the beads is well known: nlatex ¼
1:59: We give results for three cases (Table 1): (i)
medium M1 (small particles); (ii) medium M2
(large particles); (iii) we couple these two media
(M3), in order to give an illustration of the
multilayer treatment.
4. Results and discussion

Experimental results are now compared to RTE
solutions computed with incoherent (deduced from
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Mie theory) and coherent (deduced from AST)
scattering parameters. Assuming that main elec-
tromagnetic interactions are generally produced by
interactions between two scatterers, for the con-
sidered concentrations we neglect interactions of
superior orders. Average interparticles distance
between scatterers D and extinction coefficients
(particles are non-absorbing, ksca ¼ kext) for each
media are given in Table 1. For M1, D is larger
than two scatterer diameters and the coherent

extinction coefficient, averaged over all cluster
orientations, is higher than that obtained by
applying Mie theory. For this case, Mie theory
(a) 

0.0001

0.001

0.01

0.1

1

0 90 180

Scattering angle (˚)

(b) 

0.0001

0.001

0.01

0.1

1

10

100

0 180

Scattering angle (˚)

90

Fig. 2. Incoherent (gray curves) and coherent (black curves)

phase functions for M1 (a) and M2 (b).
underestimates the level of scattering. On the
contrary, for M2, D is smaller than two diameters,
and the averaged coherent extinction coefficient is
weaker than the incoherent one. We plot in Fig. 2
the phase functions for M1 (a) and M2 (b). When
considering incoherent calculations (gray curves),
particles composing M1 behave like Rayleigh
(a) 

0.00001

(b) 

0.00001

0.001

0.1

10

(c) 

0.00001

0.001

0.1

10

Reflectance 

Fig. 3. Angular distribution of flux by unit solid angle for M1

(a), M2 (b) and M3 (c). Calculations (incoherent: gray curve;

coherent: black curve) compared to measurements (dot curves).
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scatterers, with an isotropic profile, while those of
M2 behave like Mie scatterers, with a strong
scattering anisotropy and the presence of multiple
scattering lobes. The coherent calculation (black
curves) enhances anisotropy and, for M2, some
structures in the phase function are killed when
taking into account interactions. Fig. 3 shows the
angular flux distributions (plotted with logarith-
mic scale), expressed by unit solid angle in order to
compare calculations (full curves) and experiments
(dot curves). In all the cases, the incoherent

treatment (gray curve) misestimates scattering
while our coherent calculation (black curve)
reproduces more accurately experimental results.
One has nevertheless to mention few discrepancies
between theoretical and experimental curves,
essentially in transmission (M2 and M3). On one
hand, it can be due to the approximations that we
used for the calculation: (i) a more accurate
calculation should be performed for the evaluation
of D; (ii) superior orders of interactions should be
taken into account. On the other hand, one can
notice that this discrepancy appears when flux
level is very low and the signal-to-noise ratio
becomes close to 1. It can be also observed in M3
experimental curve (c) a weak anisotropy due to
the presence of the Mie scattering medium.
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