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Institut Fresnel, Unité Mixte de Recherche associée au CNRS 6133,
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Unité Mixte de Recherche associée au CNRS 7601, Case 80, 4 place
Jussieu 75252 Paris Cedex 05, France

(Received 23 July 2001; revision received 12 December 2001)

Abstract. We present a new recursive transfer matrix method for calculating
local electromagnetic fields in systems of spheres subject to strong dependent
scattering. Local field information is often lost or discarded in recursive transfer
matrix approaches. In order to preserve the local field information, and to avoid
problems associated with the dimensional cut-off of the translation matrices, we
calculate the scatterer-centred transfer matrices. Our technique permits
systematic studies of local field effects for all possible incident field directions,
and configurations (including orientation averages). Illustrative calculations are
presented.

1. Introduction
Recent years have seen considerable developments in the calculations of strong

dependent multiple scattering. A natural tool for such calculations is the transla-
tion–addition theorem, in which the coefficients of a spherical wave expansion
about a given point are multiplied by translation–addition matrices which trans-
form them into coefficients of a spherical partial wave expansion around a different
origin. Such infinite matrix multiplications have numerical applications only
because there exists a natural cut-off in the problem. Indeed, for a particle of a
given size in amedium of wave-vector amplitude k, only partial waves up to certain
finite order can significantly interact with the particle. A conservative estimate of
the cut-off for spheres of radius R is given (as a function of kR) by the Wiscombe
[1] criteria.

Although one can rather readily write down the multiple-scattering equations,
the large number of unknowns and the sparse nature of the equations, often
prevents a direct matrix inversion solution for three-dimensional systems [2–5].
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Consequently, most calculations in the literature have been of an iterative nature.
In applications, however, it is frequently advantageous to calculate the transfer
matrix for the multiple scattering system. One of the advantages of the transfer
matrix approach is that it contains, once and for all, the information concerning all
possible incident field configurations, directions and polarizations. This more
complete information concerning the scattering system is particularly useful
when carrying out the orientation averages often necessary when treating macro-
scopic transport phenomenon.

Several researchers have proposed the calculation of cluster transfer matrices,
T cl
N , via constructive approaches which build the transfer matrix of a complete

system through successive (recursive) steps [3, 6]. Each of these individual steps is
calculationally less demanding than the full matrix inversion of the equations of
the entire system. Amajor obstacle in these recursive approaches is that they suffer
from a growth in the number of dimensions of the partial wave basis beyond that
necessary to describe individual scatterings, as recently discussed by Siqueira and
Sarabandi [4]. A second important lack of these new transfer matrix approaches is
that, in practice, one often loses (or discards) local field information. This loss of
information is of no importance (and often considered desirable) if one is inter-
ested only in far field quantities (e.g. total cross-sections). However, there is
increasing interest in the local field enhancements which can occur in multiple-
scattering systems, and it can prove useful to keep this information in the transfer
matrix formalism.

In this work, we demonstrate a recursive technique which carries out the
matrix inversion of the complete system of equations in a numerically reliable
manner, while avoiding any undesirable ‘growth’ of the partial wave dimensions
beyond that necessary to describe the individual scatterings. Our attention is
concentrated on systems of impenetrable spheres. In such systems, the multiple-
scattering formulation contains the necessary information for determining the
entire local field configuration.

The outline of this work is as follows. Section 2 consists of an introduction to
the formalism via a reminder of some of the basic definitions of partial wave
expansions, incident and scattered fields, and the individual transfer matrices.
These definitions permit compact derivations of multiple-scattering theory. Sec-
tion 3, then contains a brief review of multiple scattering theory and serves to
familiarize the reader with our notation. In section 4, we develop a recursive
procedure for constructing the scatterer-centred transfer matrices T

ði; jÞ
N . It will be

shown that working with the T
ði; jÞ
N allows the dimensional cut-off to be brought

under control. In section 5, we present formulae for obtaining useful physical
information such as orientation fixed and orientation averaged cross sections. We
also derive, in this section, formulae for extracting local field information. In
section 6, we present some illustrative results for cross sections, and fields in the
interiors of the scatterers of strongly scattering three-dimensional systems. We
make our concluding remarks in section 7.

2. Spherical wave expansions and individual transfer matrices
An incident field Ei impinging on an N-particle system can be developed in

terms of regular spherical waves developed about some point 0 chosen as the origin
of the system of scatterers (figure 1):
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Ei rð Þ ¼ E
X1
n¼1

Xn
m¼%n
½RgfMnmðkrÞgaM

nm þRgfNnmðkrÞgaN
nm,

¼ E½RgfMðkrÞg; RgfNðkrÞg, & aM

aN

" #
0 ERgfEtðkrÞg & a; ð1Þ

where Mnm and Nnm are the vector spherical waves (see appendix A), and E is a real

parameter which determines the field amplitude of the incident wave. In the

second line, the troublesome summation over multipolarity indices has been

suppressed by invoking a matrix notation wherein the indices n and m label the

components in an abstract vector space [7]. The column vector a is composed of

the incident field coefficients. In the last line, the notation is simplified still further

by defining EðkrÞ as an abstract vector composed of the vector wavefunctions

M krð Þ and N krð Þ. The superscript t stands for the transpose of a column vector

into a row vector. The notation Rgf g stands for ‘the regular part of’ [7] (see

appendix A).

It is also possible to describe scattered fields via spherical wave expansions. In a

multiple-scattering system, the total field Ecl
t ðrÞ outside the scatterers is simply the

sum of the incident and scattered fields:

Ecl
t ðrÞ ¼ Ei þ Ecl

s ðrÞ: ð2Þ
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Figure 1. A two-dimensional projection of a system of multiple light scattering by
spheres. A field is incident on the system with a wave-vector ki. The centres of the
spheres are denoted xj, j ¼ 1; . . . ;N;N being the number of spheres in the system.



It is practical to develop the scattered field around the particle centres. The centre
of the jth particles will henceforth be denoted by xj, and the spherical coordinates
relative to each scatterer are written rj ¼ r% xj. The scattered field Eð jÞs emanating
from the jth particle can be developed in terms of outgoing spherical waves (see
appendix A, equations (A 4)) in the coordinates of the respective centre. The
coefficients of this development are denoted by the scattering vector fð jÞ. The
scattered field of the entire cluster can thus be expressed

Ecl
s ðrÞ ¼

XN
j¼1

Eð jÞs ðrjÞ ¼ E
XN
j¼1

EtðkrjÞ & fð jÞ: ð3Þ

A central concept in developing a multiple-scattering theory is that of an
excitation field for the individual particles. In an N-particle cluster, the excitation
field Eð jÞe for a particle j is generated by the incident field and the (multiple)
scattering of the incident field by remaining N % 1 scatterers.

In a spherical basis developed around its respective centre, an excitation field
can be developed in terms of the regular spherical waves:

Eð jÞe ðrÞ ¼ ERgfEtðkrjÞg & eð jÞ: ð4Þ
A final and central definition necessary to the formulation of a multiple

scattering theory is the one-body transfer matrices T
ð jÞ
1 , which yield the scattering

coefficients fð jÞ in terms of the coefficients of the excitation field impinging on the
jth scatterer:

fð jÞ 0 T
ð jÞ
1 & eð jÞ: ð5Þ

For a sphere, T
ð jÞ
1 is a diagonal matrix whose elements are given by the Mie [8]

coefficients [9, 10].

3. Multiple-scattering theory for clusters
3.1. Theory of the excitation field

Formally at least, the equations of multiple scattering theory are relatively
easily derived. By definition, the excitation field (or locally incident field) Eð jÞe ðrÞ for
the jth particle in the cluster is the sum of the incident field, and the field scattered
by all of the remaining particles, that is

Eð jÞe ðrÞ 0 EiðrÞþ
XN
l¼1;l 6¼j

EðlÞs ðrÞ

¼ ERgfEtðkrÞg & aþ E
XN
l¼1;l 6¼j

EtðkrlÞ & fðlÞ: ð6Þ

Using the translation–addition theorem (appendix B), this field may be rewritten
as a regular field expansion around the centre of the corresponding particle

Eð jÞe ðrjÞ ¼ ERgfEtðkrjÞg & bð j;0Þ & aþ E
XN
l¼1;l 6¼j

RgfEtðkrjÞg & að j;lÞ & fðlÞ; ð7Þ
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where að j;lÞ 0 aðxj % xlÞ is the irregular translation matrix in the notation of Chew
[3] (see appendix B) and the dots (&) indicate that we have made a matrix
multiplication over the spherical wave components.

Invoking the definition of the excitation field coefficients (equation (4)),
equation (7) can be written entirely in terms of the field cofficients, that is

eð jÞ ¼ bð j;0Þ & aþ
XN
l¼1;l 6¼j

að j;lÞ & fðlÞ: ð8Þ

Using the definition of the one-body transfer matrix (equation (5)), one obtains a
set ofN coupled matrix equations with the excitation coefficients as the unknowns:

eð jÞ ¼ bð j;0Þ & aþ
XN
l¼1;l 6¼j

að j;lÞ & TðlÞ1 & eðlÞ: ð9Þ

We regard this equation as the fundamental multiple-scattering equation from
which all the solutions considered here may be formulated. It is important to keep
in mind that eð jÞ and a are in principal infinite-dimensional vectors. Numerical
solutions to equation (9) are only possible because the matrix elements of the one-
body transfer matrix are essentially zero beyond a certain multipolarity order nmax.
Consequently, nearly exact analytic solutions to equation (9) can be obtained
by working within a basis set truncated to contain all multipolarity orders up
to nmax. Taking into account the axial ‘quantum’ numbers m (see equation (1)
and appendix B), the truncated dimension L of the vectors eð jÞ and a is L ¼
2n2max þ 4nmax.

3.2. Scatterer-centred cluster transfer matrices
Once an appropriate cut-off dimension nmax has been applied, the most direct

method to solve for the eð jÞ is to arrange the N equations of equation (9) as a
ðNL3NLÞ-dimensional ‘system’ matrix and to solve for the eð jÞ by matrix
inversion:

eð1Þ

eð2Þ

..

.

eðNÞ

266666664

377777775 ¼
I %að1;2Þ & Tð2Þ1 & & & %að1;NÞ & TðNÞ1

%að2;1Þ & Tð1Þ1 I & & & %að2;NÞ & TðNÞ1

..

. ..
. . .

. ..
.

%aðN;1Þ & Tð1Þ1 %aðN;2Þ & Tð2Þ1 & & & I

2666666664

3777777775

%1
bð1;0Þ & a
bð2;0Þ & a

..

.

bðN;0Þ & a

266666664

377777775;

ð10Þ
where I denotes the identity matrix. This equation can be expressed in terms of the
scattering vectors fð jÞ by multiplying both sides of the above equation by a block
diagonal matrix composed of the one-body transfer matrices:

T
ð1Þ
1 0 & & & 0

0 T
ð2Þ
1 & & & 0

..

. ..
. . .

. ..
.

0 0 & & & T
ðNÞ
1

266664
377775: ð11Þ
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Using equation (5) on the left-hand side, equation (10) then takes the form

fð1Þ

fð2Þ

..

.

fðNÞ

26666664

37777775 0
T
ð1;1Þ
N T

ð1;2Þ
N & & & T

ð1;NÞ
N

T
ð2;1Þ
N T

ð2;2Þ
N & & & T

ð2;NÞ
N

..

. ..
. . .

. ..
.

T
ðN;1Þ
N T

ðN;2Þ
N & & & T

ðN;NÞ
N

266666664

377777775

bð1;0Þ & a
bð2;0Þ & a

..

.

bðN;0Þ & a

26666664

37777775: ð12Þ

This procedure thereby defines the scatterer-centred transfer matrices T
ð j;kÞ
N .

The T
ð j;kÞ
N matrices form a complete multiple-scattering solution of the entire

N-particle system. Following Mackowski [5], this system of equations can be
compactly expressed as

fð jÞ ¼
XN
k¼1

T
ð j;kÞ
N & bðk;0Þ & a: ð13Þ

Although formally simple, the abovemethod of obtaining T
ð j;kÞ
N is often impractical

for three-dimensional systems of spheres owing to the numerical difficulties in
inverting the matrix in equation (10).

4. Transfer matrix constructions
An alternative to the direct matrix inversion outlined in section 3.2 is to

formulate the solution in terms of individual transfer matrices T
ð jÞ
N (defined in

section 4.1 below). Like the scatterer-centred transfer matrices T
ð j;kÞ
N of equation

(9), these matrices retain local field information. The property of T
ð jÞ
N of principal

interest to us is that they can be obtained via computationally efficient recursive
techniques. Section 4.2 is essentially a review of a recursive approach of a type
proposed by Chew [3]. The dimensional problems associated with this technique
are also described in this section. Finally, in section 4.3, we show how the
dimensionality problems can be eliminated by adapting the recursive technique
to calculate the scatterer-centred cluster transfer matrices T

ð j;kÞ
N .

4.1. Individual N-body transfer matrices
In an N-body cluster, an individual transfer matrix T

ð jÞ
N yields the coefficients

of the field scattered by the jth particle in terms of the incident field, while taking
into account the multiple scattering from all other scatterers. The T

ð jÞ
N are thus

defined such that

fð jÞ 0 T
ð jÞ
N & bðkxjÞ & a

0 T
ð jÞ
N & bð j;0Þ & a; ð14Þ

where the bð j;0Þ factor was introduced in order for T
ð jÞ
N to be independent of the

choice of system origin. There is a close relationship between the matrices T
ð jÞ
N and

T
ð j;kÞ
N , as we will show later in equation (27).
A system of matrix equations for the T

ð jÞ
N is readily obtained from the basic

multiple-scattering equatiions by inserting the definition of T
ð jÞ
N into the excitation

field coefficient equation (8):
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eð jÞ ¼ bð j;0Þ & aþ
XN
l¼1;l 6¼j

að j;lÞ & TðlÞN & bðl;0Þ & a: ð15Þ

An equation for the scattered field coefficients is obtained by multiplying both
sides of this equation by T

ð jÞ
1 . Invoking equation (5) and the group properties of the

regular translation matrices yields

fð jÞ ¼ T
ð jÞ
1 & Iþ

XN
l¼1;l 6¼j

að j;lÞ & TðlÞN & bðl;jÞ
 !

& bð j;0Þ & a: ð16Þ

Finally, invoking the definition of the N-body transfer matrices (equation (14)),
gives N equations for the N unknown T

ð jÞ
N matrices:

T
ð jÞ
N ¼ T

ð jÞ
1 & Iþ

XN
l¼1;l 6¼j

að j;lÞ & TðlÞN & bðl;jÞ
 !

: ð17Þ

This equation may be regarded as the fundamental equation for the individual
transfer matrices. Although the T

ð jÞ
N may in principle be solved iteratively (see, for

example, [11]), the presence of regular translation matrices bðl;jÞ on the far right-
hand side of equation (17) introduce dimensionality problems associated with
multiplying truncated translation matrices. Putting this problem aside for the
moment, we review in the next section an efficient recursive method for obtaining
these matrices [3].

4.2. Recursive solutions for T
ð jÞ
N

Recursive solutions are in principle an efficient means of calculating the T
ð jÞ
N

matrices. One assumes that the scattering problem ofN % 15 1 particles is known
and with this knowledge solve the N-body problem. Since the one-body solution
for a sphere is known, the solution for any finite cluster is obtained recursively.

In the recursive method, the new particle added to the system is labelled N.
The formal solution (equation (17)) obtained above yields an equation for this
scatterer, that is

T
ðNÞ
N ¼ T

ðNÞ
1 & Iþ

XN%1
l¼1

að j;lÞ & TðlÞN & bðl;jÞ
 !

: ð18Þ

In order to create a recursive system, a second equation is needed. Following the
work by Chew [3], E

ð jÞ
N%1;cl is defined as the excitation field of the jth particle in the

ðN % 1Þ-particle cluster due to the incident field and the field scattered by the Nth
particle. This field is expressed as

E
ð jÞ
N%1;clðrÞ ¼ RgfEtðrjÞg & ðbð j;0Þ & aþ að j;NÞ & TðNÞN & bðN;0Þ & aÞ

0 RgfEtðrjÞg & eð jÞN%1;cl: ð19Þ
The scattered field coefficients f ð jÞ in the N-particle system are then obtainable in
terms of the known T

ð jÞ
N%1 matrix, and the cluster excitation field

f
ð jÞ
N ¼ T

ð jÞ
N%1 & eð jÞN%1;cl: ð20Þ
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Inserting the results for e
ð jÞ
N%1;cl from equation (19) into equation (20) and using the

definition for T
ð jÞ
N (equation (14)) yield

T
ð jÞ
N ¼ T

ð jÞ
N%1 & ðIþ að j;NÞ & TðNÞN & bðN;jÞÞ: ð21Þ

The two coupled equations (18) and (21) can be solved by substituting equation
(18) into equation (21), and performing a matrix inversion:

T
ðNÞ
N ¼ I% TðNÞ1 &

XN%1
k¼1

aðN;kÞ & TðkÞN%1 & aðk;NÞ
 !%1

&TðNÞ1 & Iþ
XN%1
j¼1

aðN; jÞ & Tð jÞN%1 & bð j;NÞ
 !

:

ð22Þ
Unlike the matrix inversion in equation (10), this inversion is performed on a basis
set describing a single scatterer, and not the entire system. Once T

ðNÞ
N has been

determined, T
ð jÞ
N may be determined by inserting T

ðNÞ
N in equation (21). Equations

(22) and (21) thus form a recursive algorithm by which all T
ð jÞ
N matrices can be

obtained for an arbitrary N-particle system.
For a two-particle system, T

ð jÞ
2 may be written symmetrically:

T
ð1Þ
2 ¼ ðI% Tð1Þ1 & að1;2Þ & Tð2Þ1 & að2;1ÞÞ%1 & Tð1Þ1 & ðIþ að1;2Þ & Tð2Þ1 & bð2;1ÞÞ; ð23aÞ

T
ð2Þ
2 ¼ ðI% Tð2Þ1 & að2;1Þ & Tð1Þ1 & að1;2ÞÞ%1 & Tð2Þ1 & ðIþ að2;1Þ & Tð1Þ1 & bð1;2ÞÞ: ð23bÞ

This result for a two-particle system is essentially that originally obtained by
Bruning and Lo [12]. Simple manipulation of the geometric expansion formula for
operators allows us to rewrite the above equations in a form which is more
transparent for the developments of the next section:

T
ð1Þ
2 ¼ T

ð1Þ
1 & ðI% að1;2Þ & Tð2Þ1 & að2;1Þ & Tð1Þ1 Þ%1 & ðIþ að1;2Þ & Tð2Þ1 & bð2;1ÞÞ;

T
ð2Þ
2 ¼ T

ð2Þ
1 & ðI% að2;1Þ & Tð1Þ1 & að1;2Þ & Tð2Þ1 Þ%1 & ðIþ að2;1Þ & Tð1Þ1 & bð1;2ÞÞ:

ð24Þ

Although the recursive method is formally exact, we remarked that numerical
inaccuracies appear during the application of this technique to truncated addition–
translation matrices. These difficulties can rapidly become quite severe and limit
the application of the recursive technique as was recently pointed out by Siqueira
and Sarabandi [4], during the preparation of this work. Although the difficulties
appear already in the application of the recursive prescription to a two-particle
system, they are most evident in the application of recurrence from N to N þ 1
where N5 2. Our appraisal of the source of these problems is essentially the same
as Siqueira and Sarabandi, and we only review it rapidly here.

In the interest of concreteness, let us consider the application of the recursive
algorithm of equations (22) and (21) to the calculation of a three-particle system.
The individual transfer matrix T

ð3Þ
3 is then to be calculated from the formula

T
ð3Þ
3 ¼ I% Tð3Þ1 &

X2
k¼1

að3;kÞ & TðkÞ2 & aðk;3Þ
 !%1

&Tð3Þ1 & Iþ
X2
j¼1

að3; jÞ & Tð jÞ2 & bð j;3Þ
 !

: ð25Þ

Inserting the results for T
ð1Þ
2 and T

ð2Þ
2 given in equation (24), one readily observes

that there are products of the form bð j; iÞ & aði;3Þ and bð j;iÞ & bði;3Þ. The problem with
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dimensional cut-offs is now apparent. The multiplication of truncated translation–
addition does not equal the truncation of the product, that is

½bð j;iÞ,LL & ½aði;3Þ,LL 6¼ ½bð j;iÞ & aði;3Þ,LL;

½bð j;iÞ,LL & ½bði;3Þ,LL 6¼ ½bð j;iÞ & bði;3Þ,LL:
ð26Þ

One could in principle alleviate this problem by truncating at orders higher than
the cut-off for individual spheres, but one finds that this higher order corresponds
roughly to the Wiscombe [1] criteria applied to a circumscribing sphere encom-
passing the entire system. Such large dimensions are in practice cumbersome and
diminish the practicality of the recursive technique.

We shall show in section 4.3, however, that all the partial wave dimensionality
problems can be resolved by applying the recursive procedure to scatterer-centred
transfer matrices.

4.3. Recursive methods for scatterer-centred T matrices
The dimensionality problems encountered in recursive constructions of the

individual transfer matrices T
ð jÞ
N can be brought under control by applying the

recursive technique to the calculation of scatterer-centred transfer matrices T
ð j;kÞ
N .

By comparison of their respective definitions in equations (13) and (14), we find
that the T

ð jÞ
N may be expressed in terms of the T

ð j;kÞ
N :

T
ð jÞ
N ¼

XN
k¼1

T
ð j;kÞ
N & bðk;jÞ: ð27Þ

Using this relation, a simple inspection of the results for T
ð jÞ
2 in equation (24)

permits us to deduce the following expressions for T
ði; jÞ
2 :

T
ð1;1Þ
2 ¼ T

ð1Þ
1 & ðI% að1;2Þ & Tð2Þ1 & að2;1Þ & Tð1Þ1 ,%1

¼ T
ð1Þ
1 þ Tð1Þ1 & að1;2Þ & Tð2Þ1 & ðI% að2;1Þ & Tð1Þ1 & að1;2Þ & Tð2Þ1 Þ%1 & að2;1Þ & Tð1Þ1 ;

T
ð1;2Þ
2 ¼ T

ð1Þ
1 ðI% að1;2Þ & Tð2Þ1 & að2;1Þ & Tð1Þ1 Þ%1 & að1;2Þ & Tð2Þ1 ;

T
ð2;2Þ
2 ¼ T

ð2Þ
1 ðI% að2;1Þ & Tð1Þ1 & að1;2Þ & Tð2Þ1 Þ%1;

T
ð2;1Þ
2 ¼ T

ð2Þ
1 ðI% að2;1Þ & Tð1Þ1 & að1;2Þ & Tð2Þ1 Þ%1 & að2;1Þ & Tð1Þ1 : ð28Þ

An important property of these scatterer-centred transfer matrices T
ð j;iÞ
2 is that

they begin on the left with an ordinary one-particle transfer matrix of the type T
ð jÞ
1

and end on the right with a transfer matrix of the type T
ðiÞ
1 . Since the one-body

transfer matrices have a natural cut-off arising from the finite particle size, the T
ð j;iÞ
2

will generally have their dimension limited to those physically excited in the
individual particles. We shall see below that this property continues to hold true
when we go to N > 2 particle systems.

We can now obtain the transfer matrices for the three-body system by inserting
the definition of the scatterer-centred T

ð j;iÞ
2 matrices of the two-body system

(equation (28)) into the recursion relations of equation (22). We obtain then
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T
ð3Þ
3 ¼ T

ð3Þ
1 & I%

X2
j;k¼1

að3;kÞ & Tðk; jÞ2 & bð j;kÞ & aðk;3Þ & Tð3Þ1

 !%1

& Iþ
X2
j;k¼1

að3;jÞ & Tð j;kÞ2 & bðk;jÞ & bð j;3Þ
 !

: ð29Þ

We now see the advantage of the scatterer-centred formalism in which the regular

translation matrices are kept explicitly outside of the T
ð j;kÞ
N transfer matrices. The

multiplications of the translation matrices in equation (29) may now be carried out

formally to finite order by making use of the infinite-order addition matrix
relations

bð j;kÞ & aðk;3Þ ¼ að j;3Þ;

bðk; jÞ & bð j;3Þ ¼ bðk;3Þ:
ð30Þ

Consequently, equation (29) may be compactly rewritten

T
ð3Þ
3 ¼ T

ð3Þ
1 & I%

X2
j;k¼1

að3;kÞ & Tðk; jÞ2 & að j;3Þ & Tð3Þ1

 !%1
Iþ

X2
j;k¼1

að3; jÞ & Tð j;kÞ2 & bðk;3Þ
 !

:

ð31Þ

Carrying out the same procedure for an arbitrary N-particle system yields the

recursive equation

T
ðNÞ
N ¼ T

ðNÞ
1 & 1 I%

XN%1
j;k¼1

aðN;kÞ & Tðk; jÞN%1 & að j;NÞ & TðNÞ1

 !%1
& Iþ

XN%1
j;k¼1

aðN; jÞ & Tð j;kÞN%1 & bðk;NÞ
 !

0
XN
k¼1

T
ðN;kÞ
N & bðk;NÞ: ð32Þ

As in the two-particle case, the identification of the T
ðN;kÞ
N matrices is made by

inspection, and the criteria that T
ðN;kÞ
N begin with a matrix T

ðNÞ
1 and end with a

matrix T
ðkÞ
1 . This prescription yields

T
ðN;NÞ
N ¼ T

ðNÞ
1 & I%

XN%1
j;k¼1

aðN;kÞ & Tðk; jÞN%1 & að j;NÞ & TðNÞ1

 !%1
; ð33 aÞ

T
ðN;kÞ
N ¼ T

ðN;NÞ
N &

XN%1
j¼1

aðN; jÞ & Tð j;kÞN%1; k 6¼ N: ð33 bÞ

The readjustment of the T
ð j;kÞ
N%1 matrices, j 6¼ N, k 6¼ N, so that they become N-

body scatterer-centred matrices T
ð j;kÞ
N is obtained by inserting equations (27) and

(33 a) into the recursive equation (21), yielding
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T
ð jÞ
N ¼

XN%1
i¼1

T
ð j;iÞ
N%1 & bði; jÞ & Iþ að j;NÞ &

XN
k¼1

T
ðN;kÞ
N & bðk; jÞ

 !

¼
XN%1
k¼1

T
ð j;kÞ
N%1 þ

XN%1
i¼1

T
ð j;iÞ
N%1 & aði;NÞ & TðN;kÞN

 !
& bðk; jÞ

þ
XN%1
i¼1

T
ð j;iÞ
N%1 & aði;NÞ & TðN;NÞN & bðN; jÞ

¼
XN
k¼1

T
ð j;kÞ
N & bðk;jÞ; ð34Þ

where T
ð j;kÞ
N is obtained once again by inspection as

T
ð j;NÞ
N ¼

XN%1
k¼1

T
ð j;kÞ
N%1 & aðk;NÞ & TðN;NÞN ; j 6¼ N; ð35 aÞ

T
ð j;kÞ
N ¼ T

ð j;kÞ
N%1 þ

XN%1
i¼1

T
ð j;iÞ
N%1 & aði;NÞ & TðN;kÞN ; j; k 6¼ N: ð35 bÞ

The set of four equations given in equations (33) and (35) yield a complete
recursive system for finding the T

ð j;kÞ
N matrices. We remark that, upon adding a

particle, a single matrix inversion in a one-particle space is performed in equation
(33 a). The other three equations involve only matrix multiplications.

5. Formulae for physical quantities
The scatterer-centred transfer matrices T

ð j;kÞ
N contain all the information

concerning the complete field configuration for any incident wave. This very
detailed information needs, however, to be transformed to experimentally relevant
quantities. In the interest of completeness when using our conventions, we review
the formulae for fixed-orientation and notation-averaged cross-sections. For the
derivations of these formulae, we refer the reader to [2], [5] and [13].

5.1. Fixed-orientation and orientation-averaged scattering cross-sections
An incident wave of particular interest for cross-sections is the homogeneous

plane wave, Eplane
i , described via a real wave-vector k and a (possibly complex)

transverse polarization vector êe*. The vector space of transverse polarizations is
two dimensional, and we consider a basis of two orthogonal transverse polariza-
tions distinguished by an index ð* ¼ 1; 2Þ. The coefficient vector for this special
incident field is denoted by p*:

Eplane
i ðrÞ ¼ E expðikErÞêe*

0 ERgfEtðkrÞg & p*: ð36Þ
The plane-wave coefficients can be compactly expressed as ordinary (three)

vector scalar products between êe* and the transverse vector spherical harmonics
(see appendix A):
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½p* ,Mnm ¼ %in4pX>nmðk̂kÞEêe* ; ðp*ÞNnm ¼ %inþ14pZ>nmðk̂kÞEêe* : ð37Þ
As we shall see below, cross-sections will commonly take the form of py* & A & p*.
The matrix A will generally contain regular translation matrices which act on p*
and py*. Since the p* contain non-negligible components up to infinite order, this is
potentially the source of new truncation problems. Fortunately, the particularly
simple translation properties of incident plane waves result in the fact that their
spherical coefficient vectors p* are eigenvectors of the regular translation matrices
[13], that is

bðkxÞ & p* ¼ exp ðikExÞp* ;

py* & byðkxÞ ¼ exp ð%ikExÞpy* :
ð38Þ

This ‘phase’ procedure then alleviates truncation problems associated with the
regular translation–addition matrices [13]. We shall see below that equations (38)
will readily allow the evaluation of all the cross-section formulae presented below.

For orientation-averaged cross-sections, one follows the trace techniques
elaborated byMackowski [5]. Using angular brackets h io to denote the orientation
average, one remarks that an orientation average of the matrix A corresponds to
averaging the incident wave over all possible angles and polarizations, that is

hAio 0 py* & hAio & p* ¼
1

2

1

4p

X2
*¼1

ð
dOk ½py* , &A & ½p* ,: ð39Þ

From equation (37) and the angular integrals for the normalized vector spherical
harmonics (equation (A 3)), it follows immediately thatð

dOk ½py* ,A54½p+,Bnm ¼ 16p2+A;B+n;5+m;4+*;+; ð40Þ

from which one obtains

hAio ¼ 2pTr ðAÞ: ð41Þ
We shall see below, for the quantities treated here, that the trace can be limited to
the dimensional cut-off appropriate to the Mie scattering matrices.

Two of the quantities of interest are the extinction and scattering cross-sections
of a cluster of N spheres ð9cle and 9cls respectivelyÞ. It turns out to be convenient to
write them as the sum of individual ‘cross-sections’ 9ð jÞe and 9ð jÞs :

9cle ¼
XN
j

9ð jÞe ; 9cls ¼
XN
j

9ð jÞs : ð42Þ

It is important to remark that, although these individual ‘cross-sections’ can
contain interesting physical information, they should not be considered as true
cross-sections in the sense that they are defined using only part of the total field.
Consequently, 9ð jÞe and 9ð jÞs do not necessarily satisfy relations typical of true cross-
sections (positivity and individual energy conservation) [13]. The cluster cross-
sections 9cle and 9cls on the other hand are physical cross-sections.

The individual extinction ‘cross-sections’ for a given incident plane wave can
be written
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9ð jÞe ð/i;=iÞ ¼ %
1

k2

X
k

Re ðpy & bð0;jÞ & Tð j;kÞN & bðk;0Þ & pÞ

¼ % 1

k2

X
k

Re fexp ½ikEðxk % x jÞ,py & Tð j;kÞN & pg: ð43Þ

In the second line, the phase shift formulae of equation (38) have been invoked.
The orientation average of the extinction cross-section is obtained by applying
equation (41):

h9ð jÞe io ¼ %
2p
k2

X
k

Re ½Tr ðTð j;kÞN & bðk;jÞÞ,; ð44Þ

where we have invoked the permutation properties of the trace. From the
truncation properties of T

ð j;kÞ
N , discussed in section 4.3, it is now clear that the

trace in this equation can in most cases be reliably restricted to the dimensions of
the appropriate Mie transfer matrices.

The individual scattering ‘cross-sections’ can be written

9ð jÞs ð/i;=iÞ ¼
1

k2
Re

XN
l¼1

fð jÞy & bð j;lÞ & fðlÞ
 !

; ð45Þ

where f ð jÞ are the scattering vectors given by

fð jÞ ¼
XN
k¼1

T
ð j;kÞ
N & bðk;0Þ & p ¼

XN
k¼1

exp ðikExkÞTð j;kÞN & p: ð46Þ

An application of equation (41) and the permutation under the trace yield the
orientation-averaged scattering cross-section.

h9ð jÞs io ¼
2p
k2
Re

XN
k;i;l

Tr ð½Tð j;lÞN ,y & bðj;kÞ & Tðk;iÞN & bði;lÞ
 !

: ð47Þ

Although the cluster absorption cross-section 9cla in a non-absorbing media can
be deduced from energy conservation, that is 9cla ¼ 9cle % 9cls , it may alternatively be
calculated by evaluating the Poynting vector of the total field at the surface of the
individual particles. Since the total field is used in their definition, the 9ð jÞa
correspond to true physical cross-sections and are interpreted as the energy
absorbed within the jth scatterer. Their sum is the absorption cross-section for
the cluster: 9cla ¼

PN
j 9

ð jÞ
a . The 9ð jÞa can be expressed as [13]

9ð jÞa ð/i;=iÞ ¼
1

k2
fð jÞy & Cð jÞ & fð jÞs ;

h9ð jÞa io ¼
2p
k2

X
k;l

Tr ð½Tðj;kÞN ,y & Cð jÞ & Tð j;lÞN & bðl;kÞÞ; ð48Þ

where the absorption matrix Cð jÞ is of the form

Cð jÞ ¼ Cð jÞ 0
0 Dð jÞ

> ?
: ð49Þ

The Cð jÞ and Dð jÞ are diagonal matrices whose matrix elements are given by
½Cð jÞ,nm;54 ¼ +n5+m4Cð jÞn , ½Dð jÞ,nm;54 ¼ +n5+m4Dð jÞn , with
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Cð jÞn ¼
Re ½i8j44>j  >nð8j>jÞ 0nð8j>jÞ,

j4j nð8j>jÞ 0nð>jÞ % 48j 0nð8j>jÞ nð>jÞj2
;

Dð jÞn ¼
Re ½i8>j 44j >nð8j>jÞ 0nð8j>jÞ,

j48j nð8j>jÞ 0nð>jÞ % 4j nð>jÞ 0nð8j>jÞj2
;

ð50Þ

where the functions  nðxÞ are Ricatti spherical Bessel functions:  nðxÞ 0 xjnðxÞ. In
the particular case 4j ¼ 4 ¼ 1, this result reduces to the absorption formula for
spherical scatterers derived by Mackowski [2].

5.2. Local field formulae
The scatterer-centred transfer matrices not only are useful for far-field

quantities such as the scattering cross-sections but also contain all the local field
information as well. The field in the interior of the particle is a region of
considerable interest. The electric field E

ð jÞ
I ðrÞ in the interior of a particle j in an

N-particle cluster is described via the internal field coefficients ið jÞ:

E
ð jÞ
I ðrÞ 0 Rg fEtðkrjÞg & ið jÞ: ð51Þ

For spherical particles, these coefficients are given by [8, 9]

ið jÞ ¼ Kð jÞ & fð jÞ

¼
XN
k¼1

Kð jÞ & Tð j;kÞN & bðk;0Þ & a;
ð52Þ

where Kð jÞ is a diagonal matrix given by

Kð jÞ ¼ KM;ð jÞ 0

0 KN;ð jÞ

" #
ð53Þ

with

KM;ð jÞ
nm;54 ¼ +n5+m4

i4j8j
48j 0nð8j>jÞ nð>jÞ % 4j nð8j>jÞ 0nð>jÞ

;

KN;ð jÞ
nm;54 ¼ +n5+m4

i4j8j
4j nð>jÞ 0nð8j>jÞ % 48j nð8j>jÞ 0nð>jÞ

:

The above formulae are generally sufficient for determining the interior field point
by point.

If one is interested in angular or spatial averages of the squared electric field
amplitude jEð jÞI ðrjÞj2 inside the scatterers, it is preferable to carry out the angular
integrations analytically. The squared amplitude of the electric field in the interior
of the scatterer can be expressed as

jEð jÞI ðrjÞj2 ¼ ½f ð jÞ,y & ½Kð jÞ,y & E>ðkrjÞEEtðkrjÞ & Kð jÞ & f ð jÞ

¼ ½fð jÞ,y & ½Kð jÞ,y &PðrjÞ & Kð jÞ & fð jÞ; ð54Þ
where the &ðrjÞ matrix is defined as
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&ðrjÞ 0 E>ðkrjÞEEtðkrjÞ ¼
&MMðrjÞ &MNðrjÞ
&NMðrjÞ &NNðrjÞ

" #
: ð55Þ

The components of this matrix are determined from the definitions of the spherical
wave-vectors (equation (69)), yielding

PMM
nm; 54ðrÞ ¼ j>nðkjrÞj5ðkjrÞX>nmðr̂rÞEX54ð̂rrÞ;

PMN
nm; 54ðrÞ ¼ %j>nðkjrÞ

1

kjr
½kjrj5ðkjrÞ, 0X>nmðr̂rÞEZ54ð̂rrÞ;

PNM
nm;54ðrÞ ¼ %

1

k>j r
½k>j rj>nðkjrÞ, 0j5ðkjrÞZ>nmðr̂rÞEX54ðr̂rÞ;

PNN
nm;54ðrÞ ¼

1

jkjrj2
½nðnþ 1Þ,1=2½5ð5 þ 1Þ,1=2j>nðkjrÞj5ðkjrÞY>nmð̂rrÞEY54ðr̂rÞ

þ 1

jkjrj2
½k>j rj>nðkjrÞ, 0½kjrj5ðkjrÞ, 0Z>nmðr̂rÞEZ54ð̂rrÞ:

ð56Þ

A special value of interest is the field at the centre of the spheres for which we can
exploit the limit relations

lim
x!0
½ jnðxÞ, 9 xn

ð2nþ 1Þ!! ; lim
x!0
f½xj5ðxÞ, 0g 9 ðnþ 1Þxn

ð2nþ 1Þ!! : ð57Þ

A consequence of these relations is that only PNN
1m;14 have a non-zero limit as r! 0.

Using

PNN
nm;54ðr! 0Þ ¼ +n;1+5;129Y>1mðr̂rÞEY14ð̂rrÞþ 4

9 +n;1+5;1Z
>
1mðr̂rÞEZ14ð̂rrÞ ð58Þ

and the angular average integral

1

4p

ð
dOPNN

nm;54ðr ¼ 0Þ ¼ 1

6p
+n;1+5;1+m;4; ð59Þ

we obtain that the field at the centre of the particles is

jEð jÞI ð0Þj2 ¼
1

6p

X1
m¼%1
½½fð jÞ,y & ½Kð jÞ,y,N1;m½Kð jÞ & fð jÞ,N1;m: ð60Þ

At a finite distance r from the particle centre, the angular average of jEð jÞI ðrjÞj2 is
found fromð

dOPMM
nm;54ðrÞ ¼ jjnðkjrÞj2+n;5+m;4;ð

dOPMN
nm;54ðrÞ ¼

ð
dOPNM

nm;54 ¼ 0;

ð
dOPNN

nm;54ðrÞ ¼ nðnþ 1Þ jnðkjrÞ
kjr

)))) ))))2+n;5+m;4 þ ½k>j rj>nðkjrÞ, 0kjr

)))))
)))))
2

+n;5+m;4:

ð61Þ

The average jEð jÞI j2avg of jEð jÞI ðrjÞj2 in the interior of the scatterers is then obtained
via the integrals
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1

Vs

ð
Vs

d3rPMM
nm;54ðrÞ ¼ In+n;5+m;4;

1

Vs

ð
Vs

d3rPMN
nm;54ðrÞ ¼

ðR
0

d3rPNM
nm;54 ¼ 0;

1

Vs

ð
Vs

d3rPNN
nm;54ðrÞ ¼ Jn+n;5+m;4:

ð62Þ

The resulting expression for the average electric field intensity within the
scatterers is

jEð jÞI j2avg ¼ ½f ð jÞ,y & ½,ð jÞ,y &
I 0

0 J

" #
& ,ð jÞ & f ð jÞ; ð63Þ

where the I and J matrices are diagonal (i.e. of the form O54;nm ¼ +n;5+m;4On), with

In ¼ 1

Vs

ðRj

0

dr r2jjnðkjrÞj2;

Jn ¼
1

Vs

nðnþ 1Þ
jkjj2

ðRj

0

dr jjnðkjrÞj2 þ 1

jkjj2
ðRj

0

dr j½k>j rj>nðkjrÞ, 0j2
 !

:

ð64Þ

Although these integrals can be carried out analytically for real kj, they are best
carried out numerically for complex kj. We can also consider orientation averages
of jEð jÞI ðrjÞj2. The orientation-averaged formula is once again obtained by applying
equation (41):

hjEð jÞI j2avgio ¼ 2p
X
l;k

Tr ½Tð j;lÞN ,y & ½Kð jÞ,y &
I 0

0 J

" #
& Kð jÞ & Tð j;kÞN & bðk;lÞ

 !
: ð65Þ

6. Demonstrative calculations
We now demonstrate applications of the formulae elaborated in this work to the

problem of fields inside the scatterers for conditions ranging from weak to strong
scattering. In the interest of applications to a physical system, we consider systems
of identical dielectric scatterers of refraction index ns 9 2:5 (approximately that of
TiO2) in a dielectric host medium of index n 9 1:5 (corresponding to common
polymers). Since there is no absorption in our theoretical system, the extinction
and scattering cross-sections will be identical. We present below some illustrative
calculations for scattering as a function of the size parameter > of the individual
spheres. The size parameter is > 0 kR ¼ 2pr=3, where 3 is the wavelength in the
host media and R is the radius of the spheres.

In order to fix the ideas, let us consider first a system of two touching spheres.
As we saw in previous sections, the T

ð j;kÞ
2 matrices allow us to calculate the local

fields. Using equation (63), we show in figure 2 (a) the average squared internal
electric fields jEð1ÞI j2avg=E2 and jEð2ÞI j2avg=E2 of the two-particle cluster for an incident
plane wave arriving along the axis of symmetry of the two spheres. We divide by
the squared field amplitude E2 of the incident wave in order to plot dimensionless
quantities. Sphere 1 is chosen to be the first sphere encountered along the direction
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of propagation, k; sphere 2 is then the second sphere encountered. For the purpose
of comparison, we also illustrate the average internal field for an isolated sphere.
We remark that the average internal field in sphere 1 is quite similar to that of an
isolated sphere, while the ‘shadowed’ sphere 2 is considerably modified from that
of an isolated sphere.

In figure 2 (b), we use equation (43) to calculate the total normalized extinction
(scattering) cross-section 9cle =2pR

2 of the two-sphere system. By ‘normalized’, we
mean that we divide 9cle by the total geometric cross-section 2pR2 of the two-
particle system (not taking into account overlap). For comparison with the
independent scattering cross-section, we also show the normalized cross-section
9Mie
e =pR2 of an isolated (Mie) sphere. It is interesting to observe that peaks in
internal field amplitudes in figure 2 (a) generally correspond to total cross-section
peaks in figure 2 (b).

One might be tempted to conclude from figure 2 that dependent scattering can
make large quantitative and qualitative corrections to independent scattering. We
should keep in mind, however, that the quantities in figure 2 were calculated with a
fixed orientation of the two-sphere system with respect to the incident plane wave.
Moreover, the chosen configuration optimizes coherent field effects. In applica-
tions to random inhomogeneous media, however, one is generally more interested
in orientation-averaged scattering rather than in the scattering produced by a
particular configuration. We shall now show that the above qualitative corrections
to independent scattering are largely washed out when one considers orientation-
averaged quantities.
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Figure 2. A two-particle system of two touching spheres, with nsp ¼ 2:5 and n ¼ 1:5.
The incident wave is oriented along the symmetry axis of the system. Sphere 1 is
the sphere ‘first’ encountered by the incident beam. (a) A plot of the average

squared internal electric field jEð jÞI j2avg, j ¼ 1; 2, of each sphere and the average

squared internal electric field jEMie
I j2avg of an independent Mie sphere. (b) A plot of

the normalized cross-section 9cle =2pR
2 per sphere of this system and the cross-

section 9Mie
e =pR2 of an independent Mie sphere.



In figure 3 (a), we carry out configuration averages of the average squared
internal fields jEð jÞI j2avg=E2 using equation (65). After the configuration average, the
fields in the two spheres are identical: hjEð1ÞI j2avgio ¼ hjEð2ÞI j2avgio. Comparing these
field averages with the field average jEMie

I j2avg of an isolated scatterer, we see that the
difference is hardly distinguishable. In figure 3 (b), we compare the orientation-
averaged cross-section h9cle io=2pR2 with that for independent scattering, 9Mie

e =pR2.
It is striking that, after orientation averaging, the two curves have the same
qualitative behaviour, and that dependent scattering effects simply correspond to
a slight lowering of the cross-section per sphere for >0 2.We remark onced again
that peaks in the orientation-averaged internal field generally correspond to peaks
in the cross-section.

It is natural to ask at this point to what extent additional spheres will modify
the above scenario. We thus look to obtain some response to this question by
carrying out analogous calculations for a seven-particle system. In this system, we
place on sphere centred at the origin of the coordinate system.We then place pairs
of spheres on each of the x̂x, ŷy and ẑz axes. Each of the six ‘exterior’ spheres is placed
such that they touch the sphere at the origin. We call the sphere at the origin
sphere 1. Spheres 2 and 3 are on the positive and negative ẑz axes respectively.
Spheres 4 and 5 are on the x̂x axis, while spheres 6 and 7 are on the ŷy axis.

In figure 4 (a) we show the internal fields in these spheres as a function of the
size parameter for an incident plane wave with a propagation vector oriented in the
positive ẑz direction, and a linear polarization along the ŷy axis. Symmetry
considerations tell us in advance that spheres 4 and 5 will have the same internal
fields, as will also spheres 6 and 7 (confirmed by calculations). The pair 4 and 5 are
not identical with the pair 6 and 7, however, on account of the fact that they have
different orientations with respect to the incident field polarization. On the scale of
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Figure 3. The same physical quantities for the two-sphere system studied in figure 2
after orientation averaging. (a) A plot of hjEð1ÞI j2avgio ¼ hjEð2ÞI j2avgio versus jEMie

I j2avg. (b)
Plot of the normalized orientation averaged cross-section h9cle io=2pR2 per sphere,

compared with the independent scattering cross-section 9Mie
e =pR2.



this graph, only the average internal fields spheres in spheres 1 and 2 stand out
significantly from the others. In figure 4 (b), we show the total cross-section per
sphere and compare it with that of independent scatterers. As was the case with the
two-particle system, there are considerable qualitative differences between the
total cross-section per sphere and independent scattering.

After orientation averaging, all the spheres except for the central sphere will
have identical average internal fields: hjEð2ÞI j2avgio ¼ hjEð3ÞI j2avgio ¼ & & & ¼ hjEð7ÞI j2avgio.
The orientation averages hjEð jÞI j2avgio=E2 are plotted in figure 5 (a) and compared
with those of independent scattering. We see that the average fields in spheres
2–7 are nearly indistinguishable from that of independent scattering, jEMie

I j2avg.
The average field in the central sphere 1 is slightly modified with respect to
jEMie

I j2avg but has the same general behaviour. In figure 5 (b), we show the normal-
ized orientation averaged cross-section h9cle io=7pR2 and compare it with the
independent scattering cross-section. It is striking that the resonance peaks in
the independent scattering are nearly completely washed out after the orientation
average, and that the principle effect of dependent scattering is to increase slightly
the per-sphere scattering cross-section for size parameter >9 2 and to quench it
considerably for >0 2. It is interesting to remark that, in the white-paint industry,
size parameters of > 9 2 are common.

7. Conclusions
The recursive techniques developed here permit numerically stable calcula-

tions of multiple-scattering systems. This technique is apparently free of conver-
gence difficulties. Although it was not discussed in the text, the recursive equations
are of a self-consistent nature, and any numerical errors arising from the large
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Figure 4. System of seven identical touching spheres with nsp ¼ 2:5 and n ¼ 1:5. (a) A

plot of the averaged squared internal electric field jEð jÞI j2avg, j ¼ 1; . . . ; 7, of each

sphere. (b) A plot of the normalized cross-section 9cle =7pR
2 per sphere of this system

and the cross-section 9Mie
e =pR2 independent Mie sphere.



number of calculations may be eliminated by employing this self-consistency at

any stage of the calculations. One of the indications of the reliability of this

technique is its ability to satisfy automatically any symmetries of the chosen

multiple-scattering configuration. This is an important point since, as we add

particles to the system, certain symmetries are only ‘recovered’ after a particular

scatterer has been added.

We have demonstrated that the scatterer-centred transfer matrices T
ði;jÞ
N can

give information on the local field within an aggregate as well as far-field cross-

sections. The T
ði; jÞ
N are also particularly useful for obtaining analytic orientation

averages. These analytic averages are more reliable than numerical averages and

save considerable computational labour.

An interesting observation on the calculations in the last section is that, after

orientation averaging, dependent scattering effects largely wash out the resonant

field effects on the total cross-sections. Internal field densities inside the particles

were only slightly modified, however. Total cross-sections are, however, a rather

crude indication of the complete wave–particle interaction. It should prove

interesting to study the dependent scattering effects on the angular distribution

of the scattered wave after a configuration average. These effects will be studied in

subsequent publications.
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Brian Stout would like to thank Hervé Tortel and Sophie Stout for helpful

discussions.

2148 B. Stout et al.

REVISE Proofs RH i:/T&F UK/Mop/Mop49-13/Mop-1683.3d MOP 101683 Keyword

Figure 5. Orientation averages of the seven-sphere system. (a) A plot of hEð1ÞI j2avgio and
hEð2ÞI j2avgio ¼ & & & ¼ hjEð7ÞI j2avgio versus that of an independent m:e sphere, jEMie

I j2avg.
(b) A plot of the normalized orientation averaged cross-section h9cle io=7pR2 per

sphere compared with the independent scattering cross-section 9Mie
e =pR2.



Appendix A. Spherical waves and vector spherical harmonics
The three normalized vector spherical harmonics used by us can be explicitly

written in terms of the associated Legendre functions:

Ynmðr̂rÞ ¼ *nm½nðnþ 1Þ,1=2Pm
n ðcos /Þ exp ðim=Þ r̂r ¼ Ynmð/;=Þr̂r;

Xnmðr̂rÞ ¼ *nm % im

sin /
Pm
n ðcos /Þ exp ðim=Þ /̂/þ

d

d/
Pm
n ðcos /Þ exp ðim=Þ=̂=

; <
0 %i4uumn ðcos /Þ exp ðim=Þ /̂/þ 4ssmn ðcos /Þ exp ðim=Þ =̂=;

Znmðr̂rÞ ¼ *nm d

d/
Pm
n ðcos /Þ exp ðim=Þ /̂/þ

im

sin /
Pm
n ðcos /Þ exp ðim=Þ =̂=

; <
0 4ssmn ðcos /Þ exp ðim=Þ /̂/þ i4uumnðcos /Þ exp ðim=Þ =̂=;

ðA 1Þ

where the normalization coefficients *nm are defined by

*nm 0 ð2nþ 1Þðn%mÞ!
4pnðnþ 1Þðnþ mÞ!
; <1=2

: ðA 2Þ

The normalized vector spherical harmonics satisfy the orthonormality conditionð
dOk A>n 0m 0ðk̂kÞEBnmðk̂kÞ ¼ +nn 0+mm 0+AB; ðA 3Þ

and A and B can be any one of Y, X or Z.
The (outgoing) normalized vector spherical waves are defined as

MnmðkrÞ 0 %hnðkrÞXnmðr̂rÞ; ðA4aÞ

NnmðkrÞ 0 1

kr
f½nðnþ 1Þ,1=2hnðkrÞYnmðr̂rÞþ ½krhnðkrÞ, 0Znmðr̂rÞg; ðA4bÞ

where hn are the spherical Hankel functions of the first kind. The regular spherical
waves are denoted by RgfMg and RgfNg and obtained by replacing the hn in
equations (A4) with spherical Bessel fuctions jn.

Appendix B. The vector wave addition theorem
This theorem involves infinite summations over the multipolarity numbers,

n ¼ 1; 2; . . . ;1 and %n4m4 n. It therefore proves useful to define a generalized
index l 0 nðnþ 1Þ % m for which each integral value of l corresponds to unique
physical n, m pair [7]. One can then arrange the spherical wave components in an
infinite column vector EðkrÞ, which will be truncated in numerical applications at
some finite orbital multipolarity nmaxðLmax ¼ n2max þ 2nmaxÞ :

EðkrÞ 0 MðkrÞ
NðkrÞ
> ?

¼

M1ðkrÞ
..
.

MLmax
ðkrÞ

N1ðkrÞ
..
.

NLmax
ðkrÞ

266666666664

377777777775
: ðB 1Þ
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The addition theorem permits the transformation of spherical waves centred
around a given point to be expressed in terms of spherical waves developed about a
different origin. To be precise, let us consider a point P. Its spherical coordinate
vector around an origin O is r ¼ OP. Consider now another origin O 0 for spherical
coordinates with position vector r0 ¼ OO 0. The spherical coordinates of P around
this new origin are r 0 ¼ O 0P ¼ r% r0.

Using the matrix notation of equation (B1) and taking the Lmax !1 limit, the
translation addition theorem [3, 7] of Stein [14] and Cruzan [15] expresses the
spherical waves in the O coordinate system in terms of spherical waves in the O 0

coordinate system:

EtðkrÞ ¼ Etðkr 0Þ & bðkr0Þ; r 0 > r0;

EtðkrÞ ¼ Rg fEtðkr 0Þg & aðkr0Þ; r 0 < r0;

Rg fEtðkrÞg ¼ Rg fEtðkr 0Þg & bðkr0Þ; 8jrj:
ðB 2Þ

The symbols aðkr0Þ and bðkr0Þ denote the irregular and regular translation–
addition matrices respectively. The superscript t means that we have transposed
a column vector into a row vector, and the dots (&) indicate that we have made a
matrix multiplication over the spherical wave components. The normalized aðkr0Þ
and bðkr0Þ that we use have the form

aðkr0Þ ¼
4AAðkr0Þ 4BBðkr0Þ
4BBðkr0Þ 4AAðkrÞ0

" #
; bðkr0Þ ¼ Rg faðkr0Þg; ðB 3Þ

Closed forms for thematrix elements A54;nm and B54;nm were derived by Cruzan
[15]. For extensive numerical calculations, we found it more efficient to express the
normalized vector translation–addition coefficients in terms of the normalized
scalar coefficients in the manner derived by Mackowski [5]. In the normalized
convention [7, 13], these are

4AA5;4;n;m ¼ 1

2

1

5ð5 þ 1Þnðnþ 1Þ
; <1=2

½24m4((s
5;4;n;m

þ ½ðn%mÞðnþ mþ 1Þ,1=2½ð5 % 4Þð5 þ 4þ 1Þ,1=2 4((s
5;4þ1;n;mþ1

þ ½ðnþmÞðn% mþ 1Þ,1=2½ð5 þ 4Þð5 % 4þ 1Þ,1=2 4((s
5;4%1;n;m%1,; ðB4Þ

4BB5;4;n;m ¼ %i 1
2

25 þ 1

25 % 1

1

5ð5 þ 1Þnðnþ 1Þ
; <1=2

f2m½ð5 % 4Þð5 þ 4Þ,1=2 4((s
5%1;4;n;m

þ ½ðn% mÞðnþ mþ 1Þ,1=2½ð5 % 4Þð5 % 4% 1Þ,1=2 4((s
5%1;4þ1;n;mþ1

% ½ðnþ mÞ,1=2½ðn% mþ 1Þ,1=2½ð5 þ 4Þð5 þ 4% 1Þ,1=2 4((s
5%1;4%1;n;m%1g; ðB5Þ

where 4aas are the normalized scalar translation–addition coefficients of appendix C
below.
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A significant mathematical advantage of the normalized convention for the
spherical waves is that the complex conjugation of the regular translation matrices
corresponds simply to inverse translation, that is

½bðkr0Þ,y ¼ bð%kr0Þ: ðB 6Þ

Appendix C. Scalar translation–addition coefficients
In appendix B, we gave expressions for the vector coefficient expressed in terms

of normalized scalar coefficients. The normalized 4aas and 4bbs coefficients can be
derived from recursion relations of the form [16]

aþn%1;m 4((s
54;nm ¼ %a%n%1;m 4((s

54;n%2;m þ aþ5%1;4 4((s
5%1;4;n%1;m þ a%5þ1;4 4((s

5þ1;4;n%1;m;

bþn%1;n%1 4((s
54;nn ¼ bþ5%1;4%1 4((s

5%1;4%1;n%1;n%1 þ b%5þ1;4%1 4((s
5þ1;4%1;n%1;n%1;

ðC 1Þ

and likewise for 4bbs. The coefficients aC and bC are given by

aþnm ¼ %
ðnþ mþ 1Þðn% mþ 1Þ
ð2nþ 1Þð2nþ 3Þ

> ?1=2
; a%nm ¼

ðnþ mÞðn%mÞ
ð2nþ 1Þð2n% 1Þ
> ?1=2

;

bþnm ¼
ðnþ mþ 2Þðnþ mþ 1Þ
ð2nþ 1Þð2nþ 3Þ

> ?1=2
; b%nm ¼

ðn% mÞðn%m% 1Þ
ð2nþ 1Þð2n% 1Þ

> ?1=2
:

ðC 2Þ

The recursion is initiated by

4))s54;00 ¼ ð4pÞ1=2ð%1Þ5þ4Y5;%4ð/0;=0Þj5ðkr0Þ;

4((s
54;00 ¼ ð4pÞ1=2ð%1Þ5þ4Y5;%4ð/0;=0Þh5ðkr0Þ:

ðC 3Þ

Negative values for m are evaluated by using the relations

4))s54;nmðx; /;=Þ ¼ ð%1Þ4þm 4))s>5%4;n%mðx;> ; /;=Þ;

4((s
54;nmðx; /;=Þ ¼ %ð%1Þnþ5þ4þm 4((s>

5%4;n%mð%x>; /;=Þ:
ðC4Þ
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