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Abstract
We illustrate that a recently formulated recursive transfer matrix method can
be used to reliably calculate the electromagnetic fields throughout
three-dimensional systems of strongly scattering spheres, and/or coated
spheres. The exceptional features of our technique are its particularly stable
and reliable numeric implementations. In this work, we present new
self-consistent formulae which permit the verification of the numerical
stability at any stage of the calculations, and which ensure the satisfaction of
the underlying multiple scattering equations for an arbitrary incident wave.
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(Some figures in this article are in colour only in the electronic version)

Exact solutions to finite multiple scattering systems can
provide important insights into the numerous approximate
methods that are typically used to describe multiple scattering.
Perhaps even more importantly, exact solutions are a good
means of studying field fluctuations in multiple scattering
systems.

Invoking the addition theorem [1, 2], one can rather read-
ily describe a multiple scattering system via coupled matrix
equations acting on a spherical wave development of the in-
cident field [3–7]. After a suitable truncation, the complete
solution to this problem can then, in principle, be obtained by
the inversion of an entire ‘system’ matrix [3, 5–7]. Analo-
gous problems for two-dimensional systems of infinite cylin-
ders have been treated with success in this manner [8, 9]. The
enormous number of unknowns and the sparse nature of the
matrix, however, often prevents a direct matrix inversion solu-
tion for three-dimensional systems of spheres [5, 6, 10–12].

Several authors have proposed the calculation of cluster
transfer matrices, T cl

N , via recursive approaches which build the
transfer matrix one particle at a time [11, 13]. A major obstacle
in these recursive approaches is that they suffer from numerical

instabilities associated with partial-wave space truncations
as recently discussed by Siqueira and Sarabandi [12], and
by us [5]. Another deficiency of these new transfer-matrix
approaches is that in practice, one often loses (or discards) local
field information. In response to these difficulties, we have
recently developed and applied a modified recursive technique
which eliminates the aforementioned numerical difficulties [3–
5].

In this work, we illustrate that this new recursive transfer-
matrix technique can also be used to calculate the field distri-
bution throughout multiple scattering systems (both near and
far field). Since the numerical stability of the recursive transfer
methods is still questioned in the multiple scattering commu-
nity, we introduce here new self-consistence formulae which
must be satisfied by our transfer matrices. We illustrate here
that the satisfaction of these relations implies the satisfaction
of the underlying multiple scattering equations for arbitrary in-
cident wave configurations. To date, we have found that these
relations are satisfied by our recursive matrix transfer matrices
up to computer precision round off.
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Figure 1. A multiple scattering system of spheres in the presence of
an incident field. The centres of the spheres are denoted x j ,
j = 1, . . . , N , N being the number of spheres in the system.

The outline of this work is as follows. Section 1.1 gives
a brief introduction to our notation, and the formulation of
the solution of the multiple scattering problem in terms of
the body-centred transfer matrices, T (i, j)

N . In section 1.2, we
present a recently derived and numerically stable algorithm
for calculating T (i, j)

N . We then present in section 1.3, new
self-consistence formulae for testing the numeric stability of
our recursive technique. Formulae for extracting the electric
field distribution are given in section 2. We also present in this
section, some illustrative results for field distributions in three-
dimensional systems exhibiting multiple dependent scattering.

1. Spherical wave expansions and transfer-matrix
constructions

1.1. Spherical wave expansions

A field, Ei , incident on an N -particle system can be developed
in terms of regular spherical partial waves developed about
some point 0 chosen as the origin (see figure 1)

Ei(r) = E
∞∑

n=1

n∑
m=−n

(Rg{Mnm(kr)}aM
nm + Rg{Nnm(kr)}aN

nm )

= E [Rg{M (kr)},Rg{N (kr)}] ·
[

aM

aN

]
≡ E Rg{E t (kr)} · a (1)

where Mnm and Nnm are the vector spherical waves (see
the appendix), and E is a real parameter which determines
the amplitude of the wave. In (1) we introduce a compact
matrix notation [11, 14] in which the column vector ‘a’ is
composed of the incident field coefficients while E(kr) is as an
abstract vector composed of the vector wavefunctions M (kr)

and N (kr). The notation Rg{ } stands for ‘the regular part
of’ [14] (see the appendix).

In a multiple scattering system of spheres, or coated
spheres, the total field, Et (r), at a point exterior to all the
scatterers can be written as the sum of the incident field, and a
set of ‘individual’ scattered fields centred respectively on each

of the particle centres

Et (r) = Ei +
N∑

j=1

E( j)
s (r j ) = Ei + E

N∑
j=1

E t(kr j ) · f ( j). (2)

The centre of the j th particle is denoted x j , and the spherical
coordinates relative to each scatterer are r j ≡ r − x j . The
scattered field emanating from the j th particle, E

( j)
s , can be

developed in terms of outgoing spherical waves (see (19) in the
appendix). The coefficients of the scattered field partial-wave
developments are collected into respective scattering ‘vectors’,
f ( j).

The solution to a multiple N -scatterer system can be
compactly expressed in terms of the body-centred transfer
matrices, T ( j,k)

N [5, 6]

f ( j) =
N∑

l=1

T ( j,l)
N · β(l,0) · a (3)

where β(l,0) ≡ β(kxl) is the regular translation–addition
matrix (see the appendix). The coefficient vector ‘β(l,0) · a’
is then the field expansion of the incident field in a spherical
wave basis developed around the centre of lth scatterer, xl .

1.2. Transfer-matrix constructions

The building blocks for calculating T ( j,k)

N are the individual
transfer matrices of the scatterers taken in isolation, T ( j)

1 ,
and the irregular translation–addition matrices, α( j,k) (see the
appendix). For a sphere, T ( j)

1 is a diagonal matrix whose
elements are given by the Mie coefficients [15, 16].

Our recursive prescription for calculating T ( j,k)

N is to add
the scatterers one at a time to the system in an arbitrary
order. Assuming that the T (k, j)

N−1 matrices for an N − 1 particle

system have been calculated, the N -particle matrix, T (N,N)
N ,

for a particle N added to the system is calculated by a matrix
inversion carried out in a spherical-wave space describing a
single particle [3, 5]:

T (N,N)

N = T (N)

1 ·
[

I−
N−1∑
j,k=1

α(N,k) ·T (k, j)
N−1 ·α( j,N) ·T (N)

1

]−1

. (4)

Once this matrix is calculated, the T ( j,k)

N matrices
involving the N th particle can be obtained by matrix
multiplications

T (N,k)
N = T (N,N)

N ·
N−1∑
i=1

α(N,i) · T (i,k)

N−1 k �= N (5)

T ( j,N)

N =
N−1∑
i=1

T ( j,i)
N−1 · α(i,N) · T (N,N)

N j �= N . (6)

The readjustment of T ( j,k)

N−1 ; j �= N, k �= N so that they become

N -body scatterer centred matrices, T ( j,k)

N is also achieved by
matrix multiplication

T ( j,k)

N = T ( j,k)

N−1 +
N−1∑
i=1

T ( j,i)
N−1 ·α(i,N) ·T (N,k)

N j, k �= N . (7)
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It is worth noting that although the number of T ( j,k)

N
matrices grows as N 2, each of these matrices can be reliably
truncated following the usual Wiscomb criteria for isolated
particles. Our recursive method is not subject to the numeric
cut-off instabilities which plague the other recursive techniques
known to us.

1.3. Self-consistence relations

Returning to the basic multiple scattering equations [5], and
invoking the definition of the N -body transfer matrices, (3),
one can show that T ( j,k)

N satisfies

T ( j, j)
N = T ( j)

1 + T ( j)
1 ·

N∑
l=1,l �= j

α( j,l) · T (l, j)
N (8a)

T ( j,k)

N = T ( j)
1 .

N∑
l=1,l �= j

α( j,l) · T (l,k)
N k �= j. (8b)

In the relatively low particle number systems that we have
studied so far, these relations are always satisfied up to the
numerical precision adopted for the calculations. This property
holds true only because of the high numeric stability of our
recursive formulation. Nevertheless, the iteration of (8) may in
the future prove useful in the elimination of cumulative round-
off errors in large systems.

We shall now verify that the satisfaction of (8) implies a
full solution of the multiple scattering equation. Multiplying
the RHS of (8a) and (8b), respectively, by β( j,0) and β(k,0),
adding the resulting equations, and finally summing over all
k �= j, we obtain

N∑
k=1

T ( j,k)

N ·β(k,0) = T ( j)
1 ·β( j,0) + T ( j)

1 ·
N∑

l �= j,k

α( j,l) · T (l,k)

N ·β(k,0).

(9)
Multiplying this equation from the right by the coefficients ‘a’
of an arbitrary incident field and using the expression for the
scattering vectors, (3), one finds that (9) then takes the form of
the fundamental multiple scattering equation [5, 11]

f ( j) = T ( j)
1 · β( j,0) · a + T ( j)

1 ·
N∑

l �= j

α( j,l) · f (l). (10)

2. Field distributions

2.1. Incident field

An incident wave of particular utility is the homogenous plane
wave, E

pl
i , described via a wavevector, ki , and a transverse

polarization vector, êγ (γ = 1, 2 in a suitable basis). The
coefficient vector for this special incident field is denoted pγ

(see (18) of the appendix)

E
pl
i (r) = E exp(iki • r)êγ ≡ E Rg{E t (kr)} · pγ , (11)

where • denotes a dyadic scalar product, and pγ are
eigenvectors of the regular translation matrices [4], i.e. β(kx) ·
pγ = eiki ·x pγ . This ‘phase’ relation alleviates potential
truncation problems associated with the regular translation–
addition matrices [4]. Applying this relation to (3), the

scattering coefficients f (l) in the presence of an incident plane
wave can be written

f ( j) =
N∑

k=1

T ( j,k)

N · β(k,0) · pγ =
N∑

k=1

eiki ·xk T ( j,k)

N · pγ . (12)

2.2. Total field formulae

Inserting (12) into (2), the total electric field in a multiple
scattering system for an incident plane wave is

Et(r) = E

[
exp(iki • r)êγ

+
N∑

j=1,k=1

eiki ·xk C(r̂ j ) • E t(kr j ) · T ( j,k)

N · pγ

]
(13)

where C(r̂ j ) is the dyadic which transforms vectors in the r̂ j

coordinate basis into the Cartesian coordinate system

C(r̂ j ) =
( sin θ j cos φ j cos φ j cos θ j − sin φ j

sin θ j sin φ j sin φ j cos θ j cos φ j

cos θ j − sin θ j 0

)
. (14)

The total electric field in the interior of a particle j in an
N -particle cluster, E

( j)
I (r), is described via the internal field

coefficients i ( j), E( j)
I (r) = E Rg{E t(kr j )}·i ( j). For spherical

particles, the boundary conditions at the surface of the particle
impose that these i ( j) coefficients are related to the scattering
coefficients, f ( j) via the relation [4, 15, 16]

i ( j) = �( j) · f ( j) =
N∑

k=1

�( j) · T ( j,k)

N · β(k,0) · a

�( j) =
[

�M,( j) 0
0 �N,( j)

] (15)

where the �A,( j) are diagonal matrices

�M,( j)
nm,νµ = δnνδmµ

iµ jρ j

µρ jψ ′
n(ρ jχ j )ψn(χ j )−µ j ψn(ρ jχ j )ψ ′

n(χ j )

�N,( j)
nm,νµ = δnνδmµ

iµ jρ j

µ jψn(χ j )ψ ′
n(ρ j χ j )−µρ j ψn(ρ j χ j )ψ ′

n(χ j )
.

(16)
The functions ψn(x) are Ricatti spherical Bessel functions,

ψn(x) ≡ x jn(x), and ρ j ≡
√

ε j µ j

εµ
where ε and µ are the

constitutive parameters of the host medium.

2.3. Demonstrative calculations

We now demonstrate an application of the formalism
elaborated in this work to the problem of the field distribution in
a system exhibiting strong dependent scattering. We consider
systems of seven identical dielectric scatterers of refraction
index ns � 2.5 (approximately that of TiO2) in a dielectric
host medium of index n � 1.5 (corresponding to common
polymers). One sphere is placed at the origin of the coordinate
system. Pairs of spheres are placed equidistantly on either
side of the central sphere along each of the x̂, ŷ, and ẑ axis.
We take a size parameter corresponding to strong scattering,
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Figure 2. Field distributions within the spheres in the seven-particle multiple scattering system described in the text. The distances are
scaled so that R = 1. The normalized square field distributions, E2

t (r)/E2, are plotted in the ŷ–ẑ plane. Plots (a), (b) and (c) contain,
respectively, the three particles lying along the ẑ axis, centred respectively on {0, 0,−R}, {0, 0, 0} and {0, 0, R}. Part (d) plots the field
within the particle centred on {0, R, 0}. The other ŷ axis particle has a symmetric field distribution. The fields in the two outer particles
lying along the x̂ axis are not shown since they lie outside the plane being considered.

χ ≡ 2π R
λ

= 3, where λ is the wavelength in the host media,
and R is the radius of the spheres. The centre of each of the
six ‘exterior’ spheres is placed at a distance of 2.25R from
the origin. One can therefore expect rather strong dependent
scattering effects. We found that a partial-wave truncation of
Nmax = 4 truncation is already sufficient to obtain ∼99.9% of
the total cross section of this system.

Using the cross section formulae of [4], applied to the
above configuration with an incident plane wave polarized
along the x̂ (or ŷ) axis, the total cross section ‘efficiency’
factor per sphere is, Q ≡ σtot/(7 × π R2) � 2.71. This
shows that despite the proximity of the spheres, and the
fact that certain spheres in this configuration are strongly
‘shadowed’, the strong interaction with the light continues in
a manner such that the spheres scatter considerably more light
than even their (independent) geometric cross sections would
suggest. Although the present system is relatively symmetric,
the cross section has noticeable variations with respect to both
orientation and polarization. Analytical orientation averages
can be performed using the ‘trace’ formulae of [5, 6]. In the
present case, the orientation average of the total efficiency
factor is 〈Q〉o ≡ 〈σtot〉o/(7 × π R2) � 2.85. The transfer
matrices of our calculation satisfy the self-consistent formulae
of (8) up to computer round-off errors (∼10−18) and as
shown in section 1.3, this condition imposes the satisfaction
of the underlying multiple scattering equations involving the
scattering coefficients.

We have not found a satisfactory way to graphically
represent the full vector field information in a three-
dimensional system. We will therefore choose to plot
|E( j)

t (r)|2/E2 along a plane section of the system. The
incident wavevector, is chosen to be parallel to the positive ẑ

axis, ki = ẑ with a linear polarization along the ŷ axis. In order
to highlight the regions of most interest, we present field maps
inside and near the particles. In figure 2, we present the maps
of |E( j)

t (r)|2/E2 in the ŷ–ẑ plane of the system within a square
of y ∈ {−R + y j , R + y j}, z ∈ {−R + z j , R + z j } around the
respective particle centres, x j → {x j , y j , z j }. These figures
show the importance of dependant scattering effects on the field
within the scatterers. In the regions outside the spheres, one
finds some rather small regions containing rather large field
enhancements. As one might expect from the symmetry of the
system, the largest of these ‘hot spots’ lie along the z axis, and
we illustrate some of the most notable of these in figure 3. The
largest of these peaks contain squared field amplitudes that are
more than eight times larger than that of the incident field.

3. Conclusions

Once the transfer matrix of a system has been calculated, and its
numerical accuracy tested via (8), one can rather easily study
the field distributions for arbitrary incident wave configurations
and polarizations using the formulae of section 2. The
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(a) (b)

(c) (d )

Figure 3. The field distributions of some of the principle ‘hot spots’ exterior to the particles. Due to the symmetry of the problem, these lie
principally along the ẑ axis. The four zones illustrated are: (a) in front of the system; (b) between the particles of figures 2(a) and (b);
(c) between the particles of figures 2(b) and (d); and (d) behind the system. The terms in front and behind are determined with respect to the
incident wave.

field maps can yield valuable information concerning field
fluctuations in multiple scattering systems. More elaborate
studies with larger numbers of spheres and/or coated spheres
(not necessarily concentric) are currently underway.

Appendix. Spherical waves and vector spherical
harmonics

The three normalized vector spherical harmonics (VSHs) used
by us, can be explicitly written in terms of the associated
Legendre functions

Ynm(r̂) = γnm

√
n(n + 1)Pm

n (cos θ)eimφ r̂ = Ynm(θ, φ)r̂

Xnm(r̂)=γnm

[
− im

sin θ
Pm

n (cos θ)eimφθ̂ +
d

dθ
Pm

n (cos θ)eimφφ̂

]

Znm(r̂) = γnm

[
d

dθ
Pm

n (cos θ)eimφθ̂ +
im

sin θ
Pm

n (cos θ)eimφφ̂

]

γnm ≡
√

(2n + 1)(n − m)!

4πn(n + 1)(n + m)!
.

(17)
The coefficients of an incident plane wave can be

compactly expressed as ordinary (three) vector scalar products
between êγ and the transverse VSHs

[pγ ]Mnm = −i n4πX∗
nm(k̂i ) • êγ

[pγ ]Nnm = −i n+14πZ∗
nm(k̂i) • êγ .

(18)

The (outgoing) normalized vector spherical waves can be
expressed in terms of VSHs and spherical Hankel functions of
the first kind, hn(kr)

Mnm(kr) ≡ −hn(kr)Xnm(r̂)

Nnm(kr) ≡ 1

kr

{√
n(n + 1)hn(kr)Ynm(r̂) (19)

+ [krhn(kr)]′Znm(r̂)
}
.

Regular spherical waves are denoted Rg{M } and Rg{N },
and obtained by replacing the hn(x) with spherical Bessel
functions, jn(x).

The vector wave addition theorem permits the expression
of spherical waves expressed in coordinates r = OP in
terms of spherical waves expressed around a different origin,
r′ = O′P [1, 2, 11, 14]

E t(kr) = E t(kr′) · β(kr0) r ′ > r0

E t (kr) = Rg{E t(kr′)} · α(kr0) r ′ < r0

Rg{E t(kr)} = Rg{E t (kr′)} · β(kr0) ∀|r|
(20)

where r0 ≡ OO′. The α(kr0) and β(kr0) are the irregular
and regular translation–addition matrices in the normalized
notation, respectively [14]. We have used the notation, α, β ,
for these matrices as adopted by Chew for scalar fields [11].
In the notation of Mackowski [6] these matrices are H(kr0)

and J (kr0), respectively.
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