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Abstract

The multiple scattering problem can be solved using various analytical techniques. One of these techniques,
the T -matrix formalism, is at the present time generally solved using iterative algorithms, because the initially
proposed recursive algorithms appeared to be numerically unstable. We present here a new set of recursive
relations to solve the multiple scattering equation, and discuss their range of application. In order to vali-
date this new formalism, we compare numerical results for various complex systems with the Generalized
Multi-particle Mie solution. We show that the results obtained with the recursive method are in very good
agreement with those given by iterative techniques.
? 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Theoretical and experimental studies of multiple light scattering by a collection of particles have
a large scienti<c interest in academic research as well as in the industry. Some of its numerous
applications are in astrophysics and atmospheric sciences, but one also <nds applications in the ink
or coating industries where one strives to optimize tinting strength and hiding power. Although
multiple scattering theory has been investigated since the end of the 1960s [1,2], the complexity of
the formalism has limited the range of applications.
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Since the arrival of new computer capabilities, this <eld of research has seen considerable devel-
opments. The aim of multiple scattering calculations is to evaluate the total electromagnetic <eld
which results from the interaction of an incident wave with a multitude of particles embedded in a
homogeneous medium. The radiative transfer equation [3,4] is an elegant way to formulate this prob-
lem which also permits one to easily introduce the boundary condition at the propagation medium
interfaces. Nevertheless, the range of applications of this technique is limited due to the fact that
the calculations are performed on the intensities of the <elds and not the <elds themselves. For a
dense collection of particles, the formalism fails because interference eFects become non-negligible
and one has to perform the calculations on the vector <elds. Among the various analytical tech-
niques used to solve the vectorial multiple scattering equation, the Green’s tensor and the T -matrix
approaches are widely used [5]. The <rst approach is a direct resolution of the integral equation of
the electric and magnetic <elds using the Green’s tensor. The total <eld can be evaluated through
a statistical formalism which considers a radial pair correlation function of the particles instead of
specifying each of their positions in the medium [6,7]. The second approach is based on the T -matrix
formalism coupled with the Extended Boundary Condition techniques (EBC), also called the Null
Field Approach introduced by Watermann [8] for an isolated particle. The electro-magnetic <elds
are expanded on the Vectorial Spherical Wave (VSW) basis and the expansion coeIcients of the
scattered and incident <eld are linked by a single matrix usually called T -matrix. Its coeIcients are
related to surface integrals of the electromagnetic <elds on the particle’s interface, and they simplify
greatly for spherical scatterer geometries. The T -matrix depends on the nature, size and shape of
the particle, as well as the wavelength of the incident radiation. The T -matrix formalism can also
be extended to the multiple scattering problem. A multiple T -matrix is associated to each particle
of the system. It is characterized by the optical properties of the particle and takes into account
the presence of all the other scatters. The multiple scattering equations lead to a linear system of
N coupled equations, where N is the total number of particles. The unknowns are the scattering
<eld’s coeIcients or the multiple T -matrices. Due to the ill-conditioned state of the general matrix,
the linear system cannot be numerically solved by direct inversion techniques. To overcome this
problem, various alternative techniques were proposed such as iterative algorithms [9–11,13,15,16]
or recursive processes [12,14]. In all these studies, the authors considered either dielectric or metal-
lic spherical particles embedded in an in<nite homogeneous non absorbing medium. However, if
iterative algorithms have shown to be successful, it seems that the recursive procedure proposed
by Chew and Tzeng introduce large numerical errors. An alternative recursive algorithm has been
recently proposed [17,18]. This algorithm is based on the Recursive T -matrix Algorithm (RTMA)
developed by Chew, and the Centered T -matrix concept introduced by Mackowski [19]. For this
reason, we will refer to it in this study as the Recursive Centered T -Matrix Algorithm (RCTMA).

The aim of this work is to point out some of the main possibilities of this new formalism. Also, in
order to validate this new technique, we evaluate and compare numerical calculations of the optical
parameters of various systems with the results obtained by an iterative algorithm. The article is
organized as follows : Section 2 gives a brief review of the multiple scattering formalism using the
T -matrix method, and the expansion of the electromagnetic <elds on the vectorial spherical waves
basis. Section 3 focuses on the derivation and validity of the original recursive algorithms, while
in Section 4 we develop and comment on the new recursive relations. Section 5 is devoted to the
comparative studies with the Generalized Multiparticle Mie-solution (GMM) [20].
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2. General T-matrix representation of the multiple scattering equation

We consider a monochromatic plane wave of wave vector kinc and frequency ! impinging on
a dielectric spherical particle with a complex index of refraction ns and radius a, embedded in
an in<nite non-absorbing medium of index of refraction n0. The incident and scattered <elds,
Einc and Esca can be expanded on the vectorial spherical waves basis Rg{�} and �(kincr) [21]
such as

Einc = Rg{�t(kincr)} · a; (1)

Esca =�t(kincr) · f ; (2)

where a and f are column vectors representing the incident and scattered <eld expansion coeIcients.
Rg stands for the regular part (non-singular at the origin) while the superscript t stands for the
transpose.

Using the T -matrix formalism, a and f can be linked through the relation f = T1(1) · a [8], where
T1(1) is the single T -matrix of the particle. Let us consider now a collection of N randomly located
spheres with radius ai and complex refractive indexes nis (i = 1; N ). The center of each sphere Oi

is de<ned in a principal coordinate system O by position vectors ri and the relative position vector
between two arbitrary spheres i and j is denoted by rij. The excitation <eld Ei(N )

exc is de<ned as
the total external <eld impinging on the ith sphere. In the multiple scattering formalism, it is the
sum of the applied incident <eld Einc and the <elds Ej(N )

sca scattered by all the other spheres. As
in the single particle theory, the electromagnetic <elds are expanded in terms of spherical vector
wave functions. However, while the incident <eld is naturally expanded in the principal coordinate
system O, the <elds scattered from each of the jth spheres are expanded in the coordinate systems
Oj. Therefore, in order to express both terms in the coordinate system of the ith sphere, one should
use the translational addition theorem [22] (Eqs. (A.1) and (A.2)). The analytical expression of the
excitation <eld is then given by

Ei(N )
exc =Rg{�t(kinc |r− ri|)} · NJ(i;0) · a

+
N∑
j=1
j �=i

Rg{�t(kinc |r− ri|)} · NH(i; j) · f j(N ); i = 1; : : : ; N; (3)

where f j(N ) is the column vector representing the expansion coeIcients of the scattered <eld by the
jth particle. The NJ(i;0) and NH(i; j) represent the translational matrices de<ned in Eq. (A.4). Combining
the single T -matrix’s relation with the expression of the excited <eld Eq. (3) yields a linear system
of N coupled equations

f i(N ) = NTi(1) ·


 NJ(i;0) · a +

N∑
j=1
j �=i

NH(i; j) · f j(N )


 ; i = 1; : : : ; N: (4)
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Introducing the multiple T -matrix NTi(N ) of the ith sphere, each scattered <eld can be directly linked
to the incident <eld coeIcients through the relation

f i(N ) = NTi(N ) · NJ(i;0) · a; i = 1; : : : ; N: (5)

We remark that the matrix NTi(N ) is independent of the orientation or polarization of the incident
wave, and that it characterizes the scattering properties of the ith particle while taking into account
the presence of the others. Inserting Eq. (5) into Eq. (4) yields a new linear system of coupled
equations where the unknowns are now the multiple T -matrices

NTi(N ) · NJ(i;0) = NTi(1) ·


 NJ(i;0) +

N∑
j=1
j �=i

NH(i; j) · NTj(N ) · NJ( j;0)


 ; i = 1; : : : ; N: (6)

Eqs. (4) and (6) are generally solved by an iterative algorithm. Directly solving Eq. (4) is numerically
faster, but the solutions of the <elds are only valid for the speci<ed orientation of the incident wave.
However, since the multiple T -matrices are independent of the incident <eld’s orientation, solving Eq.
(6), allows a complete characterization of the system for any orientation. Moreover, the knowledge
of the NTi(N ) matrices allows one to derive the average optical parameters of the system, where
the average is realized over all possible directions of incidence, and polarizations of the incident
<eld.

The multiple T -matrices of Eq. (6) can also be solved through a recursive formalism that was
<rst introduced by Chew for scalar waves [12]. Later, Tzeng extended this formalism to electro-
magnetic <elds [14]. The purpose of the next section is to present the derivation of those recursive
algorithms.

3. Recursive solution to the multiple scattering equation

We consider a system composed of N − 1 particles whose multiple T -matrices NTi(N−1) are all
known. An N th sphere is added to the system, and placed farthest from the origin of the principal
coordinate system. Using Eq. (6) its multiple T -matrix NTN (N ) can be expressed as

NTN (N ) · NJ(N;0) = NTN (1) ·
[
NJ(N;0) +

N−1∑
i=1

NH(N; i) · NTi(N ) · NJ(i;0)
]
: (7)

Now considering the NTi(N−1) matrix of the ith remaining particle as an eFective single T -matrix, the
corresponding excited <elds are the sum of the incident and the scattered <elds of the N th particle.
In terms of multiple T -matrix relation, this gives

NTi(N ) · NJ(i;0) = NTi(N−1) · [ NJ(i;0) + NH(i;N ) · NTN (N ) · NJ(N;0)] i6N − 1: (8)
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In order to solve the NTi(N ) matrices, the expression of NTi(N ) · NJ(i;0) of Eq. (8) is used in Eq. (7).
After some algebra, one <nds:

NTN (N ) · NJ(N;0) =
[
I − NTN (1)

N−1∑
i=1

NH(N; i) · NTi(N−1) · NJ(i;0) · NH(0;N )

]−1

NTN (1) ·
[
NJ(N;0) +

N−1∑
i=1

NH(N; i) · NTi(N−1) · NJ(i;0)
]
; (9)

NTi(N ) · NJ(i;0) = NTi(N−1) · NJ(i;0) · [I + NH(0;N ) · NTN (N ) · NJ(N;0)] i6N − 1: (10)

Eqs. (9) and (10) are the recursive relations of the Recursive T -Matrix Algorithm (RTMA). This
algorithm has two steps: <rst, one needs to evaluate the multiple T -matrix NTN (N ) of the N th scatterer
as a function of the NTi(N−1) matrices of each constituent of the (N − 1) cluster Eq. (9). Then, the
individual multiple-scattering T -matrices NTi(N ) for a cluster with N scatterers are evaluated from the
previous individual multiple-scattering T -matrices NTi(N−1) and the NTN (N ) matrix via Eq. (10). Using
the superposition principle of electromagnetic waves, one can express the total scattered <eld of the
whole system. However as each scattered <eld is expanded in a diFerent basis, one needs to translate
them into a common coordinate system. Using Eq. (A.3) of the translational theorem, the expansion
coeIcients of the total scattered <eld fT (N ) can be expressed as fT (N ) =

∑N
i=1

NJ(0; i) · f i(N ). In terms
of multiple T -matrices it gives

fT (N ) =
N∑
i=1

NJ(0; i) · NTi(N ) · NJ(i;0) · a = NTT (N ) · a; (11)

where NTT (N ) is the total T -matrix of the system. Once evaluated, the system can be treated as a
single arbitrarily shaped particle.

Now, inserting the expression NTT (N ) of Eq. (11) into the recursive relations of the RTMA yields:

NTN (N ) · NJ(N;0) = [I − NTN (1) NH(N;0) · NTT (N−1) · NH(0;N )]−1

NTN (1) · [ NJ(N;0) + NH(N;0) · NTT (N−1)]; (12)

NTT (N ) = NTT (N−1) · [ NJ(0;N ) + NTT (N−1) · NH(0;N )] NTN (N ) · NJ(N;0): (13)

Eqs. (12) and (13) de<ne a new set of recursive relations known as Recursive Aggregate T -matrix
Algorithm (RATMA) [12]. The total T -matrix of the N particles’ system is calculated from the
knowledge of the total T -matrix of the N − 1 particles’ system and the multiple T -matrix of the
N th sphere. It would then appear that the RTMA and RATMA are theoretically useful techniques
to solve the multiple scattering equation. However, it is now well known that neither algorithm
is numerically stable. In the next paragraph, we propose to discuss the causes of their numerical
instability. It turns out that even if one assumes that the series expansions of the translation addition
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theorem are uniformly convergent, for the computation of the N -spheres problem, the stability of
the recursive algorithms can be compromised.

We recall that the T -matrix formalism involves an in<nite expansion of the electric and magnetic
<elds on the partial spherical wave basis. The incident <eld is expressed therefore as an in<nite
superposition of partial spherical waves. The total scattering process is then the summation of the
individual scattering interactions between each partial spherical waves and the particle. However, the
radial behavior of the diFerent partial waves vary with their corresponding order n. For this reason,
there exists a maximum order nmax beyond which the partial waves of superior order n¿nmax will
not have a physical interaction with the particle [23]. Thereafter, the in<nite series expansion of
the electromagnetic <elds can be simply truncated at the order nmax where they certainly converge.
This order of truncation depends on the size parameter of the particle. It is usually admitted that
Wiscombe’s criterion allows for an accurate determination of its value [24].

The NH(i; j) matrices describe the continuity of the tangential components of all scattered electric
<elds across each surface of the ith sphere. Since they do not need to describe more partial waves
than those which are eFectively interacting with the particle, the in<nite series expansions given by
Eq. (A.2) can also be truncated at the order nmax. Then, the dimensions of the NH(i; j) matrices only
depends on the size parameter of the particles and are equal to dn×dn, where dn=2nmax(nmax +2).
The RTMA and RATMA techniques also involve the translation matrices NJ(i;0) and NJ(0; i).

However, even if they have the same analytical expression as given in Eq. (A.4), they play a
diFerent physical role. The NJ(i;0) matrices are used to translate a monochromatic plane wave co-
eIcients a from the principal coordinate system to the ith basis (Eq. (A.1)). But, as the ex-
pansion coeIcients of a plane wave on the spherical basis never vanish, the necessary cut-oF
of the in<nite series Eq. (A.1) has to be done at an order �max such as, �max�nmax. The NJ(i;0)

matrices must then be rectangular with dimensions dn × d�, where d� =
2�max(�max + 2).
In the formulation of the total T -matrix above, the NJ(0; i) matrices are used to translate the scat-

tered <elds f i(N ) from the basis of the ith particle to the principal coordinate system. However,
in this description, the whole system is treated as a single particle, and the series expansions
given by Eq. (A.3) have to be truncated at an order which depends now on the size parame-
ter of the whole system. The NJ(0; i) matrices are likewise rectangular with dimensions d� × dn.
The fact that �max is necessarily <nite and relatively small in order to perform realistic numer-
ical calculations will therefore compromise the numerical stability of the RTMA and RATMA
techniques. Moreover, in order to express the term NTi(N−1) · NJ(i;0) in Eq. (9), it was necessary
to use a fundamental group relations between translational matrices of the type NH(i;N ) = NJ(i;0) ·
NH(0;N ). This relation is only true in the theoretical case of in<nite dimensions of the transla-
tion matrices. Since this is not the case during numerical simulations on computers, replacing
NH(i;N ) by the product of <nite dimensional matrices NJ(i;0) · NH(0;N ) will generate a numerical
error.

Finally, in the total T -matrix representation, the total scattered <eld fT (N ) from Eq. (11) is only
valid outside of the space occupied by the particles. The evaluation of the multiple T -matrix
NTN (N ) NJ(N;0) is not performed via a direct interaction taking into account the local <eld between
the N th and all the remaining ith particles. In conclusion, the fact that both algorithms involve
the NJ(i;0) and NJ(0; i) matrices in their right and left hand sides can seriously degrade their numerical
accuracy.
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4. Recursive centered T-matrix algorithm

In order to cope with the numerical instabilities of the RTMA and RATMA formalisms, we
proposed a new set of recursive relations based on the N -centered T -matrix concept N�(i; j)N . Mackowski
[13], pointed out that the N -scattered T -matrix NTi(N ) of the ith sphere could be expressed in terms
of the N -centered T -matrix N�(i; j)N via the relation:

NTi(N ) =
N∑
j=1

N�(i; j)N · NJ( j; i) i = 1; : : : ; N: (14)

Since the scattering properties of the cluster are given by the NTi(N ), these properties will be then
fully speci<ed once all the N -centered T -matrix N�(i; j)N are determined. Introducing Eq. (14) into
Eq. (9) and Eq. (10) leads to the following new set of four recursive equations. The recurrence
relation involving NTN (N ) (i.e. Eq. (9)) gives rise to

N�(N;N )
N =


I − NTN (1) ·

N−1∑
i=1

NH(N; i) ·
N−1∑
j=1

N�(i; j)N−1 · NH( j;N )



−1

· NTN (1) (15)

N�(N;j)N = N�(N;N )
N ·

N−1∑
i=1

NH(N; i) · N�(i; j)N−1; j �= N: (16)

Similarly, Eq. (10) involving the NTk(N ) matrices, k = 1; : : : ; N − 1 yields:

N�(k; i)N = N�(k; i)N−1 +
N−1∑
j=1

N�(k; j)N−1 · NH( j;N ) · N�(N; i)N ; i �= N; (17)

N�(k;N )
N =

N−1∑
j=1

N�(k; j)N−1 · NH( j;N ) · N�(N;N )
N ; i = N: (18)

For simplicity, we refer to the above recursive relation as the Recursive Centered T -Matrix Algorithm
(RCTMA). A complete and detailed derivation of this algorithm has been previously presented
[17,18] and the reader is invited to consult the corresponding references for more informations. In
the next paragraph, how and why this new set of recursive relations can lead to a stable accurate
solution of the multiple scattering equation is explained.

Taking into account the discussion of the previous section, and examining Eqs. (15)–(18), one
can make the following comments. The recursive relations are now directly based on the evaluation
of the N -centered T -matrices themselves, and the only translation matrices involved are of the type
NH(i; j). We saw earlier that these in<nite dimensional matrices can be reliably truncated at the same
order as individual transfer matrices, without generating convergence errors. Also, each N�(i; j)N matrices
start with an ordinary one-particle transfer matrix of type NTi(1); and end with a transfer matrix of
type NTj(1). These transfer matrices are thus naturally truncated by these matrices. The algorithm is
then free from the convergence problem due to the presence of the NJ(0; i) and NJ(i;0) matrices, and the
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truncation order only depends on the size parameter of the spheres. Furthermore, the total T -matrix
of the system is never evaluated, and the solutions of the <elds are not restricted to the space outside
of the system, and one can evaluate the external and internal <eld of each of the particles throughout
the entire space.

Once evaluated the N -centered T -matrix, one can calculate the optical parameters of the whole
system such as the total cross section and the coeIcients of the amplitude scattering matrix. Fuller
[25] then Mackowski [13] derived a complete formalism in order to calculate those optical parameters
directly from the N -multiple T -matrices. In this formalism, the total cross-sections are the sum of
the individual cross-sections calculated on each sphere of the system. However, in order to evaluate
the optical parameters for a <xed orientation of the incident <eld, one has to calculate the scattering
<elds coeIcients given by Eq. (5).

Using the N -centered T -matrix representation one <nds f i(N )=
∑N

j=1 N�(i; j)N · NJ( j;0) ·a. In this relation,
one can see that the numerical evaluation of the expansion’s coeIcients of the scattered <elds
depends on the order of convergence of the NJ( j;0) matrices. To circumvent this diIculty Lo [26]
and Bruning [27,28] replaced the NJ( j;0) matrices in the far <eld region by a phase shift term. Using
this approach, the analytical expression of the expansion coeIcients f i(N ) gives

f i(N ) =
N∑
j=1

N�(i; j)N · exp[− ikinc · rj] · a: (19)

Recently, we presented complete analytical formulations of the optical parameters using this phase
shift formalism applied to the N -centered T -matrix concept [18,29]. We would like to stress the fact
that the terminology, numerical convergence, should be handled with caution when it is referred to
a recursive algorithm. Indeed examining the fundamental relations of the RCTMA, one can note that
they do not involve any convergence parameters as for an iterative technique.

5. Numerical validation

We present now a comparative study of the RCTMA and the GMM formalism developed by Xu.
In order to have a study which represents a wide range of diFerent con<gurations, we choose to
present here the 5 following systems: 9 spheres in a plane, 14 spheres in a pyramidal con<gurations,
10 spheres in a linear array, 9 spheres in a cubic centered structure, and 13 spheres in a compact
cluster. The complex indices of refraction of the particles are diFerent for each system, but are the
same for each of the particles in each con<guration. The index of refraction of the surrounding
medium is real and kept at n0 = 1:0.
The size parameter of all the spheres is equal to 2 throughout the study. Following the Wiscombe

criterion, the corresponding truncation for the expansion of the electromagnetic <elds is nmax=9.
For each con<gurations, we calculated the average total cross-section. We also have evaluated the
asymmetry parameters, the coeIcients S11 and S22 of the amplitude scattering matrix and the total
cross-sections when the direction of the incident wave vector is parallel to the Oz-axis. Each optical
parameter is evaluated independently of the others. The sizes and exact positions of each sphere in
the diFerent systems are given in Appendix B. Figs. 1–6 show the square modulus of the amplitude
scattering coeIcients S11 and S22 in a log scale, as a function of polar angle �s, where 0◦6 �s6 180◦
while the azimuth angle �s is kept equal to zero. The solid line represents the numerical results
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Fig. 1. Con<guration C1: 9 spheres in a plane. Square
module of the amplitude scattering matrix element S11.
(A) Solid line, GMM. (B) Dotted line, RCTMA.

Fig. 2. Con<guration C1: 9 spheres in a plane. Square
module of the amplitude scattering matrix element S22.
(A) Solid line, GMM. (B) Dotted line, RCTMA.
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Fig. 3. Con<guration C2: 14 spheres in a pyramidal con<g-
uration. Half sum of the square module of the amplitude
scattering matrix element S11 and S22. (A) Dotted line,
GMM. (B) Dots, RCTMA.

Fig. 4. Con<guration C3: 10 spheres in line. Half sum
of the square module of the amplitude scattering matrix
element S11 and S22. (A) Dotted line, GMM. (B) Dotted
line, RCTMA.

calculated from GMM, while the points represent those from the RCTMA. One can see the perfect
match between both algorithms for every con<guration.

The total scattering cross-sections and the asymmetry parameter for a <xed orientation of the
incident wave vector parallel to the Oz-axis are given in Tables 1–4 for both polarizations, while
the average total cross sections are showed in Tables 5 and 6. In this case, one can also see the
great agreement between both algorithms.

In order to show the diFerences between the RATMA and RCTMA, Fig. 7 represents the scattering
cross-section of four dielectric spheres as a function of their size. The particles are placed on a
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Fig. 5. Con<guration C4: 9 spheres in cubic center con-
<guration. Half sum of the square module of the ampli-
tude scattering matrix element S11 and S22. (A) Solid line,
GMM. (B) Dotted line, RCTMA.

Fig. 6. Con<guration C5: 13 spheres in a compact con-
<guration. Half sum of the square module of the ampli-
tude scattering matrix element S11 and S22. (A) Solid line,
GMM. (B) Dotted line, RCTMA.

Table 1
GMM formalism, TE polarization of the incident electric <eld: Total cross-sections (�m2) and asymmetry parameter
(dimensionless) of the <ve diFerent con<gurations under study

CTE
ext CTE

sca CTE
abs gTE

C1 66.214 51.785 14.432 0.55590
C2 631.02 631.03 0.0 0.49086
C3 475.84 475.85 0.0 0.046877
C4 625.62 425.59 200.02 0.63630
C5 851.34 814.10 37.231 0.83835

Table 2
RCTMA formalism,TE polarization of the incident electric <eld: Total cross-sections (�m2) and asymmetry parameter
(dimensionless) of the <ve diFerent con<gurations under study

CTE
ext CTE

sca CTE
abs gTE

C1 66.2173 51.7851 14.4322 0.555904
C2 631.004 631.004 0.0 0.490924
C3 475.846 475.846 0.0 0.0468746
C4 625.617 425.595 200.022 0.636298
C5 851.337 814.105 37.2316 0.838347
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Table 3
GMM formalism, TM polarization of the incident electric <eld: Total cross-sections (�m2) and asymmetry parameter
(dimensionless) of the <ve diFerent con<gurations under study

CTM
ext CTM

sca CTM
abs gTM

C1 69.860 54.893 14.967 0.55042
C2 632.55 632.55 0.0 0.39534
C3 1353.1 1353.1 0.0 0.11495
C4 625.62 425.59 200.02 0.63630
C5 835.62 798.51 37.111 0.82346

Table 4
RCTMA formalism,TM polarization of the incident electric <eld: Total cross-sections (�m2) and asymmetry parameter
(dimensionless) of the <ve diFerent con<gurations under study

CTM
ext CTM

sca CTM
abs gTM

C1 69.8604 54.8931 14.9674 0.550417
C2 632.567 632.567 0.0 0.395404
C3 1353.09 1353.09 0.0 0.114949
C4 625.617 425.595 200.022 0.636298
C5 835.620 798.509 371.106 0.823457

Table 5
GMM formalism: Total average cross-sections (�m2) of the <ve diFerent con<gurations under study

〈Cext〉 〈Csca〉 〈Cabs〉
C1 54.6033 43.4492 11.1541
C2 616.156 616.156 0.0
C3 744.372 744.372 0.0
C4 560.972 373.810 187.62
C5 835.265 797.615 37.65

Table 6
RCTMA formalism: Total average cross-sections (�m2) of the <ve diFerent con<gurations under study

〈Cext〉 〈Csca〉 〈Cabs〉
C1 54.6034 43.4492 11.1542
C2 615.851 615.850 0.0
C3 744.359 744.359 0.0
C4 560.973 373.811 187.62
C5 835.371 797.823 37.549
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Fig. 7. Scattering cross-sections of four dielectric spheres in a tetrahedric con<guration as a function of their size. The
incident wave vector is parallel to the Oz axis and the electric <eld has a TE polarization. The wavelength is 0:546 �m,
nis = 2:8 and n0 = 1:5. Black circles RCTMA. White circles RATMA.

tetrahedral con<guration, and the incident wave vector is parallel to the Oz-axis. The wavelength is
0:546 �m while the indices of refraction of the particles and surrounding medium are nis = 2:8 and
n0 = 1:5, respectively. One can see from Fig. 7, that both algorithms give relatively close results for
very small particles. However, when the size of the spheres increases, one can notice the numerical
instability of the RATMA.

6. Conclusion

We presented a new set of recursive relations in order to solve the multiple T -matrices of a
system composed of N dielectric spheres in interaction. This new method is based on the N -centered
T -matrix concept. We showed that its numerical stability arises from the fact that it only involves
translation matrices with a cut-oF related to the size parameter of the particles, whereas the RTMA
and RATMA use translation matrices that have their dimension linked to the size of the entire
system.

This gain in numerical stability is however associated with an increase of the total number of
matrices that have to be evaluated. While this number is proportional to N for the RTMA, it is now
proportional to N 2 for the RCTMA. We have validated the stability of the algorithm by comparing its
numerical result with those obtained from the Generalized Multiparticle Mie formalism on various
complex systems. We showed that the recursive procedure gives numerical result in very good
agreement with the GMM formalism. For a <xed incident <eld, iterative techniques are apparently
the faster of the two algorithms because they do not involve a matrix inversion. However, due to
its recursive nature, the RCTMA does not depend on convergence’s parameters.
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Appendix A. Translation theorem

The expressions of the translational theorem for spherical wave functions are:

Rg{�(3)t(k0 |r− ri|)}= Rg{�(3)t(k0 |r− rk |)} · NJ(k; i) ∀rik ; (A.1)

�(3)t(k0 |r− ri|) = Rg{�(3)t(k0 |r− rk |)} · NH(k; i); r ¡ rik ; (A.2)

�(3)t(k0 |r− ri|) =�(3)t(k0 |r− rk |) · NJ(k; i) r ¿ rik ; (A.3)

where NJ(k; i) and NH(k; i) are the translational matrices which can be written as

NJ(k; i) =

[
Rg{A��(q)nm } Rg{B��(q)

nm }
Rg{B��(q)

nm } Rg{A��(q)nm }

]
and NH(k; i) =

[
A��(q)nm B��(q)

nm

B��(q)
nm A��(q)nm

]
: (A.4)

The A��(q)nm and B��(q)
nm are the translation coeIcients needed for the transformation from the ith to

the kth coordinate system. They depend on the position vector rki between the two spheres, and the
amplitude of the wave-vector of the medium in which they are imbedded.

Appendix B. Description of the systems

The characteristics of the <ve diFerent con<gurations are given in the following vector form:
{i; Xi; Yi; Zi; ai; Re(nis); Im(nis)} where the subscript i represents the ith sphere in the system and Xi,
Yi and Zi are its cartesien coordinate, ai is the radius, Re(nis) and Im(nis) the real and imaginary part
of its complex index of refraction. The index of the surrounding medium is real and kept constant
at n0=1.0 for all con<gurations.
ConAguration 1 (C1): 9 dielectric spheres in a plane. The wavelength of the incident wave is $0=%

and the characteristics of each sphere are given by {1; 0:0; 0:0; 0:0; 1:0; 2:516; 0:12}; {2,0.0,0.0,6.4,
1.0, 1.625,0.015}; {3,0.0,0.0,− 6.4,1.0,1.625,0.015}; {4,6.4,0.0,0.0,1.0,1.625,0.015}; {5,− 6.4,0.0,
0.0, 1.0, 1.625,0.015}; {6,− 6.4,0.0,6.4,1.0,1.3,0.08}; {7,− 6.4,0.0,− 6.4,1.0,1.3,0.08}; {8,6.4, 0.0,
6.4, 1.0,1.3,0.08}; {9,6.4,0.0,− 6.4,1.0,1.3,0.08}
ConAguration 2 (C2): 14 dielectric spheres in a pyramidal con<guration. The wavelength of

the incident wave is $0 = 10:053 and the characteristics of each sphere are given by: {1,0.0,0.0,
0.0,3.2,2.8,0.0}; {2,0.0,0.0,6.4,3.2,2.8,0.0}; {3,0.0,0.0,−6.4,3.2,2.8,0.0}; {4,6.4,0.0,0.0,3.2,2.8,0.0};
{5,−6.4,0.0,0.0,3.2,2.8,0.0}; {6,3.2,4.5255,3.2,3.2,2.8,0.0}; {7,−3.2,4.5255,−3.2,3.2,2.8,0.0}; {8,3.2,
4.5255, − 3.2,3.2,2.8,0.0}; {9,− 3.2,4.5255,3.2,3.2,2.8,0.0}; {10,6.4,0.0,6.4,3.2,2.8,0.0}; {11,− 6.4,
0.0,− 6.4,3.2,2.8,0.0}; {12,− 6.4,0.0,6.4,3.2,2.8,0.0}; {13,6.4,0.0,− 6.4,3.2,2.8,0.0}; {14,0.0,9.051,
0.0,3.2,2.8,0.0}.
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ConAguration 3 (C3): 10 dielectric spheres in a line. The wavelength of the incident
wave is $0 = 10:053 and the characteristics of each sphere are given by: {1,3.2,0.0,0.0,
3.2,2.8,0.0}; {2,−3.2,0.0,0.0,3.2,2.8,0.0}; {3,9.6,0.0,0.0,3.2,2.8,0.0}; {4,−9.6,0.0,0.0,3.2,2.8,0.0};
{5,16.0,0.0,0.0,3.2,2.8,0.0}; {6,−16.0,0.0,0.0,3.2,2.8,0.0}; {7,22.4,0.0,0.0,3.2,2.8,0.0}; {8,−22.4,0.0,
0.0,3.2,2.8,0.0}; {9,28.8,0.0,0.0,3.2,2.8,0.0}; {10,−28.8,0.0,0.0,3.2,2.8,0.0}.
ConAguration 4 (C4): 9 dielectric spheres cubic center structure. The wavelength of the incident

wave is $0 = 10:053 and the characteristics of each sphere are given by: {1,0.0,0.0,0.0,3.2,1.5,0.1};
{2,−15.0,−15.0,−15.0,3.2,1.5,0.1}; {3,−15.0,15.0,−15.0,3.2,1.5,0.1}; {4,15.0,15.0, −15.0, 3.2, 1.5,
0.1}; {5,15.0,−15.0,−15.0,3.2,1.5,0.1}; {6,−15.0,−15.0,15.0,3.2,1.5,0.1}; {7,−15.0,15.0, 15.0,3.2,
1.5,0.1}; {8,15.0,15.0,15.0,3.2,1.5,0.1}; {9,15.0,−15.0,15.0,3.2,1.5,0.1}.
ConAguration 5 (C5): 13 dielectric spheres in a compact structure. The wavelength of the incident

wave is $0 = 10:053 and the characteristics of each sphere are given by: {1,0.0,0.0,0.0,3.2,1.5,0.01};
{2,5.4443,−3.36471,0.0,3.2,1.5,0.01}; {3,0.0,5.4443,−3.36471,3.2,1.5,0.01}; {4,−3.36471,0.0,
5.4443,3.2,1.5,0.01}; {5,0.0, −5.4443,−3.36471,3.2,1.5,0.01}; {6,3.36471,0.0,5.4443,3.2,1.5,0.01};
{7,−5.4443,3.36471,0.0,3.2,1.5,0.01}; {8,0.0,5.4443,3.36471,3.2,1.5,0.01}; {9,3.36471,0.0,−5.4443,
3.2,1.5,0.01}; {10,−5.4443,−3.36471,0.0,3.2,1.5,0.01}; {11,5.4443,3.36471,0.0,3.2,1.5,0.01}; {12,
0.0,−5.4443,3.36471,3.2,1.5,0.01}; {13,−3.36471,0.0,−5.4443,3.2,1.5,0.01}
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