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The s-d-shell effective interaction is derived from the Bonn NN potential, using a G-matrix
folded-diagram method. It is found that due to the relatively weak-tensor-force characteristic for
the Bonn potential, the effective interaction matrix elements, particularly those with isospin 7 =0,
come out generally more attractive than in previous derivations which were based on conventional
local strong-tensor-force NN potentials. This renders the results obtained with the Bonn potential
in considerably better agreement with the recent empirical s-d-shell matrix elements of Wil-

denthal.

Recently, it has been pointed out by the Bonn group 2
that the quantitative description of the low-energy
nucleon-nucleon (/NN) data is consistent with a nuclear
tensor force component which is remarkably weaker than
commonly assumed. The Bonn group also finds that the
NN interaction derived from relativistic meson theory typ-
ically contains nonlocalities which lead to a weak tensor
force at low energies.

Commonly employed potentials® ~° are parametrized in
terms of local functions which can be obtained in the non-
relativistic, local approximation to one-meson-exchange
Feynman amplitudes. With such local expressions the
empirical two-nucleon parameters sensitive to the nuclear
tensor force (e.g., the deuteron quadrupole moment and
asymptotic D/S state ratio, as well as the ¢; mixing pa-
rameter up to about 300-MeV lab energy resulting from a
phase-shift analysis of elastic NV scattering data) can be
fitted only if a relatively strong tensor force is assumed. A
practical measure for the strength of the tensor-force
component contained in a nuclear potential is the predict-
ed D-state probability of the deuteron, Pp. While from
nonrelativistic, local potentials® Pp = 6% is obtained (the
precise values are the following: Reid,? 6.5%; Paris,*
5.8%; Argonne V4,5 6.1%), the Bonn potential !'? predicts
4.4%. The strength of the tensor force presently is the
most uncertain part of the nuclear force at low energy.

Microscopic nuclear structure predictions— which are
based on the bare NN interaction as input—can depend
rather sensitively on the strength of the nuclear-tensor po-
tential. Therefore, since the tensor force cannot be
uniquely pinned down by two-nucleon data, one may try
to obtain complementary information on this issue from
the nuclear many-body system.

Recently, the relevance of the tensor force for the
bound three-nucleon system has been investigated sys-
tematically and demonstrated clearly.’ Applying the
Bonn potential, a triton binding energy of 8.35 MeV is ob-
tained,” while other potentials® > predict about 7.5 MeV
(the experimental value is 8.48 MeV). Also, the other
empirically known quantities of the three-nucleon system
(e.g., the charge radius® and the *H-3He binding energy
difference’® fall into place for the case of the more attrac-
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tive Bonn prediction.

The binding energy of nuclear matter is also known to
be very sensitive to the strength of the tensor force.?!° In
an energy versus density plot, the saturation points as pre-
dicted by conventional nuclear-matter calculations using a
variety of two-nucleon potentials are located along a band
which has become known as the “Coester line.” An essen-
tial parameter of this Coester band is the strength of the
tensor force at low energy (as measured by Pp) with low-
Pp potentials predicting more binding energy than high-
Pp potentials. The former, however, usually gives too
high a saturation density as compared with the empirical
value. As is well known, one can lower the saturation den-
sity by including the relativistic effects, which are repul-
sive and strongly density dependent. Thus, applying an
attractive (low Pp) potential and including relativistic
effects, nuclear-matter saturation can be rather satisfacto-
rily explained. 2!

Nuclear-structure problems discussed so far are dealing
only with nuclear ground states. Another important and
interesting area are the excited states of nuclei. In a mi-
croscopic approach, one starts from a bare VN potential
and derives the Brueckner G matrix which, in turn, is used
to calculate certain classes of diagrams defining the
effective interaction in an open shell, V4. The matrix ele-
ments of Vg can then be used to calculate, for example,
the excited states of an open-shell nucleus.

The first work along this line was done by Kuo and
Brown, 2 who derived matrix elements of the effective in-
teraction between two nucleons outside an %0 core. As is
well known, these s-d-shell matrix elements have been re-
markably successful, at least qualitatively, in nuclear
shell-model calculations. They were, however, derived
some twenty years ago and since that time more realistic
NN potentials as well as more systematic many-body
methods for calculating these matrix elements have been
developed. It should be worthwhile, then, to incorporate
these improvements into the calculation. An attempt in
this direction has been carried out by Shurpin, Kuo, and
Strottman.!® They performed a folded-diagram calcula-
tion of these matrix elements using both Reid and Paris
NN interactions. The resulting matrix elements seem to
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have a general deficiency when compared with the recent
and highly successful empirical matrix elements of Wil-
denthal.!* As to be illustrated shortly, a main problem
appears to be that, in general, there is not enough attrac-
tion provided by the calculated matrix elements. This fact
was recently stressed also by Daehnick'® who found, par-
ticularly for the 7"=0 matrix elements, a large discrepan-
cy between theory and experiment due to a general lack of
attraction on the theoretical side.

Theoretical work done so far has used conventional, lo-
cal, and strong-tensor-force VN potentials, only. In view
of the problems mentioned, it is natural to raise the ques-
tion as to how sensitive the effective interaction is with re-
gard to the bare two-nucleon potential used as input in
these calculations. As discussed, in particular, there is la-
titude in the strength of the tensor force. It is the purpose
of this paper to examine the influence of the strength of
the bare two-nucleon tensor force on the theoretically de-
rived effective interaction.

To proceed, let us first briefly describe our pro-
cedures'>'¢ for deriving the shell-model effective interac-
tions. A first step is to calculate the model-space G matrix
defined by the integral equation

1

——oTa, 2@,
where we use a shell-model Pauli exclusion operator
specified by (n1,n2,n3) =(3,10,21).'> Vyx stands for the
NN potential, such as the Bonn A potential. Using a ma-
trix inversion method we have solved the above equation
in an essentially exact way. In fact, G is calculated as the
sum of two terms, Gr, the free-space G matrix and AG in
which the effect of Q, is entirely contained. 1316

The effective interaction is then expressed as a folded-
diagram series, grouped according to the number of folds.
Namely,

G((D) -VNN+ VNNQZ

Veﬂ‘-F0+F|+F2+F3+F4+ Tty (2)

where F, denotes a (N+1) Q-box term connected with n
sets of folded lines. For example, the three-time folded
term has the form

F,=-0fofofo. 3)

We include in the Q box all the two-body and one-body
valence irreducible diagrams up to second order in the
model-space G matrix of Eq. (1). (Namely, diagrams D1
to D7 and U of Ref. 13.) We note that only the two-body
terms are retained in the folded-diagram series of Veg.
This is because the one-body terms are presumably al-
ready contained in the experimental single-particle (sp)
energies which are to be employed in the present frame-
work. In our calculation we shall use harmonic-oscillator
wave functions, to be specified by its frequency parameter
Aw. In fact, here we use hw=14 MeV. The folded-
diagram series is found to converge satisfactorily; the
terms with more than three folds appear to be negligibly
small as has been observed and discussed in Ref. 13.
Using the above formalism we have calculated s -d-shell
effective interaction matrix elements using the Bonn A po-
tential.? This is a relativistic meson-exchange potential
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defined in the framework of the Blanckenbecler-Sugar
reduction of the Bethe-Salpeter equation, and it has a
weak tensor force with a deuteron D-state prediction of
4.4%.

It turns out that the effective interaction matrix ele-
ments derived from the weak-tensor-force Bonn A4 poten-
tial are in substantially better agreement with the empiri-
cal Wildenthal matrix elements than in former derivations
in which the stronger-tensor-force potentials of Reid or
Paris were used. The better agreement, in general, is due
to an increase of attraction. The overall improvement can
be seen in the total 2 (Ref. 17) calculated for the 63 ma-
trix elements which is 20.1, 24.9, and 25.3 for Bonn A,
Reid, and Paris, respectively. For the 7 =0 matrix ele-
ments, only, it is 15.0, 17.5, and 18.5, and for 7 =1, one
obtains 5.1, 7.4, and 6.8, again for Bonn A, Reid, and
Paris, respectively.

In Figs. 1-3, we give an overview of our results for all
63 matrix elements calculated. Some representative re-
sults of our calculation are presented in Table I. Consider
first the (abcd,JT) =(4444,01) matrix element. The re-
sult given by the Paris potential is —2.22 MeV, which is
significantly weaker than the Wildenthal result of —2.82
MeV. The result given by the Bonn A4 potential is —2.77
MeV, which is considerably closer to the empirical value.
Recall that the Bonn A4 potential has a considerably weak-
er tensor force than that of the Paris potential, the deute-
ron D-state properties for them being 4.4% and 5.8%, re-
spectively. A similar improvement for the (abcd,JT)
= (4444,10) matrix element is also observed. Here the
Paris result is —1.01 MeV and the Bonn A4 one is —1.49
MeV which is rather close to the empirical value —1.63
MeV of Wildenthal. It appears to be a general feature
that the effective interaction derived from the weak-
tensor-force Bonn A4 potential is, overall, more attractive
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FIG. 1. Comparison of s-d-shell matrix elements. As ex-
plained in the caption of Table I the sp orbitals are denoted by
numerals 4, 5, and 6. Matrix elements of common [abcd] are
grouped together and within each group the ordering for various
(J,T) values is (T =1, increasing J) to the left of (7" =0, in-
creasing J). For example, the eight matrix elements of the
[4646] multiplet have, counting from left to right, (JT) =(1,1),
2,1), 3,1),...,(3,0), and (4,0).
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TABLE 1. Shell-model matrix elements {abJT | Veg|cdJT)
(in units of MeV) calculated from the Bonn A4 (Ref. 2) and the
Paris potential (Ref. 4), and from the work of Kuo and Brown
(Ref. 12), as denoted. The empirical matrix elements are taken
from the analysis by Wildenthal (Ref. 14). The orbital notation
is 4 =0ds;2, S™1s1/2, and 6 =0d 3.
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FIG. 2. See caption of Fig. 1.

and consequently yields a better agreement with the
empirical matrix elements.

It may be instructive to also compare those matrix ele-
ments not listed in Table I to see if there is some general
trend. For this purpose let us now look at Figs. 1-3,
where we have plotted the entire set of the 63 sd-shell ma-
trix elements calculated from the Bonn A and Paris poten-
tials together with those of Wilthenthal and of Kuo and
Brown. It is seen that the general trend of the Wildenthal
matrix elements is rather well reproduced by all the calcu-
lated matrix elements. For instance, the general trend of
the empirical [4646] multiplet is well reproduced by the
calculated ones as indicated in Fig. 2. This by itself is an
encouraging result, since, in our opinion, both the NN po-
tentials and the many-body methods for the calculation of
these matrix elements are still “rather far from being per-
fect”” and a number of improvements can still be made for
them. For example, the calculations contain only the
two-body part of the effective interaction while actually
there are many-body forces and the empirical matrix ele-
ments are supposed to contain, in an effective way, some

TJ abced Bonn Kuo-Brown Empirical Paris
10 4444 -2.77 —2.53 —2.82 —2.22
4455 -1.13 —1.09 —-1.32 —0.89
4466 —3.51 —4.11 —3.19 —3.09
5555 —2.05 —2.21 —-2.12 —1.61
5566 —0.83 —0.84 —1.08 —0.69
6666 —1.28 —0.54 —2.18 —0.95
01 4444 —1.49 —0.74 —1.63 —1.01
4455 —1.02 —0.61 —1.18 —0.67
4466 +1.45 +1.75 +0.72 +1.12
5555 —3.53 —3.54 —3.26 —2.73
5566 +0.03 —0.24 +0.03 —0.06
6666 —0.76 —0.08 —1.42 —0.51
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FIG. 3. See caption of Fig. 1.

contribution from these many-body forces.

As shown in the figures, a number of calculated matrix
elements are not attractive enough, as already mentioned
earlier. An example is the [6666] multiplet of Fig. 3.
Here the Bonn 4 matrix elements are more attractive but
are still not adequate compared to the empirical values. It
appears that large differences happen mostly for the ma-
trix elments which involve the d3/; orbit. Some possible
reasons for this are the following. First, this orbit is near-
ly unbound and it is probably not well represented by a
harmonic oscillator wave function as is done in the present
work. A better way is to employ a more realistic wave
function, such as that given by a Woods-Saxon or
Hartree-Fock calculation, for this orbit.

A more pertinent reason may be the following. The sp
energies are treated as adjustable parameters in
Wildenthal’s calculation, while in our folded-diagram for-
malism we are supposed to use the 4 =17 experimental sp
energies whose relative spectrum is (0, 0.87, 5.08) MeV
for the orbits 4, 5, 6, respectively. In contrast, the corre-
sponding “best fit” sp energies used by Wildenthal are (0,
0.784, 5.595) MeV. In fact the total two-body effective
Hamiltonian H.q, i.e., the sum of the sp energies and the
effective interaction matrix elements, for the [6666] mul-
tiplet given by our calculation is actually quite close to
that of Wildenthal. The above comparison may have
brought with it an important message, concerning the
many-body forces which have not been considered in our
derivation. The above multiplet involves only two valence
nucleons and we have reproduced Wildenthal’s H g rather
well. Many-body effective forces are not involved in this
case. But when there are more than two d3/; nucleons, for
example, such forces will have to be calculated in order to
reproduce Wildenthal’s H.s. We feel that Wildenthal’s
choice of the sp energies contains, to some extent, an
effective way to compensate for the many-body forces
which have not been explicitly considered in his empirical
matrix elements.



RAPID COMMUNICATIONS

R1860

In summary, we have derived the matrix elements for
the s-d-shell effective interaction from the weak-tensor-
force Bonn potential, using a G-matrix folded-diagram

method. The essential result is that these matrix elements

turn out generally more attractive than in former deriva-
tions in which more conventional local strong-tensor-force
potentials were applied. This increase of attraction leads
to a substantially better agreement with the empirical
s-d-shell matrix elements. The present results derived
from the Bonn potential together with those obtained ear-
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lier, like the successful prediction of the triton binding en-
ergy’ and the quantitative explanation of nuclear-matter
saturation,>!! may indicate that modern genuine meson-
theoretic potentials allow for a more consistent description
of nuclear structure than traditional nuclear-force models.
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