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Abstract. For systems of multiple spheres, we investigate in detail the
`individual’ and aggregate electromagnetic scattering matrices, and their
relations with conservation laws, reciprocity and the optical theorem. In
order for these relations to adopt their simplest form, care is taken to completely
extract both incoming and outgoing phase factors in the de®nitions. We
illustrate that the `individual’ cross-sections in an aggregate are de®ned only
in terms of part of the total ®eld, and consequently do not individually obey
conservation laws or reciprocity; these relations should be satis®ed for the
scattering by the entire aggregate. We demonstrate that for scatterer centred
transfer matrices, the conservation laws and reciprocity are automatically
satis®ed regardless of whether or not su� cient multipolarities were retained
in the description of individual scatterers. Derivations and results are worked
out in a particularly compact and transparent formalism, including magnetic
permeability contrast, and the possibility of complex polarizations.

1. Introduction
Although theoretical treatments of multiple scattering began more than a

century ago, recent years have seen considerable improvements in the analytical
and numerical aspects of the multiple scattering of aggregates, a subject having
numerous applications. These developments have the goal of facilitating the
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computer calculations of complex objects and/or multiple scattering calculations.
In order to make contact with experimentally measurable quantities, it is often
convenient to de®ne quantities in terms of scattering matrices and cross-sections.
Mackowski and others have pointed out the utility of de®ning the aggregate
scattering as a sum of `individual’ contributions [1]. These `individual’ scattering
quantities are (in some cases) de®ned in terms of part of the total ®eld, and as such
may not necessarily satisfy all the quantities usually associated with true scattering
quantities such as positivity, reciprocity, energy conservation, etc. The satisfaction
of such relations is, however, assured by the underlying physical equations of
motion, and must be recovered when the `individual’ scattering relations are
summed to obtain the quantities corresponding to scattering by the entire
aggregate.

In order to de®ne physical quantities in a manner free from numerical
parasites, it is important to cleanly extract the contributions coming from the
regular translation matrices which contain information on the relative positions of
scatterers, but also depend on the location of the (arbitrary) origin of the system.
Mackowski has already pointed out the utility of the scatterer centred transfer
matrices in this regard when treating orientationally averaged quantities [1, 2]. We
®nd that the scatterer centred transfer matrix is equally useful for the orientation
®xed quantities. The regular translation matrices remaining in the formulae, can
then be conveniently replaced by the exact incident and outgoing wave phase
factors.

We will spend some time developing our notation since for reasons of clarity,
we found it useful to continue the recent trend of modifying the historical
conventions, notations and derivations. Several authors, including Chew in his
recent book [3], have pointed out that in the multiple scattering of scalar waves,
considerable simpli®cation of the index notation can be achieved by using a matrix
notation in which the continual summations over multipolarity indices can be
suppressed. It has also been observed by Tsang et al. [4], that working with
normalized spherical waves simpli®es many scattering formulas. Furthermore,
these authors have demonstrated that derivations are facilitated by invoking the
vector spherical harmonics (rather than working solely with the vector spherical
waves). In this work, we have continued the above trend by normalizing the vector
spherical harmonics in addition to normalizing the vector spherical waves.
Derivations are also facilitated by remarking that a normalized spherical wave
basis renders the regular vector translation matrices unitary.

The system under study is that of an aggregate of non-overlapping scatterers of
various sizes, labelled by an index j, and whose electromagnetic properties are
described by the (complex) relative dielectric and permeability constitutive func-
tions "j…!† and ·j…!†. We adopt a time-harmonic framework with exp …¡i!t† time
dependence. The aggregate is immersed in a non-absorbing homogenous medium
characterized by " and · (real constants). Although much of the formalism is
applicable to scatterers of general shape, attention will be focused on aggregates of
spheres, the logic being that rather complicated continuous and discontinuous
objects may be approximated by an appropriate aggregate/agglomerate of spheres.
Furthermore, spheres serve as excellent building blocks due to their comparatively
simple electromagnetic response.

In section 2, we introduce our conventions. In section 3, we review some
essential aggregate scattering concepts such as ®eld expansions, incident wave
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phase factors, transfer matrices and the far-®eld limit. In the discussion of the far
®eld, we introduce the scattered wave phase factors as a consequence of the
translation matrices operating on far ®elds. For completeness, the special case of
spherical scatterers is rapidly reviewed in section 4, in order to obtain a useful
formula relating internal ®eld coe� cients to scattering coe� cients. We derive a
formula for the amplitude-scattering matrix in section 5. Our formula has a
particularly simple form, and is readily applicable to arbitrary polarizations. We
propose that it is useful to incorporate both incident and scattered wave phase
factors into its de®nition. We also show the constraints placed on the aggregate
transfer matrix due to reciprocity.

In section 6, we derive various aggregate and individual cross-section formulas,
paying particular attention to the role of the phase factors. Of particular interest is
an optical theorem for individual cross-sections. We will see that in the case of
spherical scatterers, the principle of ¯ux conservation permits alternative ways of
calculating the total scattering and absorption cross-sections. The concept of
individual `cross-sections’ is also clari®ed in this section via illustrative calcula-
tions. Notably, we show that individual extinction and scattering cross-sections are
not necessarily positive, unlike aggregate cross-sections. It is further demonstrated
that individual `cross-sections’ do not satisfy energy conservation relations, but
that these relations are satis®ed for the entire aggregate. We further demonstrate in
this section that conservation laws are satis®ed whether or not a su� cient number
of multipolarities have been included in the calculation of the scatterer centred
transfer matrix of the system.

2. Conventions and normalizations

The vector spherical harmonics (VSH) form a basis for angular vector func-
tions, and are a valuable calculational aid due to the fact that one can appeal to their
general properties, such as orthogonality, in order to simplify many integrals.
Unfortunately, there exists no universally accepted convention for the VSHs. We
will use normalized VSHs as de®ned by Cohen-Tanoudji [5]. Given a direction r̂r,
they consist of a longitudinal spherical harmonics Ynm…r̂r†, parallel to r̂r, and two
types of `transverse’ spherical harmonics, Znm…̂rr† and Xnm…r̂r† perpendicular to r̂r,

Ynm…r̂r† ² r̂rYnm…r̂r†; Xnm…r̂r† ² r̂r Ñ r̂rYnm…̂rr†

n n ‡ 1… †‰ Š1=2 ; Znm…̂rr† ² Ñ r̂rYnm…r̂r†

n n ‡ 1… †‰ Š1=2 ; …1†

where

Ñ r̂r ² ³̂³
1

r

@

@³
‡ ¿̂¿

1

r sin ³

@

@¿
:

The Ynm are the normalized scalar spherical harmonics (see equation (A 1) of the
appendix).

The source-free electromagnetic wave equation in each homogenous zone
(indexed j), has the form

Ñ Ñ E…r† ¡ k2
j
E…r† ˆ 0; …2†

where kj ˆ 2p=¶j is the in-medium wavenumber (in terms of the relative consti-
tutive parameters of the medium, k2

j
² "j·j !=c… †2

).
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The functions Mnm…kjr† and Nnm…kjr† satisfy equation (2) in spherical coordi-
nates [6], and are known as the normalized (outgoing) vector spherical waves

Mnm…kr† ² ¡hn kr… †Xnm…̂rr†;

Nnm…kr† ² 1

kr
f n n ‡ 1… †‰ Š1=2

hn kr… †Ynm…̂rr† ‡ krhn kr… †‰ Š 0Znm…r̂r†g;

…3†

where jn…x† and hn…x† are respectively the spherical Bessel functions and spherical
Hankel functions of the ®rst kind. The prime (

0
) in the de®nition of Nnm,

equation (3), denotes di� erentiation with respect to kr. The notation Rgfg, stands
for `take the regular part of’. Recalling that hn…x† ² jn…x† ‡ inn…x†, where nn…x† is
the spherical Neumann function (irregular at the origin), `taking the regular part’
means replacing hn…x† by jn…x†.

We have adopted a normalized de®nition for the spherical waves, Mnm and Nnm

[4], wherein their regular parts obey continuum normalization relations

2

kk 0p

…
d3rRg Anm…kr†f g Rg Bn 0m 0…k 0r†f g ˆ ¯AB¯nn 0 ¯mm 0 ¯ k ¡ k

0… †; …4†

where A and B represent either of the normalized spherical waves M or N. In
equation (6), and throughout the rest of this work, we use a heavy dot ( ) to denote
ordinary 3-vector scalar products. An important property of the spherical waves is
that they satisfy the easily memorized curl relations

Ñ Mnm kr… † ˆ kNnm kr… †; Ñ Nnm kr… † ˆ kMnm kr… †: …5†

The oldest and most common spherical wave convention in the multiple
scattering literature is the unnormalized vector spherical waves [7, 8], Munnorm

nm
²

Ñ unm r and Nunnorm
nm

² …1=k† Ñ Munnorm
nm , which are de®ned in terms of the

unnormalized scalar waves uunnorm
nm

r… † ² hn kr… †Pm
n cos ³… † exp …im¿†. Use of unnor-

malized waves gives results compatible with Mie’s formalism [9]. The relations
between the normalized and unnormalized spherical waves are Anm ˆ ®nmAunnorm

nm ,
where the normalization coe� cients, ®nm, are de®ned

®nm ² 2n ‡ 1… † n ¡ m… †!
4pn n ‡ 1… † n ‡ m… †!

µ ¶
1=2

: …6†

We will see below that our choice of normalized spherical wave functions confers
more convenient mathematical properties on the translation matrices.

3. Spherical wave expansions, transfer matrices and far ®elds

3.1. Spherical wave expansions of excitation, internal and incident ®elds
In an N-particle aggregate, the excitation ®eld for a particle labelled j is

generated by the incident ®eld and the (multiple) scattering of the incident ®eld by
the other N ¡ 1 scatterers. The excitation ®eld does not include the ®eld scattered
by the jth particle, but it will include ®elds scattered by the jth particle and
re¯ected back on it by the other particles in the aggregate.

The `centre’ of the jth particle is denoted xj. The spherical coordinates relative
to this scatterer are then rj ² r ¡ xj. The excitation ®eld may be expressed in terms
of regular spherical waves centred on the particle in question
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E…j†
e

r… † ˆ E0

X1

nˆ1

Xn

mˆ¡n

fRg Mnm krj

¡
a

…j†;M
e;nm

‡ Rg Nnm krj

¡
a

…j†;N
e;nm

g

ˆ E0Rg Et krj

¡
:a

…j†
e ; …7†

where E0 is a real parameter which determines the amplitude of the wave. In the
second line, the in®nite sum,

P1
nˆ1

P
n
mˆ¡n, has been integrated into an abstract

vector space notation. Following Tsang et al. [4], we de®ne a generalized index
l ² n n ‡ 1… † ¡ m for which each integral value of l corresponds to a unique physical
n, m pair. One can then arrange the spherical wave components in an in®nite
column vector, E kr… †, which will be truncated in numerical applications at some
®nite multipolarity nmax (lmax ˆ n2

max
‡ 2nmax)

E kr… † ²
M kr… †
N kr… †

µ ¶
ˆ

M1 kr… †

..

.

Mlmax kr… †
N1 kr… †

..

.

Nlmax kr… †

2

66666666664

3

77777777775

: …8†

Analogously, a
…j†
e is a column vector of (complex) excitation ®eld coe� cients. A

superscript (t) means that the column vector is transposed into a row vector, and
the dots …: † indicate matrix multiplication on the spherical wave components.

Other ®elds of interest that can be expanded in terms of regular spherical waves

are the ®elds on the interior of the particles ( j ˆ 1; . . . ; N), E…j†
I , expressed via the

internal ®eld coe� cients a
… j†
I , E… j†

I
r… † ˆ E0Rg Et kjrj

¡
:a

… j†
I . The incident ®eld, Ei;

is also developed in terms of regular spherical waves. Here however, one develops
its coe� cients once and for all in the origin of our coordinate system,
Ei r… † ˆ E0Rg Et kr… †f g:ai. Nevertheless, it will frequently prove necessary to reex-
press the incident ®eld in terms of coordinates centred on the individual particles.

The corresponding excitation, internal and incident magnetic ®elds are derived
via the Maxwell equation

i!·…r†·0H…r† ˆ Ñ E…r†; …9†

which is readily determined via the action of a curl on the spherical waves basis,
equation (5):

H…r† ˆ E0
1

i!··0

Rg r Et krj

¡
:a

ˆ E0
k

i!··0

Rg N kr… †; M kr… †‰ Šf g:
a

M

a
N

" #

: …10†

An incident electric ®eld of particular interest is that of the homogenous plane
wave, Eplane

i , described by a real wave vector, ki, and a (possibly complex)
polarization vector, êei :
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Eplane
i

r… † ˆ E0êei exp …iki r†

ˆ ¡E04p
X

n;m

RgfinMnm kr; ³; ¿… †X
nm

…k̂ki† ‡ in
‡1Nnm kr; ³; ¿… †Z

nm
…k̂ki†g êei

ˆ E0Rg Et kr… †f g:pi; …11†

where the incident plane wave coe� cients, pi, are expressed as ordinary (three)
vector scalar products between the (possibly complex) incident wave polarization
vector, êei and the transverse VSHs

p
M
i;nm

ˆ ¡in4pX
nm

…k̂ki† êei ² 4pXnm…k̂k i† êei;

p
N
i;nm

ˆ ¡in
‡14pZ

nm
…k̂ki† êei: ² 4pZnm…k̂ki† êei;

…12†

where the modi®ed transverse VSHs, X and Z have been de®ned in order to
simplify the notation

X
nm

…r̂r† ² ¡i
¡nXnm…r̂r†; Z

nm
…r̂r† ² ¡i

¡n¡1Znm…r̂r†: …13†

3.2. Scattered ®elds and transfer matrices
The scattered ®elds of an N-particle aggregate can be written as the sum of the

outgoing spherical waves, equation (3), centred respectively on the individual
particles

Etot
s

r… † ˆ
XN

j

E… j†
s;N

rj

¡
ˆ E0

XN

j

Et krj

¡
:f

… j†
s : …14†

where f
… j†
s are the body centred scattering coe� cients [3].

An object of great practical interest in aggregate scattering is the 1-body
transfer matrix T

… j†
1 . This matrix yields the scattering coe� cient of the jth

scatterer in terms of the coe� cients of the excitation ®eld impinging on the jth
scatterer, a

… j†
e ,

f
… j †
s

² T
… j†
1 :a

… j†
e : …15†

The solution of the multiple scattering problem is achieved by deriving the
transfer matrices T

… j†
1 for all the particles and then solving for the excitation

(or scattering) coe� cients which using the translation addition theorem can be
expressed as

a
… j†
e

ˆ b… j;0†
:a0 ‡

XN

lˆ1;l 6ˆj

a… j;l†:f
…l†
s ; …16†

where we have adopted the useful notation of Chew [3], a… j;l† ² a…k…xj ¡ xl††,
b… j;0† ² b…k…xj ¡ x0††, and x0 denoting the chosen origin of the system.

We recall that the translation addition theorem for spherical waves can be
written [3]
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Et kr… † ˆ Et kr 0… †:b…kr0†; r
0
> r0; …17†

Et kr… † ˆ Rg Et kr 0… †f g:a…kr0†; r
0
< r0;

Rg Et kr… †f g ˆ Rg Et kr 0… †f g:b…kr0†; 8 r 0j j;

where a…kr0† and b…kr0† are respectively the irregular and regular translation
matrices. The matrix elements of a…kr0† are known functions of spherical Hankel
functions and associated Legendre functions [3, 7, 8]. The b…kr0† matrices
functions are regular parts of a…kr0†, i.e. the spherical Hankel functions are
replaced by spherical Bessel functions.

A signi®cant advantage obtained by using normalized spherical waves, is that
the Hermitian conjugation (

y
) (complex conjugation plus transpose) of the regular

translation matrices corresponds simply to inverse translation, i.e.

by…kr0† ˆ b…¡kr0†: …18†

From the third line of the translation-addition theorem, equation (17), it can be
shown in both normalized and unnormalized notation that

b…¡kr0†b…kr0† ˆ I; …19†

where I is the identity matrix. Taken together, equations (18) and (19) show that
the normalized b matrices are unitary.

The homogeneous plane wave has particularly useful translation properties

Eplane
i

r… † ˆ E0êei exp …ik i r†

ˆ exp …iki xj†E0 exp …iki r†

ˆ exp …iki xj†E0Rg Et kr… †f g:pi: …20†

The re-expression of an arbitrary incident ®eld in terms of the jth reference frame
can also be accomplished via the third line of the translation-addition theorem,
equation (17)

Ei r… † ˆ E0Rg Et kr… †f g:ai

ˆ E0Rg Et…krj† :b kxj

¡
:ai: …21†

Comparison of equations (20) and (21), yields the useful result that the regular
translation matrix acting on the coe� cients of plane wave coe� cients corresponds
(in the limit lmax ! 1, equation (8)) to a multiplication by a phase factor

b kxj

¡
:pi

ˆ exp …iki xj†pi: …22†

Taking into account the expression for the plane wave coe� cients, equation (12),
this formula for b may be written as

b…kxj†:
X…k̂k†
Z…k̂k†

" #
ˆ exp …ik xj†

X…k̂k †
Z…k̂k†

" #

: …23†

Taking the complex conjugate of this expression yields

‰X …k̂k†; Z …k̂k†Š:by…kxj† ˆ ‰ X …k̂k†; Z …k̂k† Š:b…¡kxj†

ˆ X …k̂k†; Z …k̂k†
h i

exp …¡ik xj†: …24†
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In calculations, these in®nite vectors X…k̂k† and Z…k̂k† are truncated to some ®nite
value of the orbital angular momentum number, nmax. In order for equation (24) to
be satis®ed to some given precision, nmax is an increasing function of kxj .

In the expression of equation (14) for the scattered electric ®elds, the spherical
waves, Et krj

¡
, are centred respectively on each of the scatterers. It will frequently

prove useful to develop these waves about the origin of the aggregate. Using the
fact that b…¡kxj† ˆ b¡1…kxj†, the second line of the translation-addition theorem,
equation (17), can be expressed as

Et krj

¡
ˆ E0Et kr… †: b…¡kxj† ; r > xj: …25†

In situations where one is only interested in the behaviour of ®elds outside of the
aggregate, equation (25) allows the total scattered ®eld to be expressed as

Etot
s

r… † ˆ E0

X

j

Et kr… †:b…¡kxj†:f
… j†
s ; r > xj 8 xj …26†

ˆ E0

X

j

Et kr… †:by…kxj†:f
… j†
s

…27†

ˆ E0

X

j

Et kr… †:b…0; j†
:f

… j†
s : …28†

De®ning the aggregate centred scattering coe� cients, a
… j†
s as

a
… j†
s

² b…¡kxj†:f
… j†
s

ˆ b…0; j†
:f

… j†
s ; …29†

the total scattered ®eld exterior to the aggregate can be written in the aggregate
centred coordinates

Etot
s

r… † ˆ E0

X

j

Et kr… †:a… j†
s : …30†

A particularly useful means of formulating the solution is in terms of the
scatterer centred transfer matrices of the entire N-particle system, T

…j;k†
N [1]. This

transfer matrix can be seen as grouping all the multiple interactions as interactions
between pairs of particles. Since this matrix contains all local and far ®eld multiple
scattering information, it directly yields the scattering coe� cients in terms of the
known incident ®eld

f
… j†
s

ˆ
X

k

T
…j;k†
N :b kxk… †:ai

ˆ
X

k

T
…j;k†
N :b

…k;0†
:ai: …31†

In this equation, b kxk… † represents the regular translation-addition matrix. Thanks
to the presence of b kxj

¡
in this de®nition, T

…j;k†
N depends only on the sizes and

relative positions of the scatterers, but not on the choice of the origin.

3.3. Far ®eld
Quantities of typical interest in scattering calculations involve the ®elds at

points r, far from the aggregate, i.e. lim r ! 1. In this limit, the outgoing and
regular spherical waves adopt simpler forms:
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lim
r!1

Mnm…kr† ! ii
¡n exp …ikr†

kr
Xnm…̂rr† ˆ ¡i

exp …ikr†
kr

X
nm

…̂rr†;

lim
r!1

Nnm…kr† ! ii
¡n¡1 exp …ikr†

kr
Znm…r̂r† ˆ ¡i

exp …ikr†
kr

Z
nm

…r̂r†
…32†

and

lim
r!1

Rg Mnm…kr†f g ! ¡i

2kr
exp …ikr† ¡ ¡1… †n

exp …¡ikr†f gX
nm

…̂rr†;

lim
r!1

Rg Nnm…kr†f g !
¡i

2kr
exp …ikr† ‡ ¡1… †n

exp …¡ikr†f gZ
nm

…r̂r†:
…33†

The scattered spherical wave vectors in the far-®eld limit have thus a simple
representation in terms of the modi®ed VSHs

lim
r!1

Et kr… † ˆ ¡i
exp …ikr†

kr
X …̂rr†; Z …̂rr†‰ Š: …34†

Inserting this value into the expression for the far ®eld in terms of the scattering
coe� cients, equation (26), and using the conjugate phase relation, equation (24),
the aggregate centred scattered waves are subject to a phase shift, exp …¡ikxj r̂r†,

lim
r!1

E… j†
s

…r† ˆ lim
r!1 E0Et kr… †:b…¡kxj†:f

… j†
s

ˆ ¡iE0
exp …ikr†

kr
exp ¡ikxj r̂r

¡
X …r̂r†; Z …̂rr†‰ Š:

f
… j†;M
s

f
… j†;N
s

" #

: …35†

This phase shift is exactly what one would expect in the far ®eld based on di� erent
propagation path lengths.

Invoking the relation for the magnetic ®eld, equation (9), and the curl of vector
waves, equation (5), the magnetic far-®eld limit can be expressed

lim
r!1

H… j†
s

…rj† ˆ ¡iE0
k

!··0

exp …ikr†
kr

¡iZnm
…r̂r†; ¡iX nm

…̂rr† :
f

… j†;M
s

f
… j†;N
s

" #

ˆ k

!··0

r̂r E… j†
s

…r†; …36†

where the properties, equation (A 11) of the modi®ed VSHs were invoked.

4. Spherical scatterers and internal ®elds

In the interest of completeness, we quickly review in this section, the one-body
transfer matrix results for spherical scatterers, and derive the relation between the
internal and scattering coe� cients. This result is used in section 6 for calculating
the absorption cross-section. Invoking the developments of the internal, excitation
and scattered ®elds, and imposing the electric and magnetic ®eld boundary
conditions at the surface of a sphere of radius Rj, one readily ®nds the four
equations [6],
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Án…»jÀj†a
… j†;M
I;nm

ˆ »jÁn…Àj†‰a
… j†
e

ŠM
nm

‡ »j¹n…Àj†f
… j†;M
s;nm ;

·Á
0
n
…»jÀj†a

… j†;M
I;nm

ˆ ·jÁ
0
n
…Àj†‰a

… j†
e

ŠM
nm

‡ ·j¹
0
n
…Àj†f

… j †;M
s;nm ;

Á
0
n
…»jÀj†a

… j †;N
I;nm

ˆ »jÁ
0
n
…Àj†‰a

… j†
e

ŠN
nm

‡ »j¹
0
n
…Àj†f

… j†;N
s;nm ;

·Án…»jÀj†a
… j †;N
I;nm

ˆ ·jÁn…Àj†‰a
… j†
e

ŠN
nm

‡ ·j¹n…Àj†f
… j †;N
s;nm ;

…37†

where Àj and »j are respectively the dimensionless size parameter Àj ² kRj ˆ
2pRj=¶ (¶ is wavelength in the host medium) and the index contrast parameter,

»j ² kj=k ˆ …"j·j="·†1=2
. These equations were rendered rather compact by using

Ricatti Bessel functions, Án x… † ² xjn x… †, ¹n x… † ² xhn x… †.
Eliminating the internal ®eld from these equations, and invoking the de®nition

of the transfer matrix, equation (15), one ®nds the classic Mie result that only

the diagonal elements of T
… j†
1 are non-zero, and given by

T
… j†;MM
1; nm;¸·

ˆ ¯n¸¯m·
·jÁn…»jÀj†Á 0

n
…Àj† ¡ ·»jÁ

0
n
…»jÀj†Án…Àj†

·»jÁ
0
n
…»jÀj†¹n…Àj† ¡ ·jÁn…»jÀj†¹ 0

n
…Àj†

;

T
… j†;NN
1; nm;¸·

ˆ ¯n¸¯m·
·jÁ

0
n
…»jÀj†Án…Àj† ¡ ·»jÁn…»jÀj†Á 0

n
…Àj†

·»jÁn…»jÀj†¹ 0
n
…Àj† ¡ ·jÁ

0
n
…»jÀj†¹n…Àj†

…38†

Alternatively, one can obtain the coe� cients for the ®elds in the interior of particle
by eliminating the scattered ®elds in equation (37). Upon invoking the Wronskian

relation, one obtains [3, 10]

a
… j†;M
I;nm

ˆ ·j»j
i

·jÁn…»jÀj†¹ 0
n
…Àj† ¡ ·»jÁ

0
n
…»jÀj†¹n…Àj†

‰a… j†
e

ŠM
nm;

a
… j†;N
I;nm

ˆ ·j»j
i

·»jÁn…»jÀj†¹ 0
n
…Àj† ¡ ·jÁ

0
n
…»jÀj†¹n…Àj†

‰a… j†
e

ŠN
nm:

…39†

Inserting after the fraction the one body transfer matrix for a sphere, equation (38),

and its inverse, and appealing to the de®nition of the transfer matrix, equation (15),
one obtains an expression for the internal ®eld coe� cients of a sphere in terms of
the scattered ®eld coe� cients

a
… j†;M
I;nm

ˆ ·j»j
i

·»jÁ
0
n
…»jÀj†Án…Àj† ¡ ·jÁn…»jÀj†Á 0

n
…Àj†

f
… j†;M
s;nm ;

a
… j†;N
I;nm

ˆ ·j»j
i

·jÁn…Àj†Á 0
n
…»jÀj† ¡ ·»jÁn…»jÀj†Á 0

n
…Àj†

f
… j†;N
s;nm :

…40†

5. Amplitude-scattering matrices

The amplitude-scattering matrices describe the scattered waves far from the

aggregate resulting from an incident plane wave. Inserting the far-®eld results of
equation (35) for the jth particle, yields
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lim
r!1

krE
… j†
s

r… †
exp …ikr†E0

ˆ ¡i exp …¡ikxj r̂r† X …r̂r†; Z …r̂r†‰ Š:f … j†
s

ˆ ¡i exp …¡ikxj r̂r† X …r̂r†; Z …r̂r†‰ Š:T
…j;k†
N :b

…k;0†
:pi

ˆ ¡i exp …ik…k̂ki xk ¡ r̂r xj†† X …r̂r†; Z …r̂r†‰ Š:T
… j;k†
N :pi: …41†

Recalling the expression for the plane wave coe� cients, equation (12), we obtain

lim
r!1

krE
… j†
s

r… †
exp …ikr†E0

ˆ 1

i

X

k

4p exp …ik…k̂ki xk ¡ r̂r xj†† X …̂rr†; Z …r̂r†‰ Š:T
…j;k†
N :

X…k̂ki† êei

Z…k̂ki† êei

" #

:

…42†

This formula prompts the de®nition of the individual amplitude-scattering dyadic,

S
… j†

[4] as the dyadic giving the far-®eld scattered wave originating from the jth
particle in terms of the incident wave polarization vector, êei, and ®eld strength, E0

lim
r!1

E… j†
s

r… † ˆ E0
exp …ikr†

¡ikr
S

… j†…r̂r; k̂ki† êei: …43†

Comparison of equation (43) and equation (42) shows that the amplitude-
scattering dyadic is expressed

S
… j†

r̂r; k̂ki

± ²
ˆ ¡4p

X

l

exp …ik…k̂ki xl ¡ r̂r xj†† X …̂rr†; Z …̂rr†‰ Š:T
… j;l†
N :

X…k̂ki†

Z…k̂ki†

2

4

3

5

ˆ ¡4p
X

l

X …r̂r†; Z …r̂r†‰ Š:b…0;j†
:T

… j;l†
N :b

…l;0†
:

X…k̂ki†

Z…k̂k i†

2

4

3

5
; …44†

where both incoming and scattered wave phase factors have been put into the

de®nition of S
… j†

. As discussed in section 3, the second line of equation (44) is only
true in the limit lmax ! 1.

An expression useful for proving an individual scattering optical theorem is
obtained from the real part of the scattering matrix in the forward direction with
the same polarization. This expression for a possibly complex polarization reads

Re ‰êe
i S

… j†…k̂ki; k̂ki† êeiŠ

ˆ ¡4p Re
X

l

exp …ikk̂ki …xl ¡ xj††‰êei
X …k̂ki†; êe

i
Z …k̂ki†Š:T

… j;l†
N :

X…k̂ki† êei

Z…k̂ki† êei

" #( )

ˆ ¡ 1

4p
Re

X

l

exp …ikk̂ki …xl ¡ xj††p
y
i :T

… j;l†
N :pi

( )

: …45†

Inspection of equation (45) shows that the amplitude-scattering dyadic has
non-zero components only in the transverse directions for the incident and
scattered wave. Therefore the amplitude-scattering matrix S

… j† ³; ¿; ³i; ¿i… † can be
written as a 2 2 matrix acting on the polarization degrees of freedom of the
incident wave, e³;i and e¿;i
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E
… j†
³;s

E
… j†
¿;s

2

4

3

5 ˆ exp …ikr†
¡ikr

S
… j†
³³ S

… j†
³¿

S
… j†
¿³ S

… j†
¿¿

2

4

3

5 e³;i

e¿;i

" #

E0; …46†

where we identify S
… j†
³³

ˆ ³̂³ S
… j†

³̂³i, S
… j†
³¿

ˆ ³̂³ S
… j†

¿̂¿i, etc. This de®nition
of S

… j † di� ers from one commonly encountered [6] in that it incorporates both
incident and scattered wave phase factors. A considerable advantage of this
de®nition is that the aggregate amplitude-scattering dyadic (matrix) can be de®ned
simply as the sum of the individual ones,

S
agg ²

X

j

S
… j†

: …47†

An important symmetry relation is imposed on the aggregate amplitude-
scattering matrix due to the reciprocity of the Maxwell equations [4]. In the
present context, this relation can be found by considering a dipole source, A,
located at point ri su� ciently far from the aggregate such that the ®eld at the
aggregate may be approximated by a plane wave of wave-vector k̂ki ˆ ¡r̂ri, and a
dipole receiver, B, located at point r su� ciently far from the aggregate that the far-
®eld limit can be applied. The reciprocity principle tells us that the ®eld response
is identical if we interchange the source to be located at B (such that k̂ki ! ¡r̂r) and
the receiver at ri (such that r̂r ! ¡k̂ki). Reciprocity thus yields for the aggregate
amplitude-scattering dyadic

S
agg…¡k̂ki; ¡r̂r†

h i
t
ˆ S

agg…r̂r; k̂ki†: …48†

Using the second line the expression for individual amplitude-scattering
dyadics, equation (44), and the properties of the VSHs under inversion,
equation (A 8), we ®nd

S
agg…¡k̂ki; ¡r̂r†

h i
t

ˆ ¡4p
X

j;l

X

nm;¸·

f ¡1… †m‡·X¸·…k̂ki†‰b
y

kxj

¡
:T

… j;l†
N :b kxl… †ŠMM

¸·;nm
X

nm
…r̂r†:

‡ ¡1… †m‡·X¸·…k̂ki†‰b
y

kxj

¡
:T

… j;l†
N :b kxl… †ŠMN

¸·;nm
Z

nm
…r̂r†

‡ ¡1… †m‡·Z
¸·

…k̂ki†‰b
y

kxj

¡
:T

… j;l†
N :b kxl… †ŠNM

¸·;nm
X

nm
…r̂r†

‡ ¡1… †m‡·Z¸·…k̂ki†‰b
y

kxj

¡
:T

… j;l†
N :b kxl… †ŠNN

¸·;nm
Z

nm
…̂rr†g: …49†

Comparison with the original expression, equation (44), yields relations which
must be satis®ed by the transfer matrices

X

j;l

‰by
kxj

¡
:T

… j;l†
N :b kxl… †ŠAB

¸·;nm
ˆ ¡1… †m‡·

X

j;l

‰by
kxj

¡
:T

… j;l†
N :b kxl… †ŠAB

nm;¸·; …50†

where A and B can represent either M or N.
One may obtain reciprocity relations free of the translation matrices by

employing the ®rst line of equation (44) containing phase factors. Restricting
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then to the case of O ˆ Oi, one then obtains relations for the sum of the transfer
matrices

X

j;l

‰T
… j;l†
N

ŠAB
¸·;nm

ˆ ¡1… †m‡·
X

j;l

‰T
… j;l†
N

ŠAB
nm;¸·: …51†

6. Cross-sections

While emphasizing the role of phase factors, we shall derive formulas for
multiple scattering cross-sections which have appeared recently or concurrently in
the literature (in one form or another). Cross-sections are de®ned in terms of the
power ¯ux, i.e. in terms of the Poynting vector, S ² 1

2 Re E H… †. Since the total
®eld consists of the incident ®eld and the ®elds scattered from each of the particles
in the aggregate, the total Poynting vector can be decomposed in three parts
Sagg

tot
ˆ Sinc ‡ Sagg

ext
‡ Sagg

scat, where Sinc, Sagg
ext and Sagg

scat are respectively the incident,
extinction and scattered ¯ux of the aggregate. Explicitly, they are de®ned

Sinc ² 1
2 Re Ei H

i ; incident;

Sagg
scat

² 1
2 Re f

P
j;l

E… j†
s

H…l†
s

g; scattering;

Sagg
ext

²
P

j
S… j†

ext
² 1

2

P
j Re fEi H… j†

s
‡ E… j†

s
H

i
g; extinction;

…52†

where the summations are performed on the particle labels.
In order to de®ne cross-sections, one calculates the incident ¯ux, Sinc, assum-

ing a homogenous host medium with real constitutive parameters " and · (i.e. no
absorption). In the computation of cross-sections, one assumes incident plane
waves, Ei…r† ˆ E0êei exp …iki r† which yields

Sinc ˆ 1

2!··0
Re iEi Ñ E

i

ˆ 1

2!··0
Ref…E2

0kk̂ki ¡ E2
0k…êei k̂ki†êei

†g

ˆ E2
0

2

"

·

°0

·0

1=2

k̂k i: …53†

where in the last line, one invokes the fact that for a homogenous plane wave, the
polarization vector, êei is perpendicular to the wave vector ki.

6.1. Di� erential scattering cross-section
The di� erential scattering cross-section is de®ned as the angular function of

scattered ¯ux per unit solid angle dO at large distances from the scatterers divided
by the unit power ¯ux of the incident wave in the direction of incidence

d¼
agg
scat ³; ¿; ³i; ¿i… †

dO
² lim

r!1 r2
r̂r Sagg

scat
r… †

k̂ki Sinc

ˆ lim
r!1 r2

j
P

j
E… j†

s
r… †j2

E2
0

ˆ
X

j

d¼
… j†
scat

dO
; …54†
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where in the second line one uses the relation for the far magnetic ®eld,
equation (36). In the last equality, we have taken advantage of the sum over the
particle labels to de®ne individual real valued di� erential scattering `cross-sections’
for the jth particle

d¼
… j†
scat

dO
² lim

r!1 r2

P
l Re f…E… j†

s
r… †† E…l†

s
r… †g

E2
0

: …55†

When carrying out an integration over the scattering angles (as we will do
below), it is useful to write out the above product explicitly using the aggregate
centred ®eld development, equation (30), and the far-®eld limit of the scattered
electric ®eld, equation (34) to obtain

d¼
… j†
scat ³; ¿; ³i; ¿i… †

dO
ˆ 1

k2

X

l

Re ‰…a… j†;M
s

† ; …a… j†;N
s

† Š:
X…r̂r†

Z…̂rr†

2

4

3

5

8
<

:

X …̂rr†; Z …̂rr†‰ Š:
a

…l†;M
s

a
…l†;N
s

2

4

3

5

9
=

;: …56†

If the subject of interest is the di� erential cross-section for the entire aggregate,
and not some integration over angles, then one may simply insert the results for
the aggregate amplitude-scattering matrix, equations (47), (43) and (44), into
equation (56) to obtain

d¼
agg
scat ³; ¿; ³i; ¿i… †

dO
ˆ 1

k2
jS

agg
r̂r; k̂ki

± ²
eij2

ˆ 1

k2

X

j;l

exp …ik…k̂k i xl ¡ r̂r xj††
(

…ĥh X…r̂r†:‰T
… j;l†
N :pi

ŠM ‡ĥh Z…r̂r†:‰T
… j;l†
N :pi

ŠN†
2

‡
X

j;l

exp …ik…k̂ki xl ¡ r̂r xj††…ûu X…r̂r†:‰T
… j;l†
N :pi

ŠM

‡ ûu Z…r̂r†:‰T
… j;l†
N :pi

ŠN†
2
¼

; …57†

where in the last line the vector components and phase factors are written out
explicitly. A practical version of this formula in terms of Legendre functions is
obtained by inserting the expressions for the VSHs of the appendix, equation (A 2).

It is clear from the above formula that the phase factors play an important role
in determining the interference between the scattering sources. As a demonstration
of the utility of these formulas, we show in ®gure 1, the good agreement obtained
between calculations of the di� erential cross-section, using equation (57), and
measured values taken by Wang and Gustafson using a microwave analogue
technique [11]. The system consists of an aggregate of two identical polystyrene
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spheres (of radius R) in contact ( x1 ¡ x2j j ˆ 2R) for di� erent orientations and
polarizations. We plot the base 10 logarithm of the square of the wavenumber
multiplying the di� erential cross-section, k2 d¼

agg
scat ³; ¿ ˆ 0; ³i ˆ 0… †=dO, (alter-

natively written as jS
agg…³; ¿ ˆ 0; ³i ˆ 0† eij2) as a function of the polar angle, ³,

of the outgoing measurement direction.

6.2. Total scattering cross-section
Although the di� erential cross-section is somewhat complicated, results for the

total scattering cross-section are simpli®ed by the orthogonality of the VSHs.
Carrying out an integral over all angles of the di� erential cross-sections,
equations (54) and (56), the total scattering cross-section for the aggregate, ¼

agg
scat,

may be written ¼
agg
scat

ˆ
P

N
jˆ1 ¼

… j†
scat, where the ¼

… j†
scat are the angular integrals of the

individual di� erential `cross-sections’, equation (55),

¼
… j†
scat ³i; ¿i… † ²

…
d¼

… j†
scat ³; ¿; ³i; ¿i… †

dO
dO ˆ 1

k2

XN

l

Reff
… j†y
s :b

… j;0†
:b

…0;l†
:f

…l†
s

g

ˆ 1

k2

XN

l

Reff
… j†y
s :b

… j;l†:f
…l†
s

g: …58†

Inserting the expressions for the body centred and aggregate centred scattering
coe� cients, equations (29) and (31) into the above formula, one obtains
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Figure 1. Comparison between the theoretical and experimental di� erential scattering
cross-sections, d¼agg

s =dO, for identical touching spheres, dielectric contrast
parameter » ˆ 1:61 ‡ 0:004i and size parameter À ˆ kR ˆ 3:083. The incident
wave-vector (³i ˆ 0) lies along the positive ẑz direction. Measurements taken in the
x̂x±ẑz, (¿ ˆ 0) plane are plotted as a function of the polar angle, ³, of the outgoing
wave. The polarization vector, ei, of the incident electric ®eld is transverse electric
(TE), or transverse magnetic (TM) for ei oriented along the ŷy and x̂x axis
respectively. Comparisons are made when the symmetry axis of the two spheres lies
respectively along the ẑz, x̂x and ŷy axis (denoted in the parenthesis of the plots).



¼
… j†
scat ³i; ¿i… † ˆ 1

k2 Re
X

l;k;m

a
y
i :b

…m;0†y
:T

…j;m†y
N :b

… j;l†
:T

…l;k†
N :b

…k;0†
:ai

( )

ˆ 1

k2 Re
X

l;k;m

a
y
i :b

…0;m†
:T

…j;m†y
N :b

… j;l†:T
…l;k†
N :b

…k;0†
:ai

( )

; …59†

where in the second line we invoked the unitarity properties of the regular

translation matrix.

Of particular interest is the incident plane wave in which incident phase factors
will give rise to interference e� ects

¼
… j†
scat ³i; ¿i… † ˆ 1

k2
Re

X

l;k;m

exp …iki xk ¡ xm… ††py
i :T

…j;m†y
N :b

… j;l†:T
…l;k†
N :pi

( )

: …60†

One can view the scattered wave factors as having gone into the formation of the
b… j;l† matrix.

6.3. Extinction cross-section and optical theorem

Unlike the incident and scattering ¯ux, there is no shortcut for calculating the

extinction ¯ux outside of the optical theorem. One can then either prove the optical

theorem by manipulation of the underlying equations [4, 6], or prove the optical

theorem by simply calculating the extinction cross-section. We choose the latter,

since this approach is perhaps the most straightforward when treating individual

extinction `cross-sections’. In any case, the direct calculation is considerably
facilitated by the use of normalized VSHs. Using the de®nition of the extinction

¯ux, equation (52), and equation (9), the aggregate extinction cross-section can be

written as ¼
agg
ext

ˆ
P

N
jˆ1 ¼

… j†
ext, where the individual extinction `cross-sections’, ¼

… j†
ext

are de®ned as

¼
… j †
ext ³i; ¿i… † ² lim

r!1
¡

…
dO r2

r̂r S… j†
ext

r… †
k̂ki Sinc

ˆ lim
r!1

¡r2

…
dO

r̂r Re fiE
… j†
s

Ñ E
i

¡ iEi
Ñ E… j†

s
g

kE2
0

: …61†

The evaluation of ¼
… j†
ext proceeds in a straightforward manner. First, one inserts

the far-®eld limits for the regular and scattered waves, equation (33) and

equation (32) respectively, and then eliminates the Ñ operator by invoking the

spherical wave relation of equation (5). We are left with vector cross products

of the transverse VSHs, but these are given by the relations of equation (A 6). The

®nal step is to carry out an integration over all angles, and invoke the ortho-

normality relations of the VSHs to obtain

¼
… j†
ext ³i; ¿i… † ˆ ¡ 1

k2 Re fa
y
i :a

… j†
s

g: …62†

Inserting as usual the regular translation matrices appearing in equations (30) and
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(31), we obtain

¼
… j†
ext ³i; ¿i… † ˆ ¡ 1

k2
Refa

y
i :a

… j†
s

g

ˆ ¡ 1

k2

X

l

Re fa
y
i :b

…0;j†
:T

… j;l†
N :b

…l;0†
:aig: …63†

Specializing to incident plane waves, pi, and invoking the phase shift equation,
equation (23) and its conjugate, we ®nd

¼
… j†
ext ³i; ¿i… † ˆ ¡ 1

k2

X

l

Refexp …ikk̂ki …xl ¡ xj††p
y
i :T

… j;l†
N :pi

g: …64†

Comparing the above equation to the S dyadic relation of equation (46) for the
forward scattering, we obtain an individual particle optical theorem, valid for
complex polarizations

¼
… j†
ext ˆ 4p

k2 Re fêe
i S

… j†…k̂ki; k̂ki† êeig: …65†

Restricted to real polarization vectors, this reproduces a result derived in [4] for
isolated scatterers. Recalling the de®nition of the aggregate amplitude-scattering
matrix, equation (48), the sum of the above formula over particle labels leads to an
aggregate optical theorem, ¼

agg
ext

ˆ …4p=k2† Re fêe
i S

agg…k̂ki; k̂ki† êeig.

6.4. Absorption cross-section
For energy absorbing particles in a lossless medium, the absorption cross-

section is generally calculated via energy conservation. That is, since the medium
is lossless, all absorption occurs inside the particles, and therefore the total
absorbed ¯ux can be obtained by integrating the total ¯ux on any closed surface
surrounding the system. This observation leads to the relation ¼

agg
abs

ˆ ¼
agg
ext

¡ ¼
agg
scat

[4] for the aggregate absorption cross-section.
An alternative method for calculating ¼

agg
abs is to evaluate the absorption via the

¯ux through the surfaces of the particles, the aggregate cross-section then being
expressed as the sum of individual absorption cross-sections ¼

agg
abs

ˆ
P

N
j ¼

… j†
abs. The

integral for the ¯ux through the particle surfaces can readily be carried out in the
case of spherical scatterers (radii Rj). The normal to the surface in the sense of
incoming ¯ux then being ¡r̂r, the individual absorption cross-sections for spherical
scatterers are then expressed as

¼
… j†
abs

ˆ ¡
†

A
r̂r S… j†

I dA

k̂ki Sinc

ˆ ¡ !··0R2
j

E2
0k

…
dOr̂r Re fE… j†

I
H… j†

I
g: …66†

Inserting the spherical wave developments of the internal electric and magnetic
®elds, equation (10), then making use of the vector product expressions for the
spherical harmonics, equation (A 6), and lastly invoking the orthonormality
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relations of the VSHs, yields

¼
… j †
abs

ˆ ·

"

± ²
1=2 1

»j
2
k2

X

n;m

Re i
"j

·j

1=2

Án »jÀj

¡
Á

0
n »jÀj

¡
( )

ja
… j†;M
I;nm

j2
"

‡ Re i
"j

·j

1=2
Á !

Án »jÀj

¡
Á

0
n »jÀj

¡
( )

ja
… j†;N
I;nm

j2
#

: …67†

It is clear that in the case of a non-absorbing scatterer (i.e. "j and ·j are real
constants), that the absorption cross-section is zero.

Using the expression relating the internal ®eld coe� cients to the scattering
coe� cients, equation (40), this result may be written as

¼
… j†
abs

ˆ 1

k2

X

n;m

fC
… j†
n

jf … j†;M
s;nm

j2 ‡ D
… j†
n

jf … j†;N
s;nm

j2g; …68†

where

C
… j†
n

ˆ Re fi»j··j Án »jÀj

¡
Á

0
n »jÀj

¡
g

·jÁn »jÀj

¡
Á

0
n Àj

¡
¡ ·»jÁ

0
n »jÀj

¡
Án Àj

¡
2 ;

D
… j†
n

ˆ Re fi»j ··jÁn »jÀj

¡
Á

0
n »jÀj

¡
g

·»jÁn »jÀj

¡
Á

0
n Àj

¡
¡ ·jÁn Àj

¡
Á

0
n »jÀj

¡
2 :

…69†

In the case of ·j ˆ · ˆ 1, this result reduces to the absorption formula for
spherical scatterers derived by Mackowski [12].

A matrix multiplication expression method of writing the above absorption
formula is to de®ne a diagonal matrix C

… j† of the form

C
… j† ˆ C

… j† 0

0 D
… j†

" #

; …70†

where the matrix elements of C
… j† and D

… j† are respectively C
… j†

nm;¸·
ˆ ¯n¸¯m·C

… j†
n ,

D
… j†

nm;¸·
ˆ ¯n¸¯m·D

… j†
n . In the matrix notation, one can write

¼
… j†
abs

ˆ 1

k2
f

… j†y
s :C

… j†
:f

… j†
s

ˆ 1

k2

X

l;m

a
y
i :b

…0;m†
:T

…j;m†y
N :C

… j†
:T

… j;l†
N :b

…l;0†
:ai: …71†

When evaluating for incoming plane waves, the formula takes the form

¼
… j†
abs

ˆ 1

k2

X

l;m

exp …ikk̂ki xl ¡ xm… ††py
i :T

…j;m†y
N :C

… j†
:T

… j;l†
N :pi: …72†

We remark that as opposed to the individual scattering cross-sections,
equation (60), formulas for the individual absorption and extinction cross-sections,

¼
… j†
abs and ¼

… j†
ext are simpler since they contain no translation-addition matrices and

consequently, as suggested by Mackowski [1], it generally proves simpler (faster)
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to calculate the total aggregate scattering cross-section in terms of the ¼
… j†
abs and ¼

… j†
ext,

i.e. ¼
agg
scat ˆ

P
j
…¼

… j †
ext ¡ ¼

… j†
abs

†.

6.5. Total cross-sections and energy conservation
Large scale calculations were not the aim of the present work, and we have

not discussed the calculation of the N-body transfer matrices. These have been
discussed in other works [3, 13], and in a forthcoming work by us. It seemed

nevertheless useful to give some results obtained for the total cross-sections
using the above formulas in order to clarify the physical content of the individual
`cross-sections’.

The individual absorption cross-sections, ¼
… j†
abs, have a clear physical interpret-

ation since they represent the absorption in the jth sphere individually and are
calculated in terms of the total ®eld in the interior of the scatterers. The ¼

… j†
abs are

thus necessarily non-negative for passive media. Although the individual scatter-

ing and extinction `cross-sections’ are practical calculational objects, and contain
useful physical information, they should not be viewed as true cross-sections since
they involve only part of the total ®eld. For instance, although the aggregate
scattering must satisfy energy conservation, ¼

agg
ext

ˆ ¼
agg
scat

‡ ¼
agg
abs, the energy con-

servation relations are generally not satis®ed by the individual `cross-sections’ as
we have de®ned them (¼

… j†
ext 6ˆ ¼

… j†
scat ‡ ¼

… j†
abs). In addition, although the individual

scattering and extinction `cross-sections’ are real quantities by de®nition, nothing
requires them to be positive (contrary to ¼

… j†
abs).

For the sake of simplicity, we will give results for a two sphere aggregate
consisting of two identical touching spheres with radii R1 ˆ R2 ˆ R, and plot
individual and total cross-sections (divided by R2) as functions of the size
parameter, À ˆ kR ˆ !=c… †…"·†1=2

R. In ®gure 2, we take zero permeability con-

trast, ·j ˆ · ˆ 1, and invoke the same dielectric contrast as used in the comparison
with experiment (see ®gure 1), except that we set the imaginary part strictly to
zero, »1 ˆ »2 ˆ 1:61. The symmetry axis of the sphere is along the ẑz axis
… x1… †

z
ˆ ¡ x2… †

z
ˆ ¡R, x1… †

x;y
ˆ x2… †

x;y
ˆ 0†. The incident wave vector is taken to

be oriented along the positive ẑz direction. In ®gure 2 (a), we illustrate the indi-
vidual and aggregate extinction cross-sections and remark that for certain size
parameters, the extinction `cross-section’ of particle 2 is negative. In ®gure 2 (b),
we show the individual and aggregate scattering cross-sections and remark that the

individual scattering cross-section of particle 2 is generally larger than that of
particle 1 (`lens e� ect’ of particle 1). Energy conservation for the aggregate cross-
sections is strictly observed, ¼

agg
ext

ˆ ¼
agg
scat.

In ®gure 3, we keep the same real part of the dielectric contrast as in ®gure 2,

but add some absorption »1 ˆ »2 ˆ 1:61 ‡ 0:1i. The individual and aggregate
extinction and scattering cross-sections are given in (a) and (b) respectively. We
remark that whereas the tendency for negative extinction individual `cross-
sections’ diminishes with increased absorption, the individual scattering `cross-

section’ of particle 2 becomes slightly negative at a size parameter of À 3:8. The
individual and aggregate absorption cross-sections are plotted in (c). Figure 3 (d)
displays the aggregate absorption, scattering and extinction cross-sections (all of
which are positive, and satisfy energy conservation, ¼

agg
ext

ˆ ¼
agg
scat

‡ ¼
agg
abs).

It is important to remark that although energy conservation can test the
accuracy of an algorithm for the calculation the scatterer centred transfer matrix,
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T
…i; j†
N , it cannot tell us whether or not the individual scatterers were accurately

described. For instance, should we correctly calculate T
…i; j†
N in an overly truncated

multipolarity space (nmax too small) energy conservation will still hold but the
result can be inaccurate due to a poor description of the individual scatterers. This
e� ect is demonstrated in table 1. We present the total extinction scattering and
absorption cross-sections for a system of seven identical dielectric touching
spheres wherein one sphere is placed at the origin, and a pair of spheres is placed
on each of the x̂x, ŷy and ẑz axes, all equidistant from the origin. We consider a
plane wave travelling along the positive ẑz direction and a size parameter of À ˆ
kR ˆ 3 for all the spheres. The index of refraction of the spheres is chosen as
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Figure 2. Absorption free aggregate cross-sections for identical touching spheres,
»sphere ² ksphere=k ˆ 1:61, radiusˆ R. The incident wave and symmetry axis both lie
on the ẑz axis. Individual and aggregate cross-sections (divided by R2) are plotted as
a function of the size parameter, À ˆ kR. (a) Extinction cross-sections. (b) Scattering
cross-sections.

(a)

(b)



nsph ˆ 2:5 ‡ 0:01i, and that of the surrounding medium as nmed ˆ 1:5. The
calculations were performed using a rigorously calculated scatterer centred trans-
fer matrix, T

…i; j†
N and using the formulae derived in this paper. The total cross-

sections are presented for di� erent values of the nmax orbital cut-o� . We remark
that energy conservation (¼ext ˆ ¼scat ‡ ¼abs) is obeyed for arbitrary cut-o� values,
but that the results are reliable only for a cut-o� of nmax 3.
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Figure 3. Aggregate cross-sections with absorption. This is the same system as ®gure 2,
except that an imaginary (absorbing) part has been added to the dielectric contrast
parameter, »sphere ˆ 1:61 ‡ :1i. Individual and aggregate extinction, ¼e, and
scattering, ¼s, cross-sections (divided by R2) are plotted in (a) and (b) respectively
as a function of the size parameter, À ˆ kR. (c) Individual and aggregate absorption
cross-sections. (d) Aggregate absorption and scattering cross-sections (¼agg

a and ¼agg
s ),

and their sum (which is identical to the aggregate extinction cross-section, ¼agg
e ).

Table 1. Extinction, scattering and absorption cross-sections for a system of seven
dielectric touching spheres located at the origin, and on the x, y and z axes
respectively. The refractive index of the spheres is nsph ˆ 2:5 ‡ 0:01i, while that of
the host medium is nm ˆ 1:5.

nmax ¼ext ¼scatt ¼abs percent

1 0.58176 0.56958 0.01218 ( 40%)
2 1.34668 1.30563 0.04105 ( 90%)
3 1.49606 1.40997 0.08683 ( 99.2%)
4 1.5014 1.4132 0.0882 ( 99.4%)
5 1.51003 1.42162 0.08841 ( 99.97%)
6 1.5105 1.42201 0.08849



7. Conclusions

We have derived relations imposed on the aggregate centred scattering

matrices, T
…i; j†
N , by the underlying conservation laws and symmetry relations.

We have seen that for appropriate de®nitions, the optical theorem can be
applied to individual scatterers, while the conservation laws only manifest

themselves once all the individual ®eld contributions have been summed.

Similarly, the reciprocity relations are also satis®ed only on the level of the
entire aggregate. We have demonstrated some typical applications of these

formulae with calculations. In orientation ®xed calculations, we have emphasized

that in order to avoid truncation errors, it is important to replace regular
translation matrices acting on incident and scattered wave coe� cients by their

exact phase eigenvalues.

An important observation of this work is that energy conservation can serve as a

test for the accurate calculation of the transfer matrix, T
…i; j†
N , and the cross-section

formulae. Once reliable methods have been employed, conservation relations are

satis®ed regardless of whether or not the calculations are performed for a multi-

polarity basis su� ciently large to describe the individual scatterers. An important
de®ciency of the present article is that we have not presented a reliable means of

calculating the scatterer centred scattering matrices, T
…i; j†
N . This shall be presented

in a forthcoming article, which uses this matrix to calculate the local ®elds present
in aggregate scattering.

In this work, we have only discussed systems composed of dielectric spheres,

and the reader may well wonder about applications to metallic spheres. Our studies

on metallic spheres indicate that there is the possibility for reliable calculations for
metallic spheres provided that calculations are performed in the strongly scattering

regime (kR 0 1) and/or well separated spheres. Applications to small (kR ½ 1)

closely packed metallic spheres however can present problems for our formalism
due to the existence of large polarization charges which occur in metallic spheres in

the quasi-static limit. Such systems apparently require a more re®ned or modi®ed

treatment.
We emphasize that the methods presented in this work can be applied to an

arbitrary con®guration of spheres. Studies of disordered systems can often be

considerably improved by invoking con®guration averages of the system [2] (not
presented here). Our formulae, for ®xed orientations of the incident ®eld with

respect to the system may ®nd some of their best applications in the rapidly

expanding ®eld of photonic crystals. Our formalism is particularly suited to the
studies of ®nite size e� ects, since there are no assumptions of `in®nite’ crystal

lattices, plane wave developments or the Bloch theorem. The theory presented

here ®nds a close analogue in treatments of the scattering by `2-dimensional’
systems composed of `in®nite’ cylinders. A number of studies of 2D photonic

crystal systems [14, 15] and waveguides [16] have recently been reported or are

currently in progress.

Appendix: Vector spherical harmonics (VSHs)

The normalized scalar spherical harmonics can be written in terms of the

associated Legendre functions Pm
n x… †,
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Ynm r̂r… † ˆ Ynm ³; ¿… † ˆ 2n ‡ 1

4p
n ¡ m… †!
n ‡ m… †!

µ ¶
1=2

Pm
n cos ³… † exp …im¿†

ˆ ®nm‰n…n ‡ 1†Š1=2
Pm

n cos ³… † exp …im¿†; …A 1†

where r̂r is some unit vector and ³ and ¿ its angular coordinates. The normalization
coe� cient, ®nm, is de®ned in equation (6). Making use of equation (A 1), the
normalized VSHs, de®ned in equation (1), can be explicitly written in terms of the
associated Legendre functions

Ynm…r̂r† ˆ ®nm‰n n ‡ 1… †Š1=2
Pm

n cos ³… † exp …im¿†r̂r;

Xnm…r̂r† ˆ ®nm ¡ im

sin ³
Pm

n cos ³… † exp …im¿†ĥh ‡ d

d³
Pm

n cos ³… † exp …im¿†ûu
µ ¶

;

Znm…r̂r† ˆ ®nm
d

d³
Pm

n cos ³… † exp …im¿†ĥh ‡ im

sin ³
Pm

n cos ³… † exp …im¿†ûu
µ ¶

:

…A 2†

They satisfy the orthonormality condition
…

dOrAn
0
m

0 …̂rr† Bnm…r̂r† ˆ ¯nn 0 ¯mm 0 ¯AB; …A 3†

where A and B can be any one of Y, X or Z,
With respect to the cross product of r̂r, the VSHs have the properties

r̂r Ynm…r̂r† ˆ 0;

r̂r Xnm…r̂r† ˆ ¡Znm…r̂r†; …A 4†

r̂r Znm…r̂r† ˆ Xnm…r̂r†:

Using the fact that Znm and Xnm are both perpendicular to r̂r, and the relation

a b c… † ˆ b c a… † ˆ c a b… † …A 5†

we obtain useful vector product relations

Xnm…̂rr† Z
¸·

…r̂r† ˆ ¡Xnm…r̂r† X
¸·

…r̂r†r̂r;
Znm…r̂r† X

¸·
…r̂r† ˆ Znm…r̂r† Z

¸·
…r̂r†̂rr;

Xnm…r̂r† X
¸·

…r̂r† ˆ Xnm…r̂r† Z
¸·

…r̂r†r̂r;
Znm…̂rr† Z

¸·
…r̂r† ˆ ¡Znm…r̂r† X

¸·
…r̂r†r̂r:

…A 6†

The complex conjugation properties of the VSHs are analogous to that of the
scalar spherical harmonics

An;¡m…̂rr† ˆ ¡1… †mA
nm

…̂rr†: …A 7†

The parity or inversion properties of the VSH are

Ynm…¡r̂r† ˆ ¡1… †nYnm…r̂r†;
Xnm…¡r̂r† ˆ ¡1… †nXnm…̂rr†; …A 8†

Znm…¡r̂r† ˆ ¡1… †n‡1Znm…r̂r†:
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Y
nm

…¡r̂r† ˆ ¡1… †n¡mYn¡m…̂rr†;
X

nm
…¡r̂r† ˆ ¡1… †n¡mXn¡m…r̂r†; …A 9†

Z
nm

…¡r̂r† ˆ ¡1… †n¡m‡1Zn¡m…̂rr†:

The spherical harmonics with phase factors included

X nm…r̂r† ² ¡inX
nm

…̂rr†;
Znm…r̂r† ² ¡in

‡1Z
nm

…r̂r†;
…A 10†

have slightly di� erent, and more convenient properties. For the cross-product
with r̂r one ®nds, which is useful in far-®eld situations,

r̂r Xnm…r̂r† ˆ ¡iZnm…r̂r†;
r̂r Znm…r̂r† ˆ ¡iX nm…̂rr†:

…A 11†

Other properties of interest are their complex conjugate:

X
nm

…̂rr† ˆ …¡1†n¡mX n¡m…r̂r†;
Z

nm
…̂rr† ˆ …¡1†n¡m¡1Zn¡m…r̂r†:

…A 12†

A useful relation when treating reciprocity is

X
nm

…¡r̂r† ˆ …¡1†¡mX n¡m…̂rr†;
Z

nm
…¡r̂r† ˆ …¡1†¡mZn¡m…̂rr†:

…A 13†
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