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Abstract

We study the optical properties of opaque polymer pigmented coatings. The system consists of spher-
ical rutile particles encapsulated in spherical microvoids embedded in a transparent polymer resin. The
single-scattering properties of this system have been analyzed already, in case the rutile particle is located
at the center of the microvoid . Here, we use a T-matrix approach to generalize and extend this analysis
to the more realistic case when the rutile particles is located o6-center within the microvoid. We also
consider the multiple-scattering e6ects of a cluster composed by a collection of air bubbles with o6-center
rutile inclusions. Our calculations take into account the multiple scattering and the dependent-scattering
processes of each pigment particle of the aggregate, using a new recursive T-matrix algorithm. ? 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Since the last decade and due to the everyday larger availability and development of super
computers, the =eld of scattering processes of electromagnetic waves in inhomogeneous me-
dia is in constant expansion. It is well known that the solution of Maxwell’s equations for
the scattered =eld from non-spherical objects or from even simple inhomogeneous systems, re-
quires the implementation of elaborated numerical codes. Therefore, although the foundations
of multiple scattering theory were set before the 1970s [1–3], its direct application has been
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limited, to a great extent, by the capacity of computers for handling the existing numerical pro-
cedures. Nowadays, applications of the scattering theories of electromagnetic radiation, cover a
wide range of interests, both in basic and in industrial research, in areas such as: astrophysics,
atmospheric and material science, medical imagery analysis, and radar and I-R furtivity.

The work we present here is included in a research project for the coating industry, on white
paints. A paint =lm can be described as an inhomogeneous medium composed of pigment
particles embedded in a transparent polymer resin. Opacity (also called hiding power) is the
property of the system to cover a substrate, to the human eye, when illuminated by light. In
a white paint, opacity is the result of the multiple scattering of light by transparent pigment
particles which enhances the reLectance of the otherwise transparent resin, yielding a di6use
angular distribution of the reLected light. At a local scale, a large opacity is related to a
strong scattering eMciency of the pigment. This scattering eMciency is related to some intrinsic
properties of the pigment particles, such as their shape and size, but also to system properties,
like the relative index of refraction between the pigment and the surrounding resin. Due to its
high refractive index (∼ 2:8) and transparency in the visible range, rutile TiO2 with an optimum
size around 0:23 �m, has become the most eMcient pigment in white paint formulation. At a
global scale, opacity is proportional to the pigment volume concentration (PVC), since an
increase in the PVC increases the amount of scattering centers and, consequently, the hiding
power. However, at high PVC the reLectance of the =lm is no longer proportional to the PVC,
showing a decrease in the scattering eMciency per particle. This e6ect is known as dependent
scattering, and it also appears in the scattering from clusters. Since in a cluster the scattering
eMciency per particle is reduced, in the production of white paints a special attention is given
to processes or pigment surface treatments which help to minimize clustering.

However, a large part of the cost in the production of a white paint comes directly from
the cost of TiO2. As a consequence, there have been many e6orts for trying to substitute
rutile by a less expensive pigment, and air has been, since long, a good candidate. Microvoids
encapsulated in a strong polyester resin, known commercially as Rhopaque, are already in the
market. Although rutile is a more eMcient light scatterer than air, one is not looking for the
whole substitution of TiO2 by microvoids, but rather for a partial substitution which could
yield reasonable savings. There are also projects to manufacture vesiculated particles. These
are transparent polymer micrometer particles =lled with microvoids. In all these e6orts, there
is still the open question about the possibilities of improving the scattering eMciency of the
microvoids. It has been argued [4], that the scattering eMciency of rutile could be improved
by introducing the rutile particles inside the microvoids, because the contrast in the index of
refraction between rutile and air is larger than the one between rutile and the resin. There
is a very complete study [5] of the scattering properties of pigmented microvoid coatings, in
which the TiO2 spherical particles are located at the center of spherical microvoids, and the
exact results for the scattering cross section of coated spheres [6] are used. It was found, that
for pigments within microvoids whose size is much smaller than the wavelength of light, the
scattering cross section per unit volume of the microvoid-pigment entity is, in general, much
smaller than the corresponding one for the pigment and air bubble embedded separately in the
resin. Nevertheless, the attention of this study was focused more on larger particles, where for
speci=c combinations of geometrical and optical parameters of the pigment and the microvoid,
an increase in the corresponding volumetric scattering eMciency of the microvoid-pigment entity
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was found. This was called a synergetic e6ect. However, this e6ect occurred for sizes much
larger than the optimum size of the TiO2 particles to be useful in the coating industry, besides
the unrealistic assumption of having the pigment right at the center of the microvoid.

The aim of this work is to present a study on the scattering properties of the TiO2=microvoid
system for a more general and realistic case, where the TiO2 spherical inclusions are assumed
to stick to the internal surface of the air bubble (o6 center of the sphere). Also, in order to take
into account the dependent-scattering e6ects which occur in real paints, we present the study
of the scattering properties of a cluster composed of a collection of air bubbles with o6-center
inclusions. The paper is organized as follows: Section 2 gives a short review of previous work,
in Section 3, we present the T-matrix formalism which we develop to calculate the scattered =eld
and the scattering cross section of an isolated sphere containing a spherical eccentric inclusion.
Then, we extend these results by considering the scattering from an aggregate composed by
several of these eccentric systems taking into account dependent-scattering e6ects. In Section 4,
we present and discuss the results of our calculations, and =nally Section 5 is devoted to our
conclusion.

2. Previous work

The analytical derivations presented here are based on the T-matrix formalism originally de-
veloped by Waterman [7]. Its aim is the evaluation of the scattered =eld by an arbitrary-shaped
particle by expressing the electric and magnetic =elds in terms of the general solutions of the
vector Helmholtz equation expanded in a spherical basis. Using the Extended Boundary Condi-
tion (EBC) also called the Null Field Approach one obtains a relation between the expansion
coeMcients of the scattered =elds and those of the incident wave, through an in=nite-dimensional
matrix. This matrix is known as the T-matrix and can be calculated in terms of surface integrals
of the =elds at the scatterer boundary. In the case of a spherical geometry, these integrals are
greatly simpli=ed and the T-matrix approach becomes equivalent to Mie theory [8]. Numerical
evaluations of the =elds, using this formalism, have been possible because there is a natural
cut-o6 for the in=nite multipolar expansion of the =elds. This cut-o6 depends on the size pa-
rameters of the system, that is, the modulus of the incident wave vector times the radius of the
scatterer, and it is commonly admitted to be given by the Wiscombe criterium [9]. An addi-
tional advantage of the T-matrix formalism is that it can be systematically extended to solve
the scattering problem from a collection of spherical particles located at arbitrary positions.
The formalism for solving the electromagnetic scattering problem by a host sphere, containing
a spherical eccentric inclusion, was =rst introduced by Fikioris [10], in the late 1970s. This
approach was limited to the case in which the contrast between the refractive index of the
inclusion and the host is suMciently small. At the beginning of the last decade, Borghese [11]
developed a more complete theory based on the single T-matrix approach. This formalism was
applied to the evaluation of the di6erential scattering cross section of a metallic inclusion and
an empty cavity within a host dielectric. Later on, Videen [12] developed an iterative procedure
to solve the light scattering problem from a sphere with an inclusion of irregular shape. An
application of this procedure to the case of a spherical inclusion was made by Ngo et al. [13].
Both of these approaches lifted the original restriction of suMciently small contrast between the
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refractive index of the host sphere and the inclusions. Furthermore, one of them allowed the
solution of the more general problem in which the inclusion is located at a =xed distance from
the origin, but it is randomly oriented. This requires an averaging procedure over all possible
orientations of the inclusion, yielding average scattering parameters, where average means an
orientational average. Now, the averaging over the orientations of the inclusion is equivalent
to an average over all possible directions of the incident wave-vector, keeping the location of
the inclusion =xed. This latter procedure turns out to be simpler and faster. However, the iter-
ative procedure derived by Videen et al. [12] does not allow the analytical calculation of the
average scattering parameters, which can be evaluated through a T-matrix formalism, and that
are needed for a full characterization of the system. On the other hand, the T-matrix formalism
provides us with the tools to solve not only the averaging problem of a single inclusion, but
also to extend the formalism in order to obtain the solution of the multiple-scattering problem
of a collection of host spheres with randomly oriented inclusions. But for this latter problem,
the formulation of Borghese et al. [11] for an isolated eccentric system, does not consider all
the possible localizations of the inclusion needed for the evaluation of the multiple-dependent
scattering e6ect of several entities. Therefore, our purpose here is to derive a full T-matrix
formulation for the eccentric system, in order to use it as an input in the multiple-scattering
calculations for a cluster or a collection of host spheres with randomly oriented inclusions. We
will do this, by taking as a guideline the formalism developed in the work of Ngo et al. [13],
and then apply it to the above-mentioned case of rutile inclusions within air bubbles in resin.

3. Formalism

Let us consider an incident electric =eld of magnitude E0 traveling as linearly polarized plane
wave oscillating at frequency !. The plane wave travels in a non-absorbing medium of refractive
index N0, and impinges on a system composed by a sphere centered at O2, with radius a2, and
index of refraction N2, which is located within a host sphere centered at O1, with radius a1
and refractive index N1. The inclusion is located at a position denoted by (r0; 
0; �0) in the
spherical coordinate system of the host, and the wavelength of light in media 0, 1, and 2 will be
denoted by �0; �1 and �2, respectively. Due to the spherical geometry of the two components
of the system, it is found convenient to express the electric and magnetic =elds in the di6erent
regions of space, in terms of the general solutions of the vector Helmholtz’ equation expanded
in a spherical-wave basis. Taking, =rst, the origin of the coordinate system at O1, we write the
electric =eld E as,

Einc;1 = E0

2∑
=1

∞∑
n=1

n∑
m=−n

anm�(1)
nm;1(k0r); (1)

Esca;1 = E0

2∑
=1

∞∑
n=1

n∑
m=−n

fnm�(3)
nm;1(k0r); (2)

Eint;1 = E0

2∑
=1

∞∑
n=1

n∑
m=−n

[enm�(3)
nm;1(k1r) + gnm�(4)

nm;1(k1r)]; (3)
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where r denotes the position vector, Einc;1 is the incident plane wave of amplitude E0; Esca;1,
and Eint;1 are the scattered and internal =eld, the subscript 1 denotes that the basis frame is R1
with origin at O1. By internal, we mean the region of space inside sphere 1 and outside sphere 2,
and k0 = (2�N0=�0) and k1 = (2�N1=�1) are the magnitudes of the wave-vector in the matrix
and in sphere 1, respectively. Here anm; fnm; enm, and gnm are the expansion coeMcients,
and the spherical-wave basis is given by [14],

�(i)
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; �) =
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�nm
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where �nm=(2n+1)(n−m)!=[4�n(n+1)(n−+m)!] is a normalization constant, Pm
n denotes the

Legendre polynomials of second kind of order (n;m), and we follow the usual convention by
taking z(1)n (kr) ≡ jn(kr); z(3)n (kr) ≡ h(1)n (kr) and z(4)n (kr) ≡ h(2)n (kr). Here jn(kr) is the spherical
Bessel function, while h(1)n (kr) and h(2)n (kr) are the spherical Hankel functions of =rst and second
kind, respectively, and we will be using SI units. Let us recall that jn(kr) are =nite (regular) at
the origin, while the waves with h(1)n (kr) and h(2)n (kr) describe outgoing and incoming spherical
waves, respectively. Taking the origin of the coordinate system at O2, the electric =eld in the
region internal and external to sphere 2, can be written as,

Eint;2 =
2∑

=1

∞∑
n=1

n∑
m=−n

pnm�(1)
nm;2(k2r); (6)

Eext;2 =
2∑

=1

∞∑
n=1

n∑
m=−n

[rnm�(3)
nm;2(k1r) + tnm�(4)

nm;2(k1r)]; (7)

where the subscript 2 denotes that the basis frame is R2 (which has its axes, respectively,
parallel to those of R1), with origin at O2; k2 = (2�=�2)N2 is the magnitude of the wave-vector
in sphere 2, and pnm; rnm, and tnm are the expansion coeMcients.
One now applies boundary conditions at the interface of spheres 1 and 2, by demanding the

continuity of tangential components of the electric and magnetic =eld. Since the electric and
magnetic =elds are related through Maxwell’s equations, the corresponding expansions for the
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magnetic =eld in the di6erent regions of space do not actually add new expansion coeMcients.
Therefore, the boundary conditions at the interface of sphere 1 yield a set of four relations
among the coeMcients anm; fnm; enm, and gnm, and the boundary conditions at the interface
of sphere 2 yield another set of four relations among the coeMcients pnm; rnm, and tnm. First,
from this last relations one can eliminate the coeMcients of the internal =eld of the inclusion
(pnm) getting a relation between the coeMcients of the outgoing (rnm) and the incoming waves
(tnm), which can be written as, rnm =Q

n tmn, where Q
n are given in Appendix A. Obviously,

the internal =eld of the host, Eint;1, and the external =eld of the inclusion, Eext;2, are the same
but expressed in two di6erent coordinate systems. It is then necessary to use the translation
addition theorem for a spherical basis in order to express the coeMcients of the internal =eld of
the host (enm; gnm) in terms of the coeMcients of the external =eld of the inclusion (rnm; tnm).
In this case, the general form of the addition theorem for r¿r0 is given by relation (B.1), see
also [15]:

�(q)
1nm;2 =

∞∑
"=1

"∑
#=−"

[RgA"#(q)
nm �(q)

1"#;1 + RgB"#(q)
nm �(q)

2"#;1] q= 3; 4; (8)

�(q)
2nm;2 =

∞∑
"=1

"∑
#=−"

[RgB"#(q)
nm �(q)

1"#;1 + RgA"#(q)
nm �(q)

2"#;1] q= 3; 4; (9)

where Rg denotes regular part, and the explicit expressions for the coeMcients A"#(q)
nm and B"#(q)

nm

are given in Appendix A, where one can see that A"#(q)
nm and B"#(q)

nm contain the spherical function
z(q)n (kr), which is chosen with the same convention as above. Here, it is assumed that the series
expansions of the translation addition theorem are uniformly convergent. Therefore, one can
truncate the series at " = "MAX assuming that the resulting error is small enough if "MAX is
suMciently large. Since the coeMcients A"#(3)

nm ; B"#(3)
nm and A"#(4)

nm ; B"#(4)
nm contain the spherical

Hankel functions h(1)n (kr) and h(2)n (kr), and their regular part is jn(kr), we have RgA"#(4)
nm =

RgA"#(3)
nm = A"#(1)

nm and RgB"#(4)
nm =RgB"#(3)

nm = B"#(1)
nm .

One now substitutes Eqs. (8) and (9) into Eq. (7) for the external =eld of the inclusion Eext;2
and identi=es the resulting expansion with the one for internal =eld of the host sphere Eint;1,
getting a relation between the coeMcients (rnm; tnm) and (enm; gnm). If one goes back to the
four equations obtained from the boundary conditions at the interface of sphere 1, and uses the
relations between (rnm; tnm) and (enm; gnm) and rnm = Q

n tmn, one obtains four equations
which relate the coeMcients anm of the incident =eld, the coeMcients fmn of the scattered
=eld and the coeMcients t"# of the internal =eld. This can be =nally written as,

a2nm n(k0a1) + f2nm'(1)n (k0a1)

=
∑
"

∑
#

[t1"#Bnm(1)
"# Z (a)

"n + t2"#Anm(1)
"# Z (b)

"n ]; (10)

a2nm ′
n(k0a1) + f2nm'′(1)n (k0a1)

=
k0
k1

∑
"

∑
#

[t1"#Bnm(1)
"# Z (c)

"n + t2"#Anm(1)
"# Z (d)

"n ]; (11)
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a1nm ′
n(k0a1) + f1nm'′(1)n (k0a1)

=
∑
"

∑
#

[t1"#Anm(1)
"# Z (c)

"n + t2"#Bnm(1)
"# Z (d)

"n ]; (12)

a1nm n(k0a1) + f1nm'(1)n (k0a1)

=
k0
k1

∑
"

∑
#

[t1"#Anm(1)
"# Z (a)

"n + t2"#Bnm(1)
"# Z (b)

"n ]; (13)

where  n(x)=xjn(x); '(1)n =xh(1)n (x), the prime denotes a derivative with respect to the argument
and Z (a)

"n ; Z (b)
"n ; Z (c)

"n , and UZ
(d)
"n are given in Appendix A.

From these relations one can obtain the T-matrix coeMcients of the total system (host plus
inclusion sphere). One =rst eliminates the expansion coeMcients (f1nm; f2nm) of the scattered
=eld in order to express the expansion coeMcients (a1nm; a2nm) of the incident =eld in terms
of the expansion coeMcients (t1"#; t2"#) of the internal =eld. This is expressed in terms of a
matrix relation which is then inverted to get a relationship between the coeMcients (t1"#; t2"#) of
the internal =eld and those of the incident =eld. This relationship can be written succinctly as,
t = UM

−1 · a, where t and a (in bold) denote column vector. Now, from these same relations
(Eqs. (10)–(13)), one eliminates the coeMcients (a1nm; a2nm) in order to obtain a matrix rela-
tion between the expansion coeMcients of the scattering =eld (f1nm; f2nm) and the expansion
coeMcients of the internal =eld (t1"#; t2"#), that is, f = UD · t. Finally, by combining the UM

−1

and UD matrices, one can express directly the coeMcients of the scattered =eld f in terms of the
coeMcients of the incident =eld a, through a T-matrix relation,

f = UD · UM
−1· a ≡ UT · a; (14)

where UT is the T-matrix of the eccentric–sphere system. The explicit expressions for the com-
ponents of the matrices UM and UD are given in Appendix A.

3.1. Multiple-scattering equations

Let us consider a collection of N randomly located spheres with radius ai and complex
refractive indexes ni

s (i=1; N ). The center of each sphere Oi is de=ned in a principal coordinate
system O by a position vector ri and the relative position vector between two arbitrary spheres
i and j is denoted by rij. Due to the superposition principle, the total electric =eld ET

sca scattered
by the cluster, is equal to the sum of the =elds scattered by each of the individual sphere, that
is, ET

sca =
∑

i E
i(N )
sca . First we de=ne the local =eld Ei(N )

loc at the ith sphere as the sum, at ith,
of applied incident =eld Ei

inc plus the =elds Ej(N )
sca scattered by all the other spheres. The =elds

are now expanded in a spherical vector wave functions. However, while the incident =eld is
naturally expanded in the principal coordinate system O, the =elds scattered from each of the
jth spheres are expanded in the coordinate system Oj. Therefore, in order to express both terms
in the coordinate system of the ith sphere, one should use the translational addition theorem
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(relations (B.2) and (B.3)), and write,

Ei(N )
loc =Rg�(3)t(k0|r− ri|) · UJ(i;0) · a

+
N∑

j=1
j �=i

Rg�(3)t(k0|r− ri|) · UH
(i; j) · f j(N ); (15)

where the superscript t means transpose (row vector), UJ
(i;0)

and UH
(i; j)

are the translation matrices
for the incident and the scattered =elds, respectively, and they are given in Appendix B. Here
f j(N ) is the column vector whose components are the expansion coeMcients of the electric =eld
scattered by the jth sphere in the cluster. Using the de=nition of the single T-matrix UT

i(1)

of the ith sphere, and the de=nition of the local =eld (Eq. (15)), one can write a set of N
coupled-linear equations for the scattering coeMcients (i = 1; : : : ; N ),

f i(N ) = UT
i(1)


 UJ

(i;0)· a+
N∑

j=1
j �=i

UH
(i; j) · f j(N )


= UT

i(N )· UJ(i;0)· a; (16)

where UT
i(N )

is the ith N-scatterer T-matrix, which includes all the information about the
multiple-scattering e6ects due to the presence of the N − 1 other scatterers. Using Eq. (16),
one gets a set of N coupled-linear equations whose unknowns are the N-scattered T-matrix
coeMcients of each individual sphere, that is,

UT
i(N )

= UT
i(1)


 UI+

N∑
j=1
j �=i

UH
(i; j) · UTj(N ) · UJ( j; i)


 : (17)

This system can be solved using di6erent kinds of procedures, such as, the direct matrix inver-
sion , the order of scattering method, or iterative and recursive algorithms. A detailed description
of these methods are available in the current literature, see for example [16–19]. One of the
main advantages of this formalism is that each scatterer is characterized through its single
T-matrix UT

i(1)
, with the only restriction of having an external spherical geometry. Thus, they

can be either metallic, dielectric, coated, multi-layered, or even spherical particles containing
one or more spherical inclusions.

3.2. Extension of the recursive T-matrix algorithm

Here we =rst review brieLy the Recursive T-matrix Algorithm (RTMA) introduced by Chew
[20] for scalar waves and extended to the electromagnetic case by Tzeng and Fung [21], and then
extend the concept of N-centered T-matrix developed by Mackowski [18] to the calculation of
the scattering properties of a collection of spheres with randomly oriented eccentric inclusions.
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In the RTMA procedure, the presence of the N th sphere in the cluster acts as a perturbation
on the N − 1 previous scatterers, modifying their scattering properties. It can be shown that the
recurrence relations of this algorithm are given by,

UT
N (N ) · UJ(N;0)

=

[
UI − UT

N (1)
N−1∑
i=1

· UH
(N; i) · UTi(N−1) · UJ(i;0) UH(0;N )

]−1

× UT
N (1)

[
UJ
(N;0)

+
N−1∑
i=1

· UH
(N; i) · UT

i(N−1) · UJ(i;0)
]
; (18)

UT
i(N ) · UJ(i;0) = UT

i(N−1) UJ
(i;0)

[UI+ UH
(0;N ) · UTN (N ) · UJ(N;0)

] i �= N: (19)

The algorithm has two steps: =rst, one needs to evaluate the multiple T-matrix UT
N (N )

of the
N th scatterer as a function of the UT

i(N−1)
matrices of each constituent of the (N − 1) cluster

Eq. (18). Then, the individual multiple-scattering T-matrices UT
i(N )

for a cluster with N scatterers
are evaluated from the previous individual multiple-scattering T-matrices UT

i(N−1)
and the UT

N (N )

matrix Eq. (19). Nevertheless, the numerical implementation of this algorithm encounters con-
vergence problems due to the necessary cut-o6 of the UJ

(i;0)
and UJ

(N;0)
matrices associated with

the translation of the incident plane wave which has non-negligible components up to in=nite
order. To overcome this truncation problem, some modi=cations to the RTMA procedure, based
on the phase-shift formalism, have been proposed [22]. Unfortunately these modi=cations have
not proven to be successful in all types of clusters . Furthermore, convergence problems might
also arise whenever the perturbation . UT

i(N ) ≡ UT
i(N ) − UT

i(N−1)
, due to the presence of the N th

sphere, is not small. Therefore, in order to cope with some of these problems, we extend here
the RTMA algorithm, using the N-centered T-matrix concept U�(i; j)N introduced by Mackowski
[18] who pointed out that a formal matrix inversion of the scattering Eq. (16) could be written
as: 



f1(N )

f2(N )

...

fN (N )



=




U�(1;1)N U�(1;2)N · · · U�(1;N )
N

U�(2;1)N U�(2;2)N · · · U�(2;N )
N

...
...

. . .
...

U�(N;1)
N U�(N;2)

N · · · U�(N;N )
N







UJ
(1;0) · a
UJ
(2;0) · a
...

UJ
(N;0) · a



: (20)

Using relation (16) in Eq. (20) one expresses the N-scattered T-matrix UT
i(N )

of the ith sphere in
terms of the N-centered T-matrix U�(i; j)N . These latter matrices are de=ned through the relation:

UT
i(N )

=
N∑

j=1

U�(i; j)N · UJ( j; i); i = 1; : : : ; N: (21)
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Since the scattering properties of the cluster are given by UT
i(N )

, these properties will then be
fully speci=ed once all the N-centered T-matrix U�(i; j)N are determined. Below we propose an
analytical procedure towards this aim.

One starts by substituting the corresponding expression for UT
i(N−1)

, given by Eq. (21), into
Eq. (18), and then using the relations UJ

(i;N )
= UJ

(i; j) · UJ( j;N )
and UH

(i;N )
= UJ

(i; j) · UH
( j;N )

to write,

UT
N (N )

=


 UI − UT

N (1) ·
N−1∑
i=1

UH
(N; i) ·

N−1∑
j=1

U�(i; j)N−1 · UH
( j;N )



−1

UT
N (1)

×

 UI+ N−1∑

i=1

UH
(N; i) ·

N−1∑
j=1

U�(i; j)N−1 · UJ
( j;N )


 : (22)

A comparison of this expression with the corresponding one given by Eq. (21), in terms of the
matrices U�(N; i)

N , leads to the identi=cation of two recursive relations for the centered T-matrices
U�(N;N )
N and U�(N;j)

N , given by

U�(N;N )
N =


 UI − UT

N (1)
N−1∑
i=1

UH
(N; i) ·

N−1∑
j=1

U�(i; j)N−1 · UH
( j;N )



−1

· UTN (1)
; (23)

U�(N;j)
N = U�(N;N )

N ·
[
UI +

N−1∑
i=1

UH
(N; i) · U�(i; j)N−1

]
; j �= N: (24)

To obtain analogous recursive relations for the matrices U�(i; j)N and U�( j;N )
N , one substitutes the

corresponding expressions for UT
i(N−1)

and UT
N (N )

in terms of U�(i; j)N−1 and U�(N;j)
N , as given by

Eq. (21), into Eq. (19). After some rearrangement of terms one gets,

UT
i(N )

=
N−1∑
j=1

U�(i; j)N−1 · UJ
( j; i) · UH

(i;N ) ·
(

N−1∑
k=1

U�(N;k)
N · UJ(k; i) + U�(N;N )

N · UJ(N; i)

)

+
N−1∑
j=1

U�(i; j)N−1 · UJ
( j; i)

; (25)

which after some algebra, yields

UT
i(N )

=
N−1∑
j=1

[
U�(i; j)N−1 +

N−1∑
k=1

U�(i; k)N−1 · UH
(k;N ) · U�(N;j)

N

]
· UJ(i; k)

+
N−1∑
j=1

U�(i; j)N−1 · UH
( j;N ) · U�(N;N )

N · UJ(N; i)
: (26)
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Finally, using in the above equation the expression for UT
i(N )

in terms of U�(i; j)N , one can identify
the two last recursive relations for the N-centered T-matrices U�(i; j)N and U�(i;N )

N , which can be
written as

U�(i; j)N = U�(i; j)N−1 +
N−1∑
k=1

U�(i; k)N−1 · UH
(k;N ) · U�(N;j)

N j �= N; (27)

U�(i;N )
N =

N−1∑
j=1

U�(i; j)N−1 · UH
( j;N ) · U�(N;N )

N ; i �= N: (28)

In conclusion, the recursive relations (23), (24), (27) and (28) provide the evaluation of all
the N-centered T-matrices U�(i; j)N of an ensemble of particles with symmetrical geometry. Once
all the U�(i; j)N matrices are determined, the scattered =elds f i(N ) can be calculated from Eqs.
(21) and (16), and the problem is solved. The initial values in the recursive algorithm can
be obtained, solving system (17) for two spheres problem, in which the N-centered T-matrices
U�(1;1)N ; U�(1;2)N ; U�(2;1)N and U�(2;2)N can be easily identi=ed from the expressions for UT

1(2)
and UT

2(2)
.

U�(1;1)N = [UI − UT
1(1) · UH

(1;2) · UT2(1) · UH
(2;1)

]−1 · UT1(1)
; (29)

U�(1;2)N = U�(1;1)N · UH
(1;2) · UT2(1)

; (30)

U�(2;2)N = [UI − UT
2(1) · UH

(2;1) · UT1(1) · UH
(1;2)

]−1 · UT2(1)
; (31)

U�(2;1)N = U�(2;2)N · UH
(2;1) · UT1(1)

: (32)

The main advantage of this approach is that the recursion relations do not involve UJ
(i;0)

matrices and as a consequence they are free from their truncation problem evoked in the previous
paragraph. Also each U�(i; j)N matrices start with an ordinary one-particle transfer matrix of type
UT
i(1)

and end with a transfer matrix of type UT
j(1)

. As these transfer matrices have a natural
truncation arising from their physical size parameter, the U�(i; j)N will always have their dimension
limited to the same multipolarity.

3.3. Optical properties

The study of the optical properties of a system made of spherical scatterers with an eccentric
inclusion, embedded in an otherwise homogeneous medium, requires an adequate treatment of
the multiple scattering phenomenon. These spherical scatterers can be either isolated or in clus-
ters, and are dispersed in the matrix with di6erent =lling fractions and with di6erent statistical
correlations. One of the main ingredients in almost any approach to the multiple scattering prob-
lem are the scattering properties of the isolated scatterers. These scattering properties are given
by quantities like the di6erential scattering cross section and the total extinction and scattering
cross sections. In case of a system with anisotropic spherical scatterers with random orienta-
tions, one would require the orientational averages of both the extinction and scattering cross



686 J.-C. Auger et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 70 (2001) 675–695

sections. The connection between these concepts and the T-matrix is that there is a well-de=ned
relationship between all these cross sections and the elements of the T-matrix. For example,
the relation between the extinction cross section of an isolated scatterer and the elements of its
T-matrix is,

Cext =− 1
k2

Re[at( UTa)∗]; (33)

while the orientational average of the extinction cross section 〈Cext〉 for anisotropic scatterers
can be calculated as [23],

〈Cext〉=−2�
k2

Tr[ UT]; (34)

Here, k is the amplitude of the incident wave vector, ∗ is complex conjugate, 〈: : :〉 denotes the
orientational average over all incident angles and polarization states, and Tr denotes trace. On
the other hand, the average extinction cross section for a cluster of N spheres can be expressed
in terms of the T-matrix UT

i(N )
of each of its components. For example, Mackowski [24] and

Fuller [25] have shown that the total average extinction cross section 〈CT
ext〉 of the cluster is

simply given by,

〈CT
ext〉=

N∑
i=1

〈Ci(N )
ext 〉=−2�

k2

N∑
i=1

Tr[ UT
i(N )

]; (35)

while the di6erential scattering cross section for one isolated scatterer can be written as [26],
dCsca

d0
=

1
k20

[|F
|2 + |F�|2] (36)

with

F
 ≡
∞∑
n=1

(−i)n
n∑

m=−n

√
�nm(f1nm�m

n (cos 
) + f2nm2mn (cos 
))e
im�;

F� ≡
∞∑
n=1

− (−i)n+1
n∑

m=−n

√
�nm(f2nm�m

n (cos 
) + f1nm2mn (cos 
))e
im�;

where �m
n (cos 
) =

m
sin
P

m
n (cos 
) and 2mn (cos 
) =

@
@
P

m
n (cos 
) are the angular functions.

4. Results and discussion

The code implemented and used for this study has been rigorously checked and tested. The
calculations were performed on an Alpha processor and numerical results, on various clusters
of di6erent sizes and geometries, were compared and found in good agreement with the ones
available in the literature. We present here only the most relevant results taken from a more
complete analysis of the system. Since we are interested on the optical properties of paint =lms
as seen by the human eye, we have used in all our calculations a wavelength of 0:56 �m, which
is the wavelength at which the spectral sensitivity of a standard observer attains its maximum.
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Fig. 1. Normalized di6erential scattering cross sections as function of the scattering angles: 06
sca6180◦;
�sca = 90◦. The incident light is unpolarized, the wave-vector parallel to the Oz axis. Radii of TiO2 sphere and
microvoid are a1 = 0:15 �m and a2 = 0:096 �m, respectively. (a) TiO2 embedded in resin. In (b), (c) and (d) TiO2

sphere is inside the microvoid such as: (r0=0; 
0=0; �0=0), (r0=rm; 
0=0; �0=0) and (r0=rm; 
0=�; �0=0),
respectively.

The indexes of refraction of the microvoids, the rutile pigment and the surrounding medium
(resin) are taken as real and equal to 1:0, 2.8 and 1.5, respectively. First, we present results
related to the scattering properties of an isolated system composed by a microvoid with an
eccentric spherical rutile inclusion and later on we discuss the dependent-scattering properties
of a collection of these anisotropic entities.

4.1. Scattering by microvoids with an eccentric spherical inclusion

Before looking at the change in scattering power as the rutile inclusion is brought into the
microvoid, we start by looking at the e6ect of its eccentric location in the angular distribution of
the scattered light. For this, we calculate and compare the angular distribution of the di6erential
scattering cross section of the isolated system for di6erent locations (r0; 
0; �0) of the inclusion
within the microvoid. Some results of these calculations are shown in Fig. 1, where the radius
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Fig. 2. Same as Fig. 1 with the scattering angles:
06
sca6180◦; �sca = 90◦ and 180≤
sca60◦; �sca
= 270◦. The position of the TiO2 sphere is
(r0 = rm; 
0 = �=2; �0 = �=2).

Fig. 3. Volumetric average extinction cross sections, in
�m−1, as functions of the distance of the pigment from
the center of the host sphere to its maximum value rm.
(a) a1 = 0:15 �m; a2 = 0:096 �m, and rm = 0:054 �m.
(b) a1 = 0:51 �m; a2 = 0:43 �m, and rm = 0:07 �m.

of the air bubble and the rutile pigment are kept constant and equal to a1 = 0:15 �m and
a2 = 0:096 �m, respectively. Light is taken unpolarized, the azimuthal angle of scattering is
=xed at �sca = 90◦, and the wave-vector of the incident =eld is taken parallel to the Oz axis
of the host sphere. As a consequence, an azimuthal symmetry is kept as long as the inclusion
stays on this axis. Also, the integral of the di6erential cross section over all solid angles is
normalized to 1. In Fig. 1 we show the angular distribution of the di6erential cross section
when the pigment (a) is embedded in resin, when (b) is located at the center of the microvoid,
and when located at (c) (r0 = rm; 
0 = 0; �0 = 0), and (d) (r0 = rm; 
0 = �; �0 = 0), where
rm = 0:054 �m is the maximum radial position of the inclusion. In the two last locations the
inclusion is stuck to the upper (c) and bottom (d) sides of the internal interface of the host
sphere. In curve (a) one sees the typical strong scattering in forward direction predicted by
the Mie theory. When the pigment is located at the center of the microvoid (b) the angular
distribution broadens. Now, when one compares curves (c) and (d) with (b), one observes
an enhancement in the intensity of the scattered light in the same direction as the o6-center
location of the inclusion. It seems like the o6-center direction of the inclusion is indicating the
direction in which the intensity of the scattered light is enhanced. To test the generality of this
assessment, in Fig. 2 we show the angular distribution of the scattered light when the inclusion
is located o6 the Oz axis, at (r0=rm; 
0=�=2; �0=�=2). In this case, the azimuthal symmetry of
the angular distribution is broken but one still sees that the intensity of scattered light is greatly
enhanced on the side of the microvoid where the inclusion is located. Then, one concludes that
the angular distribution of the scattering =eld is strongly linked to the location of the pigment
within the microvoid, being enhanced along the o6-center direction of the inclusion.

The displacement of the inclusion within the microvoid also has an inLuence on the scattering
properties of the isolated system. In Fig. 3, we show the normalized average of the extinction
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Fig. 4. Volumetric average extinction cross sections, in
�m−1, as functions of a2=a1 with a1 = 0:15 �m. (a) air
microvoid alone. (b) TiO2 and microvoid separated in
the resin. (c) TiO2 at the center of the microvoid. (d)
TiO2 stuck to the microvoid internal surface (r0 = rm).

Fig. 5. Volumetric average extinction cross sections,
in �m−1, as functions of a1 and a2=a1, for TiO2 and
microvoid as separated entities in resin.

cross section, over all incident angles and polarization states (orientational average), as a func-
tion of the distance of the pigment from the center of the host sphere to its maximum value rm.
Curve (a) corresponds to a system where a1=0:15 �m; a2=0:096 �m, and rm=0:054 �m, while
in curve (b) a1 = 0:51 �m; a2 = 0:43 �m, and rm =0:07 � m. One can see that the displacement
of the pigment from the center to the edge of the host sphere can lead to either an increase or
a decrease in the magnitude of average extinction cross section. For the system in panel (a),
the average extinction cross section increases by a factor 1.56 between its minimum at r0 = 0
and its maximum at r0 = rm. On the other hand, for the system in curve (b) the magnitude of
the average extinction cross section decreases by a factor 0.15 for the same translation from the
center to the edge. In this latter case, the maximum occurs at an intermediate distance between
the center and the edge while the minimum is at rm. Therefore, one concludes that the behavior
of the average extinction cross section of the isolated system, as a function of the size parameter
and the location of the inclusion, is non-monotonic.

After this succinct analysis of the e6ect of the pigment location on the scattering properties
of the isolated system, we now look at the changes on the average extinction cross section
when the pigment is brought into the microvoids. We recall that one of our objectives is to
test if there is an improvement in the scattering properties of rutile inclusions when the contrast
in the index of refraction is increased by bringing them inside air bubbles. To look at this
we calculate the extinction cross section per unit volume (volumetric cross section) for three
di6erent systems: In system 1 we consider that both, the rutile spheres and the microvoids are
embedded in resin and they behave as independent scatterers. In system 2 the rutile spheres are
located at the center of the microvoids while in system 3 the rutile spheres are stuck to the
internal face of the microvoids with random orientations. This latter system is supposed to give
a more realistic description of an actual system. In Fig. 4 we show, the average volumetric
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extinction cross sections for systems 1, 2 and 3, respectively. These cross sections are plotted
as functions of a2=a1 for a1 = 0:15 �m. The values a2=a1 = 0 and 1 correspond, respectively, to
a microvoid without pigment and a pigment in resin with the same size of the air bubble. For a
better understanding of the =gure we have added curve (a), which is the volumetric extinction
cross section of the air microvoid alone. The major observation of this calculation is that in the
chosen range of size parameters, the volumetric extinction cross section of system 1 (curve(b))
is always larger than in systems 2 and 3 (curves (c) and (d), respectively). This simply means
that rutile is a less eMcient scatterer when it is located inside the air bubbles than when it
is outside. One can also see that for small values of a2=a1, the presence of the pigment does
not perturb the scattering properties of the microvoid. On the other hand, when a2=a1 is close
to 1, the extinction of the system is dominated by the extinction of rutile. There are a couple
of things we should point out about this =gure. The =rst one is the strong decrease in the
extinction cross sections in curves (c) and (d) at (a2=a1 =0:58), although the decrease in (d) is
not as pronounced. With such a low value of the extinction cross section, one might say that
the system behaves as “invisible” to the incident wave, where by this we mean the remanent
of a phenomenon found out by Kerker [28], for the case of coated spheres and in the limit of
small size parameters (Rayleigh scattering). Under this condition and for speci=c combinations
of values of the relative refractive indexes and radii, it can be shown that the induced dipole
in the host sphere has the same amplitude but opposite direction as the one induced dipole
in the inclusion. Thus, the total dipole moment is null and there is simply no scattering. The
second observation is that at a2=a1 = 0:64, the microvoid alone scatters more than the system
with the pigment located at the center but less than when it is located at its maximum position
rm. Based on this observation we evaluated the average extinction cross section as a function of
r0. It was found that for r0 = 0:04 �m, the extinction of the eccentric system was equal to that
of the microvoid alone, leading to the conclusion that at this location, the rutile pigment (with
a =lling fraction of 0.26) is “invisible” to the incident wave. Therefore, in the same way as the
centered inclusion can lead to an “invisible” system for certain combinations of size parameters,
here we show that an eccentric location of the inclusion can lead to interference e6ects such
that the inclusions might become “invisible” inside the microvoid.

To check if the main conclusion of the previous calculations continues to hold for a di6erent
choice of size parameters, we have evaluated the extinction cross section for the three systems
mentioned above, for values of a1 and a2 in the range 0:15¡a1 ¡ 0:65 �m and 06 a2 6 a1.
It was found that the values of the volumetric extinction cross section of the centered and
eccentric systems was quite similar, but always smaller than when the TiO2 pigment is outside
the microvoid. In Figs. 5 and 6 we show, in a 3D plot, the results for the volumetric extinction
cross section as a function of a1 and a1=a2 for systems 1 and 3. One can see that the conclusions
reached above about the loss of scattering power of the rutile inclusions inside an air bubble
also hold for this extended choice of parameters. Also, the highest value of the volumetric
extinction cross section is always attained at the optimum size of the rutile sphere in resin.

4.2. Dependent scattering by microvoids containing an eccentric TiO2 spherical inclusion

Since dependent scattering processes are also important in a paint =lm, the recursive procedure
introduced in the previous section was used to evaluate its e6ects on clusters composed by a
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Fig. 6. Same as Fig. 5 for TiO2 stuck to the microvoid
internal surface (r0 = rm).

Fig. 7. Volumetric average extinction cross sections, in
�m−1, of clusters with seven scattering spheres as func-
tions of the distance d between each spheres and the
origin. The radii of the TiO2 spheres and microvoids
are a2 = 0:96 �m and a1 = 0:15 �m, respectively. (a)
and (b): independent-scattering calculations for eccen-
tric and centered pigments. (c), (d) and (e): depen-
dent-scattering calculations with the inclusions at the
center of the microvoid, closest and the farthest from
the origin of the aggregate, respectively.

microvoid system containing randomly oriented eccentric inclusion of rutile. In Fig. 7, we
show the average volumetric extinction cross sections of three di6erent aggregates of seven
spheres as a function of the radial distance d between the central sphere and each of its
six other constituents. Each aggregate is built up of seven scatters, one at the origin and the
others located at positions (0; 0; d); (0; 0;−d); (d; 0; 0); (−d; 0; 0); (0; d; 0) and (0;−d; 0). Each
scatterer is made of rutile pigment with radius a2 = 0:96 �m, and located in a microvoid of
radius a1 = 0:15 �m. The results for the di6erent relative locations of the pigment inside each
microvoid are labeled with di6erent letters. In plot (c), the inclusion is at the center, while
in plots (d) and (e) the inclusion is located at the closest and the farthest positions from the
central sphere in the aggregate. For a better understanding of the results, the total volumetric
extinction cross sections of a system composed of independent scattering spheres for eccentric
and centered pigments were added in plots (a) and (b), respectively. The parameters were chosen
so that an isolated system with a centered pigment scatters less than the one with an eccentric
position. One can see that as it is expected, at long distances between the constituents of a
same cluster the dependent and independent cross sections are identical. When these distances
decrease, dependent scattering becomes predominant leading to a decrease of the total extinction
cross section. Appearance of oscillations should come from interferences and resonant modes
due to the symmetrical geometry chosen for the clusters. When all scatterers are in contact
(case of a compact cluster), curve (d) undergoes a higher decrease than curve (e) because it
corresponds to the case where the TiO2 pigments inside the microvoid are closer, leading to a
stronger e6ect of dependent scattering.



692 J.-C. Auger et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 70 (2001) 675–695

5. Conclusion

In this paper, we have derived the general T-matrix formulations for an isolated system com-
posed of a dielectric sphere containing an eccentric dielectric spherical inclusion. We also have
presented a new recursive procedure to solve the coupled linear equations for multiple scatter-
ing problem. We applied these formalisms to the study of the optical properties of microvoids
containing eccentric TiO2 pigments. It is shown that the scattering eMciency of TiO2 pigment
is not improved when it is introduced into a microvoid.
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Appendix A. Expressions of the )M and )D matrices

In this appendix we write, as a reference, the explicit form of several expressions used in
the text.

Q1
n =

[
k1'

′(2)
n (k1r2) n(k2r2)− k2'

(2)
n (k1r2) ′

n(k2r2)

k2'
(1)
n (k1r2) ′

n(k2r2)− k1'
′(1)
n (k1r2) n(k2r2)

]
;

Q2
n =

[
k1'

(2)
n (k1r2) ′

n(k2r2)− k2'′n(2)(k1r2) n(k2r2)

k2'
′(1)
n (k1r2) n(k2r2)− k1'

(1)
n (k1r2) ′

n(k2r2)

]
; (A.1)

and

Z (a)
"n = [Q1

"'
(1)
n (k1a1) + '(2)n (k1a1)];

Z (b)
"n = [Q2

"'
(1)
n (k1a1) + '(2)n (k1a1)];

Z (c)
"n = [Q1

"'
′(1)
n (k1a1) + '

′(2)
n (k1a1)];

Z (d)
"n = [Q2

"'
′(1)
n (k1a1) + '

′(2)
n (k1a1)]: (A.2)

The general expressions for the UM and UD matrices are given by the following relations:

UM=


 UM

nm(1;1)
"#

UM
nm(1;2)
"#

UM
nm(2;1)
"#

UM
nm(2;2)
"#


 and UD=


 UD

nm(1;1)
"#

UD
nm(1;2)
"#

UD
nm(2;1)
"#

UD
nm(2;2)
"#


 : (A.3)
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UM
nm(1;1)
"# = Anm(1)

"#

[
Z (c)
"n '(1)n (k0a1)− (k0=k1)Z

(a)
"n '

′(1)
n (k0a1)

 ′
n(k0a1)'

(1)
n (k0a1)−  n(k0a1)'

′(1)
n (k0a1)

]
;

UM
nm(1;2)
"# = Bnm(1)

"#

[
Z (d)
"n '(1)n (k0a1)− (k0=k1)Z

(b)
"n '

′(1)
n (k0a1)

 ′
n(k0a1)'

(1)
n (k0a1)−  n(k0a1)'

′(1)
n (k0a1)

]
;

UM
nm(2;1)
"# = Bnm(1)

"#

[
Z (a)
"n '

′(1)
n (k0a1)− (k0=k1)Z

(c)
"n '(1)n (k0a1)

 n(k0a1)'
′(1)
n (k0a1)−  ′

n(k0a1)'
(1)
n (k0a1)

]
;

UM
nm(2;2)
"# = Anm(1)

"#

[
Z (b)
"n '

′(1)
n (k0a1)− (k0=k1)Z

(d)
"n '(1)n (k0a1)

 n(k0a1)'
′(1)
n (k0a1)−  ′

n(k0a1)'
(1)
n (k0a1)

]
; (A.4)

UD
nm(1;1)
"# = Anm(1)

"#

[
(k0=k1)Z

(a)
"n  ′

n(k0a1)− Z (c)
"n  n(k0a1)

'(1)n (k0a1) ′
n(k0a1)− '

′(1)
n (k0a1) n(k0a1)

]
;

UD
nm(1;2)
"# = Bnm(1)

"#

[
(k0=k1) UZ

(b)
"n  ′

n(k0a1)− Z (d)
"n  n(k0a1)

'(1)n (k0a1) ′
n(k0a1)− '

′(1)
n (k0a1) n(k0a1)

]
;

UD
nm(2;1)
"# = Bnm(1)

"#

[
(k0=k1)Z

(c)
"n  n(k0a1)− Z (a)

"n  ′
n(k0a1)

'
′(1)
n (k0a1) n(k0a1)− '(1)n (k0a1) ′

n(k0a1)

]
;

UD
nm(2;2)
"# = Anm(1)

"#

[
(k0=k1)Z

(d)
"n  n(k0a1)− Z (b)

"n  ′
n(k0a1)

'
′(1)
n (k0a1) n(k0a1)− '(1)n (k0a1) ′

n(k0a1)

]
; (A.5)

where A"#(q)
nm and B"#(q)

nm are de=ned in Appendix B.

Appendix B. Translation theorem

The expressions of the translational theorem for spherical wave functions are:

�(q)t(k0|r− ri|) = �(q)t(k0|r− rk |) · UJ(k; i); r ¿ rik ; (B.1)

Rg�(q)t(k0|r− ri|) = Rg�(q)t(k0|r− rk |) · UJ(k; i); ∀rik ; (B.2)

�(q)t(k0|r− ri|) = Rg�(q)t(k0|r− rk |) · UH
(k; i)

; r ¡ rik ; (B.3)

where q = 1; 2 and UJ
(k; i)

and UH
(k; i)

are the translational matrices which can be written
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as:

UJ
(k; i)

=


RgA"#(q)

nm RgB"#(q)
nm

RgB"#(q)
nm RgA"#(q)

nm


 and UH

(k; i)
=


A"#(q)

nm B"#(q)
nm

B"#(q)
nm A"#(q)

nm


 (B.4)

The A"#(q)
nm and B"#(q)

nm are the translation coeMcients needed for the transformation from the ith
to the kth coordinate system. They depend on the position vector rki between the two spheres
and the amplitude of the wave-vector of the medium in which they are. They can be derived
from scalar translational matrices coeMcients [27], 7";#

n;m and 8";#
n;m expended in terms of the jn(kr)

and h(1)n (kr), respectively. Then one can use the relations between vector and scalar coeMcients
derived by Mackowski. In terms of our chosen normalization for the spherical-wave basis,
Eq. (4) and Eq. (25) have the following expressions:

RgA"#(1)
nm =

1
2

√
1

"("+ 1)n(n+ 1)
[2 �m7";#

n;m

+
√
(n−m)(n+m+ 1)("− #)("+ #+ 1)7";#+1

n;m+1

+
√
(n+m)(n−m+ 1)("+ #)("− #+ 1)7";#−1

n;m−1] (B.5)

RgB"#(1)
nm =−i

1
2

√
2"+ 1
2"− 1

1
"("+ 1)n(n+ 1)

[2m
√
("− #)("+ #)7"−1;#

n;m

+
√
(n+m)(n+m+ 1)("− #)("− # − 1)7"−1;#+1

n;m+1

−
√
(n+m)(n−m+ 1)("+ #)("+ # − 1)7"−1;#−1

n;m−1 ] (B.6)

The A"#(3)
nm and B"#(3)

nm coeMcients are found from relations (B.5) and (B.6) replacing the 7";#
n;m

scalar matrix coeMcients by the 8";#
n;m.
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