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Abstract
We report local electric field calculations in nanocomposite materials. These
calculations are performed by means of a recursive transfer matrix method
initially developed for calculating the electromagnetic field response for
three-dimensional systems of scattering spheres. Illustrative calculations are
presented for various morphologies of nanocomposites composed of gold
particles in a silica matrix. We particularly point out that mutual interactions
between particles are responsible for large local field enhancements as
compared with fields inside isolated particles. Nonlinear optical
measurements, performed by using the z-scan technique, are presented
afterwards. We especially study the variations of the imaginary part of the
third-order nonlinear susceptibility as a function of the metal concentration
and we show that these results are in agreement with the previous field
calculations.

Keywords: Local electromagnetic field, nanoparticles, nonlinear optics,
surface plasmon resonance, transfer matrix method

1. Introduction

Materials composed of noble-metal nanoparticles embedded in
a transparent dielectric matrix have been the object of growing
interest for several years because of their specific linear and
nonlinear optical properties. These materials show an optical
absorption band due to the surface plasmon resonance (SPR)
phenomenon: collective oscillation of the conduction electrons
of the metal under the influence of an applied electromagnetic
(EM) wave. The enhancement of the local electric field which
occurs in the particles at frequencies close to the SPR is
responsible for the amplification of their nonlinear properties
as compared with those of bulk metal [1, 2]. This explains
the large effective third-order nonlinear susceptibility, χ(3),
of nanocomposite materials. Thanks to this high nonlinear
response, these materials are thought to be good candidates
for the realization of new photonics devices, such as all-optic
switching and routing units.

The first studies devoted to the measurement of the
third-order susceptibility were performed on samples with
very low metal volume fraction (about 10−6) in colloids [1]
and in doped glasses [3]. Nowadays, several physical and
chemical synthesis methods enable the elaboration of materials
containing higher metal amounts [4–6]. Nevertheless, most
studies still evaluate the amplification of the local fields by
considering the limit case of weak metal concentrations. So
far, the exact calculation of the distribution of the local
field intensities has been performed only for two-dimensional
semicontinuous films [7, 8].

This paper is focused on the exact calculation of
local fields inside spherical metallic particles of composite
materials. Calculations are based on a recursive transfer matrix
method which was initially developed for calculating the
electromagnetic field response for three-dimensional systems
of scattering spheres [9]. In the following section, the
basis of the calculation method is summarized and results
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relative to gold particles embedded in a silica matrix are
presented for various configurations. Experimental results of
the measurement of the third-order nonlinear susceptibility of
Au:SiO2 nanocomposites by the z-scan technique are shown
and connected with the previous theoretical results in section 3.

2. Local field calculations

2.1. Theoretical considerations

Let us consider an isolated metal particle embedded in a
dielectric matrix, subjected to an electric field E0. In the quasi-
static limit, a simple electromagnetic calculation leads to the
field, E , inside the particle:

E = f E0 = 3εd

εm + 2εd
E0; (1)

f is called the local field factor, εd is the dielectric function of
the matrix and εm is that of the metal. Equation (1) can be used
to calculate the field inside any metallic particle of a composite
material, as long as the metal concentration remains weak. As
a matter of fact, this equation does not take into account the
interactions between particles. Furthermore, it cannot account
for the spatial variations of the local fields.

In order to mitigate these shortcomings, we have
performed calculations based on a new recursive transfer
matrix approach [9]. This method was initially developed for
the calculation of local fields in multiple-scattering problems:
it is based on a recursive T -matrix algorithm and makes it
possible to perform an exact local electromagnetic calculation
of the field scattered by an assembly of interacting spheres. The
theoretical considerations of this method are detailed in [10]
and are only summarized here.

According to Mie theory, the incident field, E0, impinging
on a single sphere and the corresponding scattered field, Escat ,
can be expanded in terms of spherical vector wavefunctions.
The incident field expansion coefficients are converted into
the expansion coefficients of the radiated scattering field by
the T -matrix. In the case of an assembly of N spheres, the
same T -matrix formulation leads to a system of N coupled
linear equations:

E (i)
scat = T (i)

1

[
E0 +

N∑
j=1
j �=i

E ( j)
scat

]
, i = 1, . . . , N (2)

where T (i)
1 is a one-body transfer matrix, the elements of which

are essentially zero beyond a certain multipolarity order, n. In
equation (2), the incident field is expanded in the principal co-
ordinate system, whereas the scattered field from each sphere
is expressed as outgoing waves centred on the correspond-
ing scatter. The translation–addition theorem for the spherical
vector wavefunctions must be invoked in order to reference
all fields in the i th sphere coordinate system. This formalism
usually leads to convergence problems especially associated
with the dimensions of the translation matrices. It has been
possible to get rid of these problems, thanks to the modifica-
tion of a previous T -matrix algorithm [11], by calculating the
scatter-centred transfer matrices.
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Figure 1. Relative electric field intensity inside two particles (radius
r = 2 nm) as a function of the applied electric field wavelength for
various multipolarity orders, n, and centre-to-centre distances, d:
(a) 4.3 nm, (b) 4.5 nm and (c) 5 nm.

2.2. Results for nanocomposite materials

We have applied this method to the case of very weakly
scattering spherical particles to calculate the variations of the
local electric field inside metallic particles as a function of
the incident wavelength. The physical system under study
is composed of gold nanoparticles embedded in a silica host
matrix.

First of all, we have made sure of the convergence of the
results, that is their independence of the multipolarity order of
the calculation beyond a certain value of n. Figure 1 shows
the calculation of the relative electric field intensity, I/I0,

inside two spheres of 2 nm in radius as a function of both
their centre-to-centre distance, d, and the multipolarity order.
These calculations show that the convergence of the results is
ensured as soon as d verifies d � 5

2r , where r is the radius
of the particles, and that, this condition being verified, exact
calculations can be performed with n = 3. This will be the
case for all the following calculations.

Cases of two interacting spheres with various centre-to-
centre distances can be compared with the limit case of isolated
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Figure 2. Relative electric field intensity inside two particles
(r = 2 nm): comparison between isolated spheres and various cases
of interacting spheres.

spheres by plotting the variations of the square of the local
field factor, given by equation (1) (figure 2): between the two
extreme cases, i.e. isolated spheres and interacting spheres
with d = 5 nm, the intensity of the electric field increases
almost twofold and the resonance wavelength undergoes a
red-shift of about 20 nm. Besides, figure 2 shows that the
field amplification decreases quickly as d increases and that it
becomes negligible as soon as d = 12 nm.

Large field enhancements can be obtained in composite
materials in which each particle is subject to the influence of
several others. An ideal case where mutual influences are
of importance is that of spheres arranged as a linear chain.
Figure 3 illustrates this case for 12 particles (r = 2 nm
and d = 5 nm) aligned in the polarization direction of the
incident field; the relative intensity of the electric field inside
the particles is the same on both sides of the centre of the
chain; it is maximum in the central spheres (I/I0 = 30) at the
SPR and minimum at the extremities of the chain, where its
value (I/I0 = 11) remains much larger than that predicted by
equation (1); a shift of the spectral location of the resonance
is observed for all particles and it is a maximum at the centre
of the chain. It is to be noticed that the field enhancements are
very large for this particular linear arrangement because the
spheres are aligned along the incident polarization direction.
As a matter of fact, the enhancements are lower if additional
interactions between spheres arranged perpendicularly to the
incident polarization direction arise. This case is illustrated
by calculations performed when a second linear chain is
superposed on the previous one according to the direction of
the incident wavevector. In this case,

(i) for each chain, the fields are symmetric with respect to the
centre of the chain,

(ii) the fields are lower in the ‘second’ chain than in the ‘first’
one,

(iii) in the ‘first’ chain, the fields are lower than in the case of
a unique chain.

Figure 4 relates to the case of particles randomly
distributed. It is the most representative case of the behaviour
of ordinary composite materials. It shows results obtained
for ten gold particles filling a volume fraction p of 8%. The
local field value inside a sphere depends both on the distance
between this sphere and the others and on the direction of
the interactions between the spheres. In spite of the random
distribution of the particles, the average field remains larger
than that obtained in the limit case of the isolated sphere.
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Figure 3. Theoretical variations of the relative electric field
intensity as a function of the applied electric field wavelength for a
linear chain of 12 particles (r = 2 nm). The dashed curve
corresponds to the variations of the square of the local field factor in
the limit case of isolated particles.
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Figure 4. Theoretical variations of the relative electric field intensity
as a function of the applied electric field wavelength for ten particles
randomly distributed (r = 2 nm; metal volume fraction p = 8%).

3. Nonlinear optical measurements

Besides theoretical calculations, experimental studies on the
third-order nonlinear optical properties of nanocomposites
have been performed in our laboratory [12]. Au:SiO2

nanocomposites have been synthesized by radio-frequency
sputtering [13], the metal concentration varying from 8 to 35%.
Several characterization techniques such as TEM and grazing-
incidence small-angle x-ray scattering have shown that the
metal particles are spherical and randomly dispersed, the mean
particle diameter varying from 2.6 to 4.8 nm as a function of
the metal concentration. The third-order nonlinear properties
of the films have been determined by the z-scan technique [14]
according to an experimental set-up presented in a previous
article [12]. This method enables us to measure both the real
and the imaginary parts of χ(3), proportional to the nonlinear
refractive index and nonlinear absorption coefficient, respec-
tively. Measurements have been performed at λ = 532 nm,
that is close to the SPR absorption band of the materials.

Figure 5 shows the variations of the imaginary part of χ(3)

as a function of the metal concentration p. Results reveal
a very large enhancement of Im χ(3) with increasing p: a
hundredfold increase in Im χ(3) as p rises from 8 to 35%.
It is to be noticed that, with increasing metal concentration,
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Figure 5. Variations of Im χ(3) as a function of metal concentration.
The dashed line corresponds to the dilute media theory
(equations (1) and (3)).

results diverge from the theoretical prediction [3] (dashed line
on figure 5) suited for weakly concentrated materials. The
corresponding theoretical expression, determined in the quasi-
static approximation through a mean-field approach, and
usually considered to explain the nonlinearities of composites,
is given by

χ(3) = p| f |2 f 2χ(3)
m , (3)

where χ(3)
m is the intrinsic third-order nonlinear susceptibility

of gold particles. Its value, measured on a bulk gold
film [15], was taken to be equal to χ(3)

m = (−1 + 5i) ×
10−8 esu. Equation (3) predicts a linear variation of χ(3)

with the metal concentration. Our measurements reveal
that Im χ(3) no longer varies linearly with p as soon as p
reaches 5–10%. The discrepancy between the theoretical
prediction and the experimental results has to be attributed to
the large enhancement of the local electric field. As a matter
of fact, we have previously shown that from p = 8% (figure 4)
this enhancement is no longer evaluated by the local field factor
defined by equation (1), because this equation, and therefore
equation (3), does not take into account the mutual influence
between particles. The link between field calculations and
experimental results remains qualitative at this date. As a
matter of fact, simulations with a large number of particles
(at least 50) are necessary to be able to predict values of χ(3)

from field calculations. This work requires much computing
time and is in progress.

4. Conclusion

We have applied a recursive transfer matrix method initially
developed for calculating the electromagnetic field response
for three-dimensional systems of scattering spheres to
the study of nanocomposite materials. We have thus
studied the variations of the local electric field inside gold
particles embedded in a silica matrix as a function of the
frequency of the applied EM field for various configurations.
These calculations show that mutual interactions between

particles are responsible for large local field enhancements as
compared with fields inside isolated particles. In the case
of particles 2 nm in radius, we have determined that mutual
interactions have to be considered as soon as particles are closer
than d = 12 nm.

For the ideal case of materials composed of linearly
arranged particles, we have shown that very large
enhancements can be obtained provided that the particles are
aligned in the polarization direction of the incident field. In this
case, very high intensities are induced inside the particles at
the centre of the linear chain and the local field amplification is
accompanied by a shift of the spectral location of the resonance.

For the case of randomly distributed particles, we have
pointed out that the average field remained larger than that
obtained for the limit case of isolated particles, even for a low
metal concentration such as p = 8%.

Finally, we have presented experimental results relating
to the measurement of the third-order nonlinear susceptibility
of Au:SiO2 nanocomposites by the z-scan technique. These
results show that Im χ(3) values diverge from the theoretical
predictions and do not vary linearly with p. This discrepancy,
attributed to the large enhancement of the local electric
field, proves the qualitative agreement between the local field
calculations and the experimental nonlinear measurements.

Work is in progress in order to establish a quantitative
relationship between the theoretical calculations and the
experimentally determined values of the third-order nonlinear
susceptibility.
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