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Abstract– We study the dispersion relations and field maps of the propagating
modes in one dimensional models of photonic crystal fibers. This simple model
allows the derivation of rigorous electromagnetic theory, and provides insight
for the properties observed in actual waveguides. The theory is developed
through a particularly efficient impedance formulation of the problem. The
dispersion relations of propagating modes are presented and discussed. Field
maps of certain modes are also illustrated, and allow an understanding of the
low loss behavior of holy fibers.



962 Stout, Stout and Nevière

Contents

1. Model of a photonic crystal waveguide in 1-dimension. 963
1.1. Field configurations and notations 964
1.2. Impedance Formulation 968

2. Photonic waveguide design 969
2.1. Attenuation in a finite crystal 973
2.2. Field map 976
2.3. Dispersion relations 979
2.4. Absorption in photonic crystal fibers 984

3. Conclusion 986

References 987

There is a considerable interest in photonic crystal waveguides, also known
as “holey fibers”, or PBF (Photonic Band-gap Fibers).[1–5] Due to structural
complexity of such fibers, theoretical simulations can play an important role
in predicting their design and mode characteristics. Although realistic two-
dimensional simulations of such fibers are possible using current techniques and
computers,[6] numerically exact 2-D calculations are both unwieldy and time-
consuming. In the study of such waveguides, it may therefore prove useful to
perform exact calculations in a simpler 1-D system exhibiting similar behavior.
In this work we present and study such a 1-D model of PBFs. Despite this
simplification, the problem still presents considerable numerical difficulties and
requires particularly efficient and reliable theoretical techniques. Calculations
in the 1-D system prove particularly interesting in the study of dispersion
relations where calculations for a large number of frequencies are necessary.

We shall particularly look at TE modes in PBFs having a low index core
for which the light is guided purely by the photonic band-gap effect.[7, 8] In
section (1), we describe the model, and the analytical impedance techniques
employed to determine the propagative modes. Our method formulates the
scattering in terms of entry impedances in a technique analogous to network
theory. This type of technique was first developed in the context of diffraction
gratings with multiple coating layers,[9]. In section (2 2.1), we derive formu-
lae for estimating the attenuation in a PBF due to transmission through the
photonic crystallin walls (assuming zero absorption). The validity of the ab-
sorption free assumption will be tested in section (2 2.4) by adding absorption
to the high index material. We will see that a fiber alternating between a high
index and vacuum can have small absorption since most of the field is located
in the absorption-free
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vacuum. This result thus recommends vacuum filled PBFs as a means of
guiding high intensity laser light since the influence of losses in silica will have
smaller influence. Also, nonlinear effects which distort laser pulses will be
reduced. TM modes, as well as other types of PBFs and their applications will
be considered in a future publication.

1. MODEL OF A PHOTONIC CRYSTAL WAVEGUIDE IN

1-DIMENSION.

The model of a 1-dimensional slab gives a great deal of insight into the
behavior of ordinary optical waveguides. One of the principal advantages of
this model is that TE and TM waves decouple, and can therefore be treated
separately. In this work, we model exclusively PBFs which guide TE waves
entirely by the photonic band-gap effect. Specifically, we model fibers in which
the light is to be “trapped” by the photonic crystal in a low index “defect”
cavity in the center of the fiber (see fig.1).

FIG. 1: Schematic cross section of a photonic band-gap fiber. Low index “holes” are
in white, while the high index material is gray. Light is to be guided in the large
central “defect” hole by the surrounding photonic crystal

In this work, we adopt a 1-dimensional model of PBFs (fig.2), where the 2-D
photonic crystal is replaced by N bi-layer slabs, each bi-layer slab consisting
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of a slab of a high index material, nh and a slab of a low index “background”
layer, nb. These two Bragg type stacks surround a central layer of index nc.
All these refractive indices need not be entirely real, and may have imaginary
parts to take into account the absorption present in actual materials. In view of
this as a model for a 2-D system, we assume that the superstrate and substrate
are composed of identical materials of (real) refractive index n1. This model is
then very similar to a Bragg mirror Fabry-Perot interferometer. Nevertheless,
in our model, we are not interested in the presence of transmission peaks, but
in the precise properties of a “leaky” wave guided in the central low index gap.

We adopt an impedance formulation of the multilayer problem which can be
manipulated to yield the precise values of the propagation constant necessary
for guided mode calculations. To a certain approximation, this method yields
analytical formulas which may prove useful in preliminary fiber design and a
qualitative understanding of mode characteristics.

Let us look at the 1-D model of a low index core PBF in detail (fig.2). The
model consists of N planar interfaces separating N + 1 regions (labeled by the
index j); the superstrate is labeled region 1, and the substrate region N + 1.
The direction of the propagation of the mode is labeled x̂, and the direction
normal to the interfaces ŷ. The low index layer of the innermost bi-layer is
excluded in this model, thus allowing us to conveniently consider the situation
where the core material is identical to the low index material (nc = nb). With
these specifications, there are N = 4N interfaces in this system (we recall that
N is the number of high index layers on each side of the “defect” layer).

The objective is to determine the optimal fiber design, and to calculate the
characteristics of the modes of propagation. We choose to formulate these so-
lutions within the context of a scattering formulation. Namely, we will calcu-
late the reflection and transmission coefficients from a 1-dimensional stratified
medium. As detailed below, the propagation constant of a mode corresponds
to a pole in the reflection and transmission coefficients.

1.1. Field configurations and notations

The electric field is studied in the time-harmonic regime

E (t, r) = Re
[
E(r)e−iωt

]
. (1)

The electromagnetic equations for a medium in which the constitutive param-
eters, ε and µ vary only in the ŷ direction is

∇× µ−1(y)∇× E(r) − ω2ε (y) E(r) = 0 (2)
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FIG. 2: One-dimensionnel model of a photonic band-gap fiber. A central low index
slab; j = 2N+1, surrounded by 1-D photonic crystal stacks composed of N high index
layers. The ŷ direction is perpedicular to the slab interfaces while x̂ is in the direction
of propagation. There are N = 4N interfaces, and the substrate and superstrate
are composed of identical materials. In the scattering formalism, one considers a
downward propagating incident wave, and consequent reflected and transmitted waves
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An incident plane wave is taken to be a downward propagating wave with a
wavevector k1 at an angle θ1 with respect to the normal of the interfaces (see
fig.2).

For slabs whose constitutive parameters are piecewise constant, the solution
is obtained by considering linear superpositions of ascending and descending
waves within each layer, and adjusting the coefficients so as to satisfy the
boundary conditions. Solutions to the Maxwell equations for TE waves within
each homogenous slab susceptible to satisfy the boundary conditions are written

E(j)(r) = uj(x, y)ez (3)

where ez is a unit vector pointing in the ẑ direction, and the uj(x, y) are of the
form

uj(x, y) =
(
a−j e

−iβjy + a+
j e

iβjy
)
eiγx. (4)

where a+
j and a−j are respectively the coefficients of the ascending and descend-

ing waves. The constants γ and βj are expressed

γ ≡ k1 sin θ1 (5)

βj ≡
√
k2

j − γ2

where the wave numbers kj satisfy the homogenous dispersion relations

k2
j = εjµj

(ω
c

)2

(6)

with εj and µj denoting the relative primitivities.
We formulate the problem in the context of reflection-transmission. That is,

we construct field solutions resulting from a downward moving incident plane
wave with amplitude a−1 , and for which there is only a downward component,
a−N+1, in the substrate (a+

N+1 ≡ 0). The amplitude of the upward-going wave

in the superstrate, a+
1 , corresponds to the reflected wave. The reflection and

transmission coefficients for the amplitudes are defined respectively as the ratio,
with respect to the incident wave amplitude of the upward and downward going
wave amplitudes in the superstrate and substrate :

r ≡
a+
1

a−1
t ≡

a−N+1

a−1
. (7)

We adopt the definition of a propagative mode as a non-trivial solution (a−N+1

and a+
1 both 6= 0) of the electromagnetic equations in the absence of an inci-

dent wave, i.e. for which a−1 = 0 (solution of the homogenous boundary value
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problem). With this definition, a mode corresponds to a solution for which
both r and t tend to infinity. The solution of the problem is then to determine
the field coefficients in each slab, eq.(4), which satisfy the boundary conditions
at the slab interfaces, and also satisfy the condition for the existence of a mode,
(a−1 = a+

N+1 = 0).
In this work, nj is defined as the refraction index “normalized” with respect

to material 1 :

nj ≡
kj

k1
=
nj

n1
=

√
εjµj

ε1µ1
. (8)

It is also convenient to adopt dimensionless parameters for describing the field
characteristics :

δ ≡
γ

k1
= sin θ1 (9)

and

αj ≡
√
n2

j − δ2 =
βj

k1
. (10)

Due to the fact that the square root is a multi-valued function, we must deter-
mine branch cuts in the complex plane in order to select the physical solutions.
Employing this technique, developed in ref.[10], the branch cuts may be chosen
such that the physical solutions are those which satisfy

Re {αj} + Im {αj} > 0. (11)

It is sometimes useful conceptually to describe αj and δ in terms of an “angle”
of propagation, θj , within each layer

αj ≡
1

k1

√
k2

j − γ2 (12)

=
kj

k1

√

1 −

(
δ

nj

)2

≡
kj

k1
cos θj

δ

nj

≡ sin θj

Although this definition satisfies the relation sin2 θj+cos2 θj = 1, it is important
to remark that θj is not necessarily real. Notably, the angle θj will be complex,
should nj or δ be complex. A complex nj corresponds to absorption or diffusion
within the slabs.
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1.2. Impedance Formulation

A number of techniques exist in the literature. Many of these techniques
encounter numerical instabilities, particularly in the case of absorbing media.
Even for techniques which are numerically stable (such as the S-matrix prop-
agation formalism), the closeness of δ to the real axis generally makes it quite
difficult to determine its imaginary component precisely. In this paragraph, we
give the principal results of an impedance method which, in the 1-D model,
will permit the determination of δ in an efficient manner.

The impedances of the materials of different slabs are expressed as :

zj ≡

√
µjµ0

εjε0
(13)

where ε0 and µ0 are the constitutive constants of the vacuum; we define a
dimensionless “region” impedance, Zj, for TE waves by the formula :

Zj ≡
µj

µ1

1

αj

j ∈ [1, N + 1] (14)

=

√
µjε1
εjµ1

1

cos θj

=
zj

z1

1

cos θj

.

We note that since the electric field is polarized perpendicular to the plane
of incidence, the magnetic field lies in the plane of incidence. Of the two
components of the magnetic field, only the Hx component is tangential to the

boundary layer. The dimensionless entry impedance of the jth interface, Z
(j)
en ,

for a TE wave is then defined via the ratio of the tangential field components
evaluated at the jth interface

Z(j)
en ≡

1

z1

E
(j)
z

H
(j)
x

∣∣∣∣∣
y=yj

=
1

z1

E
(j+1)
z

H
(j+1)
x

∣∣∣∣∣
y=yj

j ∈ [1, N ] (15)

where the z1 factor serves to make Z
(j)
en a dimensionless quantity by normalizing

it with respect to the impedance of the superstrate. The boundary conditions
impose that the entry impedance must be continuous across the boundary lay-
ers. After some algebra, the continuity of the entry impedance at the interfaces
can be reformulated in terms of a recurrence relation for entry impedances in
formulae analogous to those of network theory

Z(j−1)
en = Zj

Z
(j)
en − Zji tanψj

Zj − Z
(j)
en i tanψj

j ∈ [2, N ] (16)
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where the ψj are defined

ψj ≡ αj

(
yj − yj−1

)
j ∈ [2, N ] . (17)

The yj are the dimensionless y coordinates of the interfaces

yj ≡ yjk1 j ∈ [1, N ] (18)

The initial value for the recurrence relation is determined by the entry
impedance evaluated on the lower part of the interface with the substrate

Z(N)
en =

1

z1

E
(N+1)
z

H
(N+1)
x

∣∣∣∣∣
y=yN

= −ZN+1 (19)

It will also prove useful to rewrite the upward recurrence relation, eq.(16),
as a downward recurrence relation :

Z(j)
en = Z(j)Z

(j−1)
en + Z(j)i tanψj

Z(j) + Z
(j−1)
en i tanψj

j ∈ [2, N ] (20)

The impedance formulation yields a rather simple expression for the reflec-
tion coefficient :

r =
Z1 + Z

(1)
en

Z
(1)
en − Z1

e−2iα1y1 (21)

The expression for the transmission coefficient is considerably more complex.
Nevertheless, we show in section (2 2.2) that it may be expressed as :

t = −2
ZN+1

Z
(1)
en − Z1

τj (22)

where τj is a factor determined from a recurrence relation. We recall that we
defined propagative modes as solutions to the scattering problem for which r
and t both diverge. We readily deduce from eqs.(21)-(22) that propagative
modes occur when

Z(1)
en = Z1. (23)

2. PHOTONIC WAVEGUIDE DESIGN

There are many opto-geometrical parameters to characterize a photonic crys-
tal waveguide (thickness of the external layers, number of layers, thickness of
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the central layer, etc.). In order to simplify this specification, we choose the
layer thicknesses such that they “optimize” a PBF waveguide with crystalline
walls of infinite order and lossless dielectric constants. In subsequent para-
graphs, these “optimal” values for the layer thicknesses will be adopted when
treating waveguides with a finite number of layers which are composed of low
loss dielectrics.

Specifically, we choose the multi-layer stacks surrounding the central air gap
(fig.2) to have Bragg type parameters for a frequency ωop, and for a (real)
incidence angle characterized by δop = sin θop. It is often convenient to replace
ωop by the wavelength in the external medium at the optimal frequency, λop

1 ≡
2πc

n1ωop
. Having chosen the properties of the cladding, the thickness of the central

layer will be chosen such that there exists a mode of propagation of order, mop.
As we will see below, the specification (δop, ωop, mop) and the constitutive
parameters of the layers suffice to determine the thicknesses of all layers.

Assuming minimal layer thicknesses, and real refractive indexes, the usual
Bragg mirror parameters are obtained by imposing for the cladding layers, that

ψj ≡ αj

(
yj − yj−1

)
≡
√
n2

j − δ2op
2π

λop
1

(yj − yj−1) = −
π

2

∀ j ∈ [2, N ], j 6= 2N + 1 (24)

From this relation, one finds that the thicknesses of the high and low index
layers, ∆yh and ∆yb respectively, are :

∆yh =
1√

n2
h − δ2op

λop
1

4
=

λop
h

4 cos θh

(25)

∆yb =
1√

n2
b − δ2op

λop
1

4
=

λop
b

4 cos θb

(26)

where λop
h ≡ λop

1 /nh and λop
b ≡ λop

1 /nb are the wavelengths in the high and low
index media respectively. As we will see below, this choice of layer thicknesses
is particularly useful due to the fact that |tanψh,b| → ∞ for all cladding layers.
We will see below that this property greatly simplifies the recurrence relations
and permits analytic evaluations of the modes at this point. From these for-
mulae, we observe that the filling fraction of the high index material , fh, is a
function of δop and given by the formula :

fh ≡
∆yh

∆yb + ∆yh

=

√
n2

b − δ2op
√
n2

b − δ2op +
√
n2

h − δ2op

(27)

Typical values of the filling fraction are given in fig.3 for refractive indices
nh = 1.95 , and nb = n1 = 1.
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FIG. 3: Filling fraction of the high index material as a function of the design param-
eter δop. The index of the high and low index materials are taken as nh = 1.95 and
nb = nc = 1 respectively.

Having fixed the design properties of the multi-layers for a given (ωop, δop),
we can determine a thickness of the central region for which the (ωop, δop) pair
describes a mode in the infinite crystal limit. Recalling that the thicknesses of
the photonic crystal layers were chosen such that |tanψh,b| → ∞), the upward-
going recursion formula for the entry impedances, eq.(16), greatly simplifies
to

Z(j−1)
en =

Z2
j

Z
(j)
en

(28)

with an initial value of

Z(N)
en = −ZN+1 = −Z1. (29)

Invoking this relation up to the interface just below the central air layer, we
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obtain

Z(2N+1)
en = −

Z2N
h

Z1Z
2N−2
b

= −
Z2

b

Z1

(
Zh

Zb

)2N

. (30)

The physical significance of this result lies in the fact the condition nh > nb

implies that
∣∣∣Zh

Zb

∣∣∣ < 1 and consequently, eq.(21), tells us that the reflectivity

coefficient of this stack inside the central layer is r =
Z1+Z(2N+1)

en

Z
(2N+1)
en −Z1

e−2iαcy2N+1

from we deduce |r| = 1 in the infinite crystal limit, i.e. N → ∞. We thus
conclude that the infinite lower stack is a perfect reflector as desired.

Continuing the recurrence relation up to the uppermost interface of the stack,
we saw in section (1 1.2) that the condition for the existence of a mode is :

Z(1)
en = Z1 (31)

Applying this condition as a starting value, and applying the recurrence rela-
tion, eq.(28), backwards for the same thicknesses as above, i.e. eqs.(25), (26)
one finds :

Z(j)
en =

Z2
j

Z
(j−1)
en

. (32)

The application of this recurrence allows us to conclude that the condition for
a propagating mode is that the entry impedance at interface just above the
central layer is

Z(2N )
en =

Z2N
h

Z1Z
2N−2
b

=
Z2

b

Z1

(
Zh

Zb

)2N

. (33)

In order for eq.(30) and eq.(33) to be consistent, the upward recurrence
relation, eq.(16), must be verified for the interfaces 2N and 2N + 1. This
condition can be rewritten

tanψ2N+1 = iZc

Z
(2N )
en − Z

(2N+1)
en

Z2
c − Z

(2N )
en Z

(2N+1)
en

(34)

= 2iZc

Z2N
h

Z1Z
2N−2
b

Z2
c +

[
Z2N

h

Z1Z
2N−2
b

]2

≡ iφ

where in the second line we have inserted the conditions of eq.(30) and eq.(33).

From the fact that
∣∣∣Zh

Zb

∣∣∣ < 1, we deduce that, in the limit of N → ∞,
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tanψ2N+1 = 0. The solutions are then

ψ2N+1 = −mopπ mop = 1, 2, ... (35)

where mop numbers the optimum modes of the solution. The central gap
thickness, ∆yc, is then derived from

ψc ≡ ψ2N+1 ≡ α2N+1

(
y2N+1 − y2N

)
= −kop

1 ∆yc

√
n2

c − δ2op = −mopπ

mop = 1, 2, ... (36)

i.e.

∆yc =
mop√
n2

c − δ2op

λop
1

2
mop = 1, 2, ... (37)

which is familiar as the condition for obtaining a transmission peak in a Fabry-
Perot interferometer. One should remark that this is an exact solution in the
infinite crystal limit, and that the propagation of the mode is described by
purely real parameters frequency, ωop and propagation constant, γ = kop

1 δop.
These parameters are real because there is no loss through the infinite lossless
photonic crystal. In the next section we look at the attenuation resulting from
the presence of a finite crystal.

2.1. Attenuation in a finite crystal

One can now obtain approximate results for the attenuation of a finite crystal
stack using the parameters chosen for an infinite stack. Let us continue to take
Zb , Zh and Zc to be real numbers as a first approximation. Consequently,
eq.(34) demands for a finite stack, that tanψc be a (small) pure imaginary
number. The solutions to this equation are

ψc ≃ −mopπ + iφ mop = 1, 2, ... (38)

From the definition of ψc, eq.(17), a complex value for this parameter can only
be obtained by letting ω or δ be complex. It is common to call “leaky mode”
a mode occurring (via analytic continuation) for complex δ. We let δ become
complex, δ ≃ δop + iδ′′, and the central phase factor, ψc, corresponding to the
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solution eq.(36), is then

ψc ≡ −k1∆yc

√
n2

c − (δop + iδ′′)2

≃ −k1∆yc

√
n2

c − δ2op

√
1 − 2i

δopδ′′

n2
c − δ2op

(39)

≃ −k1∆yc

√
n2

c − δ2op

(
1 − i

δopδ
′′

n2
c − δ2op

)

= −mopπ + imopπ
δopδ

′′

n2
c − δ2op

where we have made the reasonable approximation that δopδ
′′ ≪ n2

c − (δop)2.
Using the approximation tan (−mopπ + iη) ≃ iη for integer mop, and η ≪ 1,
comparison of eq.(34) and eq.(39) yields for the attenuation δ′′

δ′′ ≃ 2Zc

(
n2

c − δ2op
mopπδop

) Z2N
h

Z1Z
2N−2
b

Z2
c +

[
Z2N

h

Z1Z
2N−2
b

]2 mop = 1, 2, ... (40)

For non magnetic media, µj = µ1 ∀ j, and the region impedances simplify to

Zj ≡
1

αj

=
1√

n2
j − δ2

(41)

In this case, the formula for the attenuation simplifies to

δ′′ ≃
2

Z2
c

(
n2

c − δ2op
πmopδop

) Zc

Z1

(
1

n2
b
−δ2

)(
n2

b−δ2

n2
h
−δ2

)N

1 + 1
Z2

c Z2
1

1

(n2
b
−δ2)

2

(
n2

b
−δ2

n2
h
−δ2

)2N
(42)

= 2

(
n2

c − δ2op
)2

πmopδop

Zc

Z1

(
1

n2
b
−δ2

)(
n2

b−δ2

n2
h
−δ2

)N

1 +
(n2

c−δ2)(1−δ2)

(n2
b
−δ2)

2

(
n2

b
−δ2

n2
h
−δ2

)2N

This formula simplifies even further if we remark that the low index layers,
and central layer are all composed of the same absorption free material as the
external medium, i.e. nb = nc = n1 = 1 (vacuum filled fibers placed in a
vacuum for instance ) :

δ′′ ≃ 2

(
1 − δ2op

)2

mopπδop

1

1 − δ2

(
1−δ2

n2
h
−δ2

)N

1 +
(

1−δ2

n2
h
−δ2

)2N
(43)
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For the small δ′′ in which we are interested, the
(

1−(δ′)2

n2
h
−(δ′)2

)2N

term in the

denominator is completely negligeable, and to a good approximation

δ′′ ≃ 2

(
1 − δ2op

)2

mopπδop

(
1 − δ2

)N−1

(
n2

h − δ2
)N (44)

≃ 2

(
1 − δ2op

)

mopπδop

(
1 − δ2op

)N
(
n2

h − δ2op
)N

This formula is only approximate, since once that we allow δ′′ to be non-
zero, we no longer have tanψj = −π

2 in the layers, and the simplified recursion
relations used in deriving eq.(44) are no longer exact. Although it is possible to
calculate the corrections to this formula, the simplest procedure at this point
is to employ the technique described in section (2 2.3) for determining the δ
of the propagating modes for arbitrary frequencies. In figure 4, we plot, on a
logarithmic scale, the attenuation δ′′ for the fiber modes propagating at ωop in
a fiber designed to propagate the lowest mode, mop = 1, as a function of δop
for different N . The physical parameters were taken as the vacuum for the core
and low index material, nb = nc = 1, alternating with a high index dielectric
nh = 1.95.

It is interesting to compare this attenuation with that obtained for current
fiber optic technology which allows the fabrication of optical waveguides having
extremely low losses (descending down to the order of 0.15 db/km). This
implies that a signal starting with I0 intensity will have after one kilometer of
travel, an intensity I given by

10 log10

I0
I

= 0.15

I ≃ 0, 966 I0

This loss can arise from both imperfections in the fiber which induce scattering
outside of the fiber, and by absorption of electromagnetic energy by the fiber
material. Considering the Poynting theorem for an ordinary waveguide, we
obtain that the attenuation in the x direction is expressed

I

I0
= e−2x Im γ = e−2xk1 Im δ (45)

which gives an expression for Im δ of

Im δ = −
λ1

4πx
ln
I

I0
(46)
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FIG. 4: Attenuation δ′′ in finite 1-D fibers operating at frequency ωop, plotted as a
function of δop for different values of N .

For wavelengths of the order of those used in telecommunications λ1 ≃ 1.55µm,
the attenuation of 0.15 db per kilometer (see eq.(16)) corresponds to a dimen-
sionless attenuation parameter, Im δ, of the order of

Im δ = −
1.55µm

4π109µm
ln 0, 966 ≃ 4.3 × 10−12 (47)

It is then clear from fig.(4) that orders of approximately N ≃ 10 are called for
in order to obtain comparable attenuations.

2.2. Field map

One can remark that the mode propagation constants are calculated entirely
in terms of impedances, and that it was not necessary to obtain explicitly
the field configuration in order to identify a mode. Nevertheless, the field
configuration can prove useful in obtaining a physical understanding of the
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guided modes. We recall that the electric field for TE waves in layer j and its
square amplitude are given by

E(j) (x, y) =
(
a−j e

−iαjy + a+
j e

iαjy
)
eiγxez (48)

so that

∣∣∣E(j) (x, y)
∣∣∣
2

= e−2x Im γ

·
(∣∣a−j

∣∣2 e2y Im αj +
∣∣a+

j

∣∣2 e−2y Im αj + 2 Re
{
a+

j a
−,∗
j ei2y Re αj

})
. (49)

Therefore, a description of the field configuration requires the knowledge of the
field coefficients.

Expressing the fields E
(j)
z and H

(j)
x in terms of a+

j and a−j , one obtains from

the definition of Z
(j−1)
en , eq.(15), a relation between a+

j and a−j :

a+
j = a−j

Z
(j−1)
en + Zj

Z
(j−1)
en − Zj

e−2iαjyj−1 ∀ j ∈ [2, N ] (50)

The a−j are readily determined using a recurrence relation. Continuity of the
tangential electric field at the interfaces implies that

a−j−1e
−iαj−1yj−1 + a+

j−1e
iαj−1yj−1 = a−j e

−iαjyj−1 + a+
j e

iαjyj−1 ∀ j ∈ [1, N ]

(51)
For the j = 1 interface, a propagating mode implies that a−1 = 0 and this
relation together with eq.(50) yields

a+
1 e

iα1y1 = a−2 e
−iα2y1 + a−2

Z
(1)
en + Z2

Z
(1)
en − Z2

e−2iα2y1eiα2y1

i.e.

a−2 =
Z

(1)
en − Z2

2Z
(1)
en

ei(α1+α2)y1a+
1 (52)

Invoking the mode condition (Z
(1)
en = Z1) we then obtain :

a−2 =
Z1 − Z2

2Z1
ei(α1+α2)y1a+

1 (53)

a+
2 =

Z1 + Z2

2Z1
ei(α1−α2)y1a+

1
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The coefficients of the other layers may be determined by compact recursive
formulae invoking the impedances

a−j−1 =
Z

(j−1)
en − Zj−1

Z
(j−1)
en − Zj

a−j e
i(αj−1−αj)yj−1 ∀ j ∈ [3, N + 1] (54)

a+
j = a+

j−1

Z
(j−1)
en + Zj

Zj−1 + Z
(j−1)
en

ei(αj−1−αj)yj−1 ∀ j ∈ [3, N + 1]

These relations can either both be applied, or one can apply only one of them,
and obtain the other via eq.(50). The overall normalization of the coefficients is
arbitrary, and we chose to fix it by setting the amplitude of the downward going
coefficient of the central layer to unity, |a−c | = 1, where the index c denotes the
central layer, c ≡ 2N + 1.

One may object to the fact that the recurrence relations in eq.(54) appear
susceptible to numerical instabilities should the denominator prove to be zero.
In practice, this does not generally appear to pose a problem. Should a near
division by zero arise however, the problem may be avoided by defining

a−j ≡
(
Z(j−1)

en − Zj

)
τj . (55)

With this definition, we conclude

τ2 =
ei(α1+α2)y1

2Z1
a+
1 (56)

while the a−j recurrence relation of eq.(54) then takes the form

τj+1 =
Z

(j−1)
en − Zj

Z
(j)
en − Z(j)

ei(αj+1−αj)yjτj ∀ j ∈ [2, N ] . (57)

Invoking the relation

Z
(j−1)
en − Z(j)

Z
(j)
en − Z(j)

=
1 + i tanψj

1 − Z
(j)
en

Zj
i tanψj

j ∈ [2, N ] (58)

the recurrence relation for the τj coefficients can be determined recursively

τj+1 =





1 + i tanψj

1 − Z
(j)
en

Zj
i tanψj




 ei(αj+1−αj)yj τj ∀ j ∈ [2, N ] (59)

starting from eq.(56) as the initialization.
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2.3. Dispersion relations

In waveguide theory, it is natural to interest ourselves in the properties of
the modes, and most notably the dispersion relations. In this work, our goal
is not to describe all possible modes, and we content ourselves with describing
the principal leaky mode of propagation for which the field is trapped inside
the central layer. Consequently, we adopt techniques requiring an approximate
starting solution. For fibers optimally designed as in section (2 2.1), and oper-
ating at the optimal frequency, ωop, an excellent approximate solution is given
by δ = δop + iδ′′ where δ′′ is given by eq.(44). The dispersion properties of the
mode can then be determined by making small incremental steps in frequency,
and obtain the new solutions of δ at each frequency.

As in section (2 2.1) where we discussed the design of infinite fibers, we found
that the numerical sensitivity to the properties of the central layer is such that
it is preferable to solve for δ in terms via conditions imposed on the interfaces

of the central layer. One proceeds by calculating Z
(2N+2)
en and Z

(2N+1)
en via the

ascending and descending recurrence relations, eqs.(16) and (20) respectively,

using an approximate value for δ. Thus, Z
(2N+2)
en and Z

(2N+1)
en are functions

of the approximate value of δ via the region impedances and the ψj for the
bi-layers. The ψj for the crystal layers can be reexpressed

ψj ≡ αj

(
yj − yj−1

)
≡

√
n2

j − δ2

n2
j − δ2op

λop
1

λ

√
n2

j − δ2op
2π

λop
1

(yj − yj−1) (60)

which simplifies using the relations satisfied by δop, namely

√
n2

h − δ2op
2π

λop
1

∆yh = −
π

2
(61)

√
n2

b − δ2op
2π

λop
1

∆yb = −
π

2

The ψj for high and low index materials ψh and ψb respectively then take the
form

ψh = −

√
n2

h − δ2

n2
h − δ2op

λop
1

λ

π

2
(62)

ψb = −

√
n2

b − δ2

n2
b − δ2op

λop
1

λ

π

2

The phase variable of the central layer, ψc, for an m order propagating mode
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must then satisfy

ψc ≡ ψ2N+1 = tan−1

[
iZc

Z
(2N )
en − Z

(2N+1)
en

Z2
c − Z

(2N )
en Z

(2N+1)
en

]
−mπ ≡ Λ(m, δ, λ) (63)

Using the definition of ψc (eq.(17)), eq.(63) can be rewritten

ψc ≡ α2N+1

(
y2N+1 − y2N

)
= −

√
n2

c − (δ′ + iδ′′)
2

n2
c − δ2op

√
n2

c − δ2op∆yc

2π

λop
1

(
λop

1

λ

)
= Λ

(64)
Recalling that δop, and ∆yc satisfy the relation

√
n2

c − δ2op∆yc

2π

λop
1

= −mopπ (65)

the propagation constant of the mode, δ, must thus satisfy

√
n2

c − (δ′ + iδ′′)2

n2
c − δ2op

(
λop

1

λ

)
= −

Re Λ

mopπ
− i

ImΛ

mopπ
(66)

from which we obtain two coupled equations for δ′ and δ′′.

δ′ =

√√√√n2
c − λ2

(
n2

c − δ2op
) (Re Λ)2 − (ImΛ)

2

m2
opπ

2 (λop
1 )

2 − (δ′′)2 (67)

δ′′ = −
λ2
(
n2

c − δ2op
)
(Re Λ)(ImΛ)

m2
opπ

2 (λop
1 )

2
δ′

The value of δ gives a new estimation for the solution. One must recall however
that Λ is itself a function of δ. These solutions must therefore be solved self-
consistently. Although simple iteration is often sufficient to find self-consistent
solutions, it is generally more efficient to use more sophisticated techniques like
those employing homographic approximations.[11] The approximate solutions
given by the optimal solutions generally provide sufficiently good starting values
for iterative or homographic techniques.

We now show the dispersion relations for TE modes calculated using our tech-
nique. The physical media are chosen to be the same as for previous examples,
nb = nc = 1, nh = 1.95, µ1 = µb = µc = µh = 1. The thickness of the central
gap was chosen such that only the lowest mode, mop = 1 exists at the optimum
frequency. In fig.5a), we illustrate the real part of the dispersion relations for
the principal guided modes in a fiber designed for δop = 0.7. Specifically, we
plot ω/ωop Re δ of the propagating modes as a function of ω/ωop. We have
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multiplied the dimensionless factor δ by ω/ωop so that if we invert the graph
such that ω is a function of δ then the position of a point will correspond to the
phase velocity of the mode on a scale normalized such that c = 1. The slope of
the tangent of the inverted graph then yields the group velocity of the mode.
It is interesting to remark in fig.(5) that the low lying modes apparently begin
with a zero group velocity.

One can also observe in fig.5a) that the m = 1 guided mode continues to
exist for a relatively large frequency range around ωop. We abruptly cease to
find a solution however below a lower limit ωmin. Our technique also abruptly
ceases to obtain solutions above a maximum frequency ωmax. At about this
same frequency however, we begin to find m = 3 guided mode solutions. This
behavior repeats itself for higher frequencies, and we have plotted the modes
up through the m = 9 solutions. It is interesting to note that the range of
frequencies for each mode is approximately the same. We did not find modes
where m is even since we designed the fiber to confine modes where m is
odd. Consequently, the photonic band gap effect no longer operates in the
neighborhoods even multiples of ωop where even modes would be expected to
exist. This situation would have been inverted had we designed the fiber to
confine even modes.

In order for a leaky mode to be useful for guiding waves over a long distance,
their imaginary parts must be quite small. In order to evaluate this effect,
we plot in fig.5b) the log10 of the imaginary parts of the dispersion relations
for the same frequencies as in fig.5a). Although we can easily remark that
Im δ are smallest for the m = 1 mode for which the fiber is designed, the
imaginary parts of higher modes can still be quite small, and these modes may
prove useful. From this figure, it is clear for all modes that Im δ becomes
rather large near the edges of the propagating band, and consequently that the
usefulness of the modes is compromised for frequencies too far from the centers
of the propagating bands. We remark that, as expected, the minima of Im δ
occur at frequencies near ωop, 3ωop, 5ωop, etc. Apparently, the fact that these
minima do not occur precisely at odd multiples of ωop, cannot be regarded
as a consequence of the finite number of multilayers. Instead, this should be
viewed as a consequence that our fiber design procedure does not guarantee a
minimum of the attenuation at this point.

The physical behavior of the modes in different regions of the dispersion
curves may be better understood by looking at field amplitude plots of the
modes at different frequencies. In figure 6, we illustrate the square amplitude
of the electric field plotted with respect to the y coordinates for four frequencies
on them = 1 dispersion curve. The outer edges of the 1-D fiber walls are placed
at y = ±1 respectively. In fig.6a) is the field map for mode m = 1 at ω = ωop.
In fig.6b) is the field map at the minimum of Im δ, ω ≃ 1.51ωop. One observes
that mode in 6b)does indeed appear more tightly confined than the mode at
the design frequency, 6a). We remark that both modes are largely confined to
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FIG. 5: Dispersion relations for propagation along the fiber axis, i.e. γ vs. ω, for
modes in a 1-D PBF “optimized” for δop = 0.7, mop = 1, (∆yh ≃ 0.137λ

op
1 , ∆yb ≃

0.35λ
op
1 ∆yc ≃ 0.7λ

op
1 ). a) Illustrates the real part of the dispersion relation. b)

Illustrates the imaginary part. There are 5 high index layers on each side of the
central layer, N = 5
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op
1 , ∆yb ≃ 0.35λ

op
1 ,

∆yc ≃ 0.7λ
op
1 ). Dashed lines show the location of the interfaces.

the central layer despite our quite small number of bi-layers, N = 5. It is also
worth remarking that the field found outside the central layer is predominately
located within vacuum layers. In figures 6c) and 6d), are illustrated the field
maps at the lower and upper edges of the m = 1 propagating band, ω ≃ 0.78ωop

and ω ≃ 2.07ωoprespectively, . At the lower edge of the propagating band,
fig.6c), one can see that the field has spread out somewhat into the crystallin
walls compared to modes near ωop. At the upper edge of the propagating
band however, fig.6d), the field has spread considerably further into the entire
width of crystalline walls. In view of this field map, it is not too surprising
that the propagation constant has a small but non-negligeable imaginary part

ω
ωop

Im δ ≃ 0.00012 at this frequency. We nevertheless remark that the field

continues to avoid somewhat the interior of the high index layers.
It is of interest to study the mode characteristics for a higher number of bi-

layers. In fig.7, we calculate the same dispersion relations as in fig.5 for PBF
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containing now N = 15 high index layers on each side of the central layer, (as
opposed to N = 5 in fig.5). When compared to the N = 5 model, we see
that the principal effect on Re δ is to open up the stop bands between different
propagating modes. As expected, the Im δ is here considerably lowered with
respect to the N = 5 model. Analogously to the N = 5 model, the minimum
of Im δ is somewhat shifted from odd multiples of ωop. One can guess that,
from the small imaginary parts of the mode even at the band edges, the modes
remained well confined in this case even at the edge of each propagating band.
Field maps of the modes, not shown here, readily confirm this point. It is
interesting that the disappearance of a leaky mode is not simply due to a
gradual inability of the crystal to confine the wave, but ceases suddenly in a
region where the mode is still well confined.

2.4. Absorption in photonic crystal fibers

The previous paragraphs treated PBFs composed of a lossless high index
material and a lossless vacuum. Should we add a realistic absorption to the high
index material, the results imply that the absorption of a PBF mode should be
less than the absorption in a classical high index fiber. This conjecture can be
put to the test by explicit mode calculations. This is done by taking the same
procedure as for obtaining the dispersion relations in the preceding paragraph,
but now leaving the frequency fixed and adding an imaginary part to the high
index material. In fig.8 we illustrate a log-log plot of the attenuation in an
m = 1 mode in a N = 15 fiber having the same thicknesses as in fig.7 as a
function of Imnh. The frequency demonstrating minimal attenuation for this
fiber, ω ≃ 1, 49ωop, was chosen.

We would like to compare these attenuations to those obtained for a classic
high index waveguide. However, it is not immediately clear what characteristics
should be chosen to make a meaningful comparison. Nevertheless, we can
expect the attenuation of a classic high index waveguide to be of the same order
of magnitude as the attenuation in the bulk high index medium. Therefore, we
also plot the attenuation for a bulk high index material. As can be seen from the
graph, the attenuation in the fiber waveguide has been substantially reduced

from that of the bulk high index material,
δ′′
bulk

δ′′
fiber

≃ 20. This result suggests that

compared to classic fibers, order of magnitude decreases in absorption of PBFs
are feasible.
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3. CONCLUSION

Our calculations indicate that low index core PBFs can probably be designed
to be essentially monomode for TE waves over a relatively large range of fre-
quencies. We have also illustrated that absorptive losses can be considerably
reduced for such fibers. We have demonstrated that the impedance formulation
can be used to good effect in this problem. Despite the efficiency of the nu-
merical method, we found that the numeric behavior of the solutions for such
fibers are extremely sensitive to the properties of the central “defect” layer.
Consequently, we were obliged to treat this layer separately from the rest in
order to obtain reliable numeric results. Further work concerning the physical
significance of the leaky modes should be carried out. We have not at all ruled
out the possibility of the existence of additional leaky modes, nor addressed
the possibility of the coupling of our leaky modes with additional modes. In a
forthcoming paper, we look at TM modes in such fibers, and the possibilities
for the coexistence of TE and TM modes.
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