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Observations and calculations of light scattering from
clusters of spheres

Stephen Holler, Jean-Claude Auger, Brian Stout, Yongle Pan, Jerold R. Bottiger,
Richard K. Chang, and Gorden Videen

Two-dimensional angular optical scattering ~TAOS! patterns from clusters of polystyrene latex spheres
are measured in the near-forward and near-backward directions. In both cases, the scattering pattern
contains a rich and complicated structure that is the result of the interaction and interference of light
among the primary particles. Calculations are made for aggregates that are similar to those generated
experimentally and also demonstrate the rich structure in the scattering pattern. A comparison of the
experimental and theoretical TAOS patterns gives good qualitative agreement. © 2000 Optical Society
of America

OCIS codes: 290.5820, 290.4020, 290.5850, 290.4210, 010.1110.
1. Introduction

Recently there has been experimental1–3 and
theoretical2,4–7 interest in the optical properties of air-
borne microparticle aggregates. Such aerosols have
been found to play important roles in a myriad of fields
including industrial, environmental, and health sci-
ences,8 atmospheric remote sensing,9 and astrophysi-
cal studies of scattering by planetary10 and
nterstellar11 dust particles. This is so primarily be-

cause many interesting or potentially harmful ~or
both! materials form clusters of smaller primary par-
ticles. For example, carbon ~soot! particles, which
play an important role in the heat balance of the Earth,
are often found in fractal aggregates.12 Despite the
fact that the primary particles may be in the Rayleigh
regime, the overall cluster is not, and it exhibits fun-
damentally different optical properties. Other sys-

S. Holler and R. K. Chang ~richard.chang@yale.edu! are with the
Department of Applied Physics and Center for Laser Diagnostics,
Yale University, New Haven, Connecticut 06520-8284. J.-C. Au-
ger and B. Stout are with the Laboratoire d’Optiques des Solides,
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tems of interest include dense clusters of spores, which
can pose a threat as biological warfare agents.13 One
possible means for determining shape and structure
information about airborne microparticles is to inves-
tigate their angular light scattering. Often this is
done in only one angular dimension ~u!. However, a
growing number of researchers are presenting the an-
gular intensity distribution of the scattered light as a
function of two angles ~u, f!.3,7,14–17 Because the elas-
tic scattered angular intensity distribution from non-
spherical particles ~e.g., microparticle aggregates,
oblate and prolate spheroids! has an azimuthal ~f! as
well as a polar ~u! dependence, observation of two-
dimensional angular optical scattering ~TAOS! is use-
ful for determining shape and structure information
about such nonspherical particles.

In what follows, we present a comparison between
theory and experiment of the TAOS from a three-
dimensional close-packed cluster of spherical primary
particles. In Section 2 we discuss the theoretical
technique for calculating light scattering from an ag-
gregate. In Section 3 we highlight the experimental
arrangement and discuss the generation of the clus-
ters. We present the experimental and theoretical
results in Section 4. In Section 5 we summarize our
study and present ideas for future investigations. Fi-
nally, in Appendix A we outline the translation addi-
tion theorem for spherical wave functions and discuss
some relevant aspects for the computational work.

2. Theory

In this section we develop a model that can be used to
calculate the differential scattering cross section of
0 December 2000 y Vol. 39, No. 36 y APPLIED OPTICS 6873
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an aggregate composed of many dielectric spheres.
Mie introduced in 1908 the exact solution for the
scattering of a plane electromagnetic wave by a single
isotropic homogeneous sphere.18 The vector wave
equation can be derived by use of various devices and
approaches, such as Hertz vectors,19 separation of
variable solutions ~by means of the scalar-wave equa-
tion!,20 and the T-matrix formalism introduced by
Waterman.21 We have chosen the last-named ap-
proach because it can be extended to derive the the-
oretical solution of the multiple scattering of light by
an aggregate of spheres. The model includes the
multiple scattering that occurs among the spheres,
and the formulation is developed to optimize calcula-
tions.

A. Vector Wave Equation

In a spherical coordinate system, the linear indepen-
dent solutions of the vector wave equation ~Helm-

oltz equation! in a source-free homogeneous
edium are the independent, divergenceless vector

pherical wave functions Csmn~kr, u, f!:

Re C1mn~kr, u, f! 5 Îgmn HF im
sin u

jn~kr!GPn
m ~cos u!

3exp~imf!û 2 jn~kr!
]

]u
Pn

m

3 ~cos u!exp~imf!f̂J , (2.1)

Re C2mn~kr, u, f! 5 Îgmn Hn~n 1 1!

kr
jn~kr!Pn

m~cos u!

3 exp~imf!r̂ 1 F 1
kr

]

]r
rjn~kr!G ]

]u
Pn

m~cos u!

3 exp~imf!û 1 F im
kr sin u

]

]r
rjn~kr!GPn

m~cos u!

3 exp~imf!f̂J , (2.2)

where jn~kr! are spherical Bessel functions of the first
kind that have the complex argument kr, k 5 2pyl is
the propagation constant for the medium, and Pn

m~cos
! are the associated Legendre functions of the first
ind and of degree n and order m, where n and m are

ntegers defined in the intervals 1 # n # ` and 2n #
m # n. The time-harmonic convention is exp~2ivt!.
The factor

gmn 5
~2n 1 1!~n 2 m!!

4pn~n 1 1!~n 1 m!!

serves to normalize the spherical wave functions with
the angular variables u and f. At large r, the scat-
tered fields can be expressed by the vectors Cimn~kr,
, f! that we obtained by replacing the Bessel func-
874 APPLIED OPTICS y Vol. 39, No. 36 y 20 December 2000
tions jn~kr! with the Hankel functions of the first kind
hn

~1!~kr! 5 jn~kr! 1 iyn~kr!; then Re stands for the
regular part of.

Consider a medium of real refractive index n0 for
which a plane electromagnetic wave characterized by
propagation constant k0 and wavelength l0 impinges
upon a dielectric sphere of complex refractive index
n1 and propagation constant k1. According to Mie
theory, the incident field ~Einc, Hinc! and the scattered
field ~Esca, Hsca! can be expanded in terms of an in-
finite series of spherical vector wave functions:

Einc 5 (
n51

n5`

(
m52n

m5n

~a1mn Re C1mn 1 a2mn Re C2mn!

5 (
s,m,n

asmn Re Csmn,

Hinc 5
1

ih0
(
n51

n5`

(
m52n

m5n

~a2mn Re C1mn 1 a1mn ReC2mn!;

(2.3)

Esca 5 (
n51

n5`

(
m52n

m5n

~ f1mn C1mn 1 f2mn C2mn!

5 (
s,m,n

fsmn Re Csmn,

Hsca 5
1

ih0
(
n51

n5`

(
m52n

m5n

~ f2mn C1mn 1 f1mn C2mn!, (2.4)

where h05vmyk0.

B. T Matrix for a Single Dielectric Sphere

The T matrix introduced by Waterman21 ~T# ! converts
he expansion coefficients of the incident wave ~asmn!

impinging upon an arbitrarily shaped particle into
the expansion coefficients of the radiated scattering
wave ~ fsmn! through the relation

f 5 T# a. (2.5)

The elements of the T matrix are independent of the
incident and scattered fields. They depend only on
the intrinsic features of the scattering particle
~shape, size parameter, and complex refractive index!
and on its orientation with respect to the coordinate
system. For a spherical particle, the elements of the
T matrix are greatly simplified, and it is now well
known that applying the boundary condition on the
spherical interface yields

T1mn,1m9n9 5 2dmm9dnn9

3
jn~k1r0!@k0r0 jn~k0r0!#9 2 jn~k0r0!@k1r0 jn~k1r0!#9

jn~k1r0!@k0r0hn~k0r0!#9 2 hn~k0r0!@k1r0 jn~k1r0!#9
,

(2.6)

2mn,2m9n9 5 2dmm9dnn9

~k1
2yk0

2!jn~k1r0!@k0r0 jn~k0r0!#9 2 jn~k0r0!@k1r0 jn~k1r0!#9

~k1
2yk0

2!jn~k1r0!@k0r0hn~k0r0!#9 2 hn~k0r0!@k1r0 jn~k1r0!#9
,

(2.7)

1mn,2m9n9 5 T2mn,1m9n9 5 0, (2.8)
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where the primes denote derivatives with respect to
the arguments of the Bessel functions.

C. Expansion of the Incident Plane Wave

The incident plane wave can be expanded in terms of
vector spherical wave functions for both polarization
states, transverse electric and transverse magnetic
~TE and TM!, respectively:

1mn
TM 5 Îzmn in13 m

sin ui
Pn

m ~cos ui! exp~2imfi!, (2.9)

a2mn
TM 5 Îzmn in13 d

d u
Pn

m~cos ui!exp~2imfi!, (2.10)

a1mn
TE 5 Îzmn in12 d

du
Pn

m~cos ui!exp~2imfi!, (2.11)

a2mn
TE 5 Îzmn in12 m

sin ui
Pn

m~cos ui!exp~2imfi!, (2.12)

where the factor

zmn 5
4p~2n 1 1!~n 2 m!!

n~n 1 1!~n 1 m!!

is introduced for consistency with the normalization
chosen for Eqs. ~2.1! and ~2.2!.

D. Basis of the Analytical Problem

Consider a cluster of N isotropic, homogeneous, com-
act, randomly dispersed spheres with radii ai and
omplex refractive indices ns

i. The center of each
sphere Oi is defined in a principal coordinate system

0 by a position vector ri. The relative position vec-
tor between two arbitrary spheres i and j is defined by

ij. On application of the superposition principle of
electromagnetic theory, the total external field Etot is
the summation of the incident wave from the original
source Einc with all the scattered fields Esca

i :

Etot 5 Re C~k0ur 2 r0u!a0 1 (
i51

N

C~k0ur 2 riu!f i~N!.

(2.13)

olving the total electric field scattered by an aggre-
ate of spheres amounts to evaluating the scattered
eld from each individual sphere in the cluster. It is
hen necessary to translate the entire scattered field
n a common basis to get an exact single analytical
xpression of the total field scattered by the aggre-
ate.

E. Solving the Multiple-Scattering Equation

In multiple-scattering theory, the field incident upon
the ith scatterer is due to the contribution of the field
from the original source Einc and the scattered fields
Esca

i from the other j particles in the cluster. This
2

field, called the excitation field, Eexc, has the formu-
lation

Eexc
i 5 E0 1 (

j51
jÞ1

N

Esca
j . (2.14)

The T-matrix formulation @Eq. 2.5# leads to the rela-
tion Esca

i 5 T# i~1!Eexc
i , where T# i~1! is the isolated-

scatterer T matrix for the ith scatterer. Then, using
he expansion in terms of spherical vector wave func-
ions of each field, we have

Esca
i 5 T# i~1!FRe C~k0ur 2 r0u!a0 1 (

j51
jÞi

N

C~k0ur 2 ri u! f j~N!G.

(2.15)

In Eq. ~2.15!, the incident field is expanded in the
rincipal coordinate system R0~kr0, u0, f0!, whereas

the scattered fields from each sphere are expressed in
the coordinate systems of the scatterers Rj~krj, uj, fj!.
To solve the multiple-scattering problems it is neces-
sary to express both terms in the ith-scatterer coor-
dinate system. When the translational addition
theorem for the spherical vector wave functions @Eqs.
~A1! and ~A2! below# is applied and the expansion
coefficient representation of each field @Eq. ~2.15!# is
used,

f j~N! 5 T# i~1!Fb# ~i, 0!a0 1 (
j51
jÞi

N

a# ~i, j! f j~N!G ,

i 5 1, . . . , N, (2.16)

where b# ~i, 0! and a# ~i, j! are the translation matrices
for the incident and the scattered fields, respectively.
Equation ~2.16! defines a group of N-coupled linear
equations whose unknown variables are the expan-
sion coefficients of the scattered field of each individ-
ual sphere. The solution can be found by use of
various techniques such as the order of scattering,4
the direct inversion matrix, and the iteration meth-
od.22,23 Nevertheless, it is convenient to introduce
T# i~N!, the N-scatterer T matrix of the ith scatterer.

his formulation includes all the information about
ultiple-scattering effects caused by the presence of
scatterers, which directly links incident field E0 to

the scattered field of the ith scatterer by the equation

f i~N! 5 T# i~N!ai 5 T# i~N!b# ~i, 0!a0. (2.17)

As f i~N! is defined in the coordinate system of the ith
scatterer, ai is also. Then, from Eq. ~2.13! and by
pplication of the translational addition theorem @Eq.
A3! below# once more, the total scattered field coef-
cients in the principal coordinate system have the
orm

fT~N! 5 (
i51

N

b# ~0, i!T# i~N!b# ~i, 0!a0. (2.18)
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It is possible to introduce the global T matrix of the
cluster T# T~N! that directly converts the incident field
coefficients into the total scattered field coefficients:

fT~N! 5 T# T~N!a0, (2.19)

with

T# T~N! 5 (
i51

N

b# ~0, i!T# i~N!b# ~i, 0!. (2.20)

The global T matrix is independent of the incident
field and depends only on cluster configuration;
therefore it can be used in computations for any di-
rection and polarization state of the incident wave.
It is also useful for computing orientationally aver-
aged light scattering through use of the rotational
addition theorem.

Substituting Eq. ~2.17! into Eq. ~2.16! results in a
new linear matrix equation in which the unknown
variables are the N-scatterer T matrices of each
sphere. This system can be solved by use of an it-
erative or a recursive algorithm.5,24 However, for
certain cases of dense aggregates the iterative algo-
rithm cannot converge because the method assumes
that the primary contribution to it is the incident
field. For this reason we use the recursive T-matrix
algorithm ~RTMA! developed by Chew24 as the basis

Fig. 1. ~a! Experimental setup used for the TAOS measurements,
condition.
876 APPLIED OPTICS y Vol. 39, No. 36 y 20 December 2000
of our study. The results can be expressed by these
two equations24:

T# N11~N11!b# ~N 1 1, 0! 5 FI# 2 T# N11~1! (
i51

n

a# ~N 1 1, i!

3 T# i~N!b# ~i, 0!a# ~0, N 1 1!G21

3 T# N11~1!Fb# ~N 1 1, 0! 1 (
i51

n

a# ~N

1 1, i!T# i~N!b# ~i, 0!G , (2.21)

T# i~N11!b# ~i, 0! 5 T# i~N!b# ~i, 0!@I# 1 a# ~0, N 1 1!

3 T# N11~N11!b# ~N 1 1, 0!#, i # N. (2.22)

The ~N 1 1! sphere in the aggregate acts as a per-
turbation for the whole system. Then the individual
multiple-scattering T matrices T# i~N11! of the ~N 1 1!
phere cluster are evaluated from the individual
ultiple-scattering T matrices T# i~N! of the N-sphere

cluster.

3. Experiment

The experimental setup is shown in Fig. 1~a!. It
onsists of a particle generator to create the clusters
nd an apparatus to illuminate the clusters and mea-
ure their two-dimensional angular scattering pat-
ern. Clusters of polystyrene latex ~psl! spheres are
enerated with an ink-jet aerosol generator25 ~IJAG!

e laboratory-coordinate system, ~c! an illustration of the Abbé sine
~b! th
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from a solution of psl spheres and water loaded into
an empty ink-jet cartridge ~Hewlett-Packard, 51612A
BlankJet!, which is mounted upon the IJAG’s drying
column. The IJAG controller box sequentially trig-
gers ~either from 1 to 2 kHz or singly on demand! each
f the 12 nozzles in the cartridge to produce water
roplets ~50-mm diameter! that contain psl sphere
nclusions. The number of primary particles within

water droplet follows Poisson statistics and de-
ends on the concentration of slurry within the car-
ridge. By varying the concentration, one may
enerate clusters of different sizes. After being
jected from the ink-jet cartridge, the droplets are
ften accompanied by small satellite droplets.
hese secondary droplets are removed with a winnow
ow while the large primary droplet is entrained
ithin an airflow that carries it through the drying

olumn. The drying column is heated to ;105 °C so
hat, as the wet droplets with inclusions traverse the
olumn, the water evaporates, leaving a dry aggre-
ate of primary particles. At the end of the column
s a tapered nozzle with a 1-mm exit port. The clus-
ers emerge from the nozzle and fall into the scatter-
ng volume of the measuring apparatus.

Although the IJAG may fire periodically, the chang-
ng droplet size and the irregular shape of the aggre-
ates prevent the clusters from emerging in a periodic
ashion. Because of the asynchronous passage of par-
icles through the scattering volume, it is necessary to
etect when a cluster is in the correct location. The
resence of a falling cluster is detected with a cw
e–Ne trigger laser ~632.8 nm! and a photomultiplier

ube ~PMT! with a narrow-bandpass filter. As the
ggregate enters the scattering volume, it crosses the
e–Ne trigger beam and scatters light toward the
MT. Detection of a signal with the PMT initiates

he trigger sequence for the TAOS measurement.
On receiving a trigger pulse, the second harmonic

l 5 532 nm! of a Q-switched ~30-ns pulse! Nd:YAG
aser illuminates the falling cluster. The elastic
cattered light is then collected in either the near-
orward or the near-backward region with an fy# 5
.2 camera lens used in the Abbé sine condition26:
n this condition, the lens is positioned such that the
alling particle is in the back focal plane of the lens.

ray of light that scatters off the particle and enters
he lens at an angle g emerges parallel, with a dis-
lacement h given by

h 5 f sin g, (3.1)

here f is the focal length of the lens. The emerging
arallel light is then recorded with an intensified
CD ~ICCD! camera with a narrow-bandpass filter
uch that only the scattered 532-nm light is recorded.
For our experiments, the coordinate system of the

aboratory is taken such that the clusters fall in the
z direction and the laser propagates parallel to the
axis @Fig. 1~b!#. The Abbé sine condition then re-

ates the y–z coordinate of the ICCD camera to the
lab–flab scattering angles in the laboratory frame.
he geometry of the sine condition is shown in Fig.
2

1~c!. This choice of coordinate system is nonstand-
ard when TAOS calculations are performed. Typi-
cally, and as is done for our calculations, the laser
propagates along the z axis. In this case, the aggre-
gates would be falling in the 2x direction. The cor-
espondence between the calculation and the
aboratory frames is such that ~x, y, z!calc 7 ~z, 2y,

x!lab. To make comparisons between experimental
results and theoretical calculations, it is useful to
transform the calculations into the laboratory-frame
coordinate system. We do so by comparing the two
coordinate systems and utilizing the sine condition of
Eq. ~3.1!. The resultant transformation is

ulab 5 cos21~sin ucalc cos fcalc!,

flab 5 f0 1 ~21! j sin21~2sin ucalc sin fcalc!, (3.2)

where ulab and flab are the scattering angles in the
laboratory coordinate frame, ucalc and fcalc are the
cattering angles in the calculation frame, and f0 is
ither 0° with j 5 0 for forward scattering or 180°

with j 5 1 for backward scattering.

4. Results and Discussion

To ensure the proper operation of our apparatus, we
performed TAOS measurements on single psl
spheres of two different sizes. Dilute solutions of
22-mm- and 2.29-mm-diameter psl spheres were pre-
pared and loaded into ink-jet cartridges. The ob-
served TAOS patterns for both sizes were consistent
with Mie theory, demonstrating the ring structure
associated with light scattering from a sphere. With
this verification, we could confidently perform TAOS
measurements on aggregates of the 2.29-mm-

iameter psl spheres.
Aggregates of 2.29-mm-diameter psl spheres ~re-

ractive index n 5 1.59! are created with the IJAG.
he slurry is mixed at 0.7 mg of spheresyml of water.
n addition, a small amount ~0.01%! of surfactant
Tween-20! is added to the water to improve the mix-
ure’s flow properties ~necessary for passage inside
he narrow channels of the cartridge!. The clusters
re characterized with an aerodynamic particle sizer,
canning-electron microscopy, and optical micros-
opy. We determined the average number of spheres
er cluster by turning off the oven heater and allowing
t to cool. Wet droplets containing psl spheres are
llowed to fall through the column and splatter onto a
icroscope slide. The water in each splat evaporates,

eaving a monolayer of particles that we count with an
ptical microscope to determine the average number of
rimary particles per cluster.
We can infer the uniformity of the droplets by

ounting the number of primary particles included in
sampling of droplets. In Fig. 2 we show the results
f counting the number ~Nsph! of 2.29-mm psl spheres

in each of 227 randomly selected splats of wet drop-
lets. The fraction of the 227 clusters that contains
Nsph spheres is plotted versus Nsph. The most prob-
able number of spheres was found to be 18. Also
plotted is the Poisson distribution probability of find-
ing Nsph spheres in a cluster, given that the average
0 December 2000 y Vol. 39, No. 36 y APPLIED OPTICS 6877
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Nsph is 18. The two sets of data are in good agree-
ment, as one would expect if the original droplets
were monodisperse. The data points that indicate
more than ;40 spheres in a cluster are probably

here two or three droplets hit the microscope slide
t the same location. Geometric sizing with a
canning-electron microscope ~SEM! showed that
his cluster sample has a mean geometric diameter of
.7 mm. Figure 3~a! shows a SEM micrograph of a
ypical psl cluster.

Calculations are performed for a close-packed clus-
er containing primary particles that have the same
ize parameter ~xp.p. 5 2payl ' 13.3! as those used

in the experiment. To make the aggregate size pa-
rameter comparable with the mean experimental size
parameter ~xclus. ' 40!, we arrange 13 spheres as
shown in Fig. 3~b!. The coordinates of each of the

rimary particles are given in Table 1. Because fall-
ng clusters in the experiment are randomly oriented,
he calculations were performed at different tilt an-
les ~t! so a reasonable comparison could be made.

Figure 3~b! shows the Mathematica default view of
the theoretically generated cluster. The view along
the calculation z axis, i.e., the view of the cluster seen
from the illuminating laser, for the untilted cluster
~t 5 0°! is shown in Fig. 3~c!. Tilting the cluster
through t 5 5° yields a slightly different view from
that seen in Fig. 3~c! ~not shown!. The cluster tilted
by t 5 45° and viewed from the illuminating laser is
shown in Fig. 3~d!. The cluster seen in this orienta-
tion is remarkably similar to that shown in the SEM
micrograph of Fig. 3~a!.
878 APPLIED OPTICS y Vol. 39, No. 36 y 20 December 2000
The random orientation of the aggregates emerging
rom the IJAG makes it impossible to know for which
ngles to calculate the TAOS. Because of this uncer-
ainty, we chose to look at three orientations ~t 5 0°, 5°,
5°!. To get a sense of what the numerical calcula-
ions of the TAOS look like in the laboratory-
oordinate frame, we used Eqs. ~3.2! to transform the

calculations. The resultant transformed forward and
backward TAOS calculations for the three orientations
considered are shown in Fig. 4. Because of the high-
intensity forward-scattering peak, the forward-
scattering calculations are plotted on a log scale. Also
shown are the regions observed experimentally. In
the forward direction, the TAOS measurements are
made for 16° # ucalc # 44°, whereas the near-backward
observations are made for 120° # ucalc # 148°. These
angular regions correspond to the areas bounded by
the white circles. The actual angular coverage of the
detector is denoted in each case by a small white-
bordered rectangle.

Our comparisons are limited to three tilt angles
that allow us to view the cluster in three representa-
tive orientations: one of high symmetry, one with
slightly less symmetry, and one whose symmetry has
been broken. However, the falling aggregates are
also free to rotate in the fcalc direction. Rather than
calculating at a number of different ~ucalc, fcalc! ori-
entations, we simply chose to compare experiment
and theory by fixing the tilt angle ~t! and scanning
through fcalc within the bound regions of Fig. 4. By
sweeping a white rectangle in Fig. 4 through the
Fig. 2. Fraction of the 227 clusters that contain Nsph spheres plotted versus Nsph. The solid curve represents a Poisson distribution,
iven that the most probable number of spheres is 18.
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bound region, we could choose a portion of the calcu-
lated TAOS pattern to compare with the experimen-
tal results. Comparisons are made at various
values of fcalc until reasonable correspondence is
found. This method for comparing our results is
supported by calculations of light scattering by the
theoretical cluster ~Fig. 3! for parallel and perpendic-

Fig. 3. ~a! SEM image of a typical cluster for which TAOS measu
the cluster used in the numerical calculations. The primary partic
~t 5 0°! theoretical cluster viewed along the z axis of the calculat
Realization of the theoretical cluster rotated by 45° and viewed al

Table 1. Coordinates of the Spheres Used for the Cluster Calculation

Sphere
Number x y z

1 0.000 0.000 0.000
2 1.925 21.189 0.000
3 0.000 1.925 21.189
4 21.189 0.000 1.925
5 0.000 21.925 21.189
6 1.189 0.000 1.925
7 21.925 1.189 0.000
8 1.189 0.000 21.925
9 21.925 21.189 0.000

10 1.925 1.189 0.000
11 0.000 21.925 1.189
12 21.189 0.000 21.925
13 0.000 1.925 1.189
2

ular polarizations. These calculations, which are
equivalent to keeping the polarization fixed and ro-
tating the cluster through 90°, show little difference
in the TAOS pattern and thus give us the confidence
that our comparison method is reasonable.

Figure 5 shows eight representative TAOS mea-
surements made in the near-forward region ~16° #

lab # 44°, 87° # ulab # 94°!. They demonstrate the
rich speckle pattern that arises from near-field inter-
actions and multiple-scattering events among the
primary particles. Figure 6 shows eight calculated
TAOS patterns that qualitatively resemble the exper-
imental data of Fig. 5. These eight plots are repre-
sentations of different fcalc locations of the data
within the bound regions of Fig. 4 ~16° # ucalc # 44°!
presented in a format such that the angular coverage
within each plot corresponds to the same area as that
for the ICCD camera. The best correspondence is
found for the cluster tilted by 45° and is the result of
the lack of symmetry for this cluster orientation.
For the untilted cluster a large amount of symmetry
exists because the primary particles are arranged in
an almost crystalline fashion. Tilting the cluster by
5° does little to remove the symmetry of the aggre-

ents were performed. ~b! Mathematica default representation of
rdinates are given in Table 1. ~c! Representation of the unrotated
rame, i.e., the cluster as seen from the incident plane wave. ~d!
he z axis of the calculation frame.
rem
le coo
ion f
ong t
0 December 2000 y Vol. 39, No. 36 y APPLIED OPTICS 6879



6

gate; however, some correspondence with the exper-
iment is found.

For the near-backward region ~120° # flab # 148°,
87° # ulab # 94°!, eight representative TAOS mea-
surements are shown in Fig. 7. They too show the
rich speckle pattern; however, the intensity patches
seem to exhibit a more random orientation. The
same type of comparison between experiment and
calculation is presented for the backward-scattering
case. Figure 8 shows the results of this comparison,
with eight numerical calculations for the TAOS pat-
terns in the bound angular region of Fig. 4 ~120° #
ucalc # 148°!. A greater correspondence between ex-
periment and theory is found for the cluster tilted by
45°; however, in spite of the high symmetry, corre-
spondence is also seen for the untilted and the 5°
tilted cluster orientations.

Fig. 4. Forward and backward TAOS calculations transformed in
middle; 45° bottom.
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Although the comparisons presented in Figs. 5 and
6 and in Figs. 7 and 8 are not quantitative, they do
show some common features that persist in both the
experimental and theoretical results. Most notably,
the comparison shows a correspondence in the fre-
quency of the speckle features as well as relatively
good agreement in the size of the peaks. Previously
reported TAOS measurements of larger ~'11-mm!
clusters of the 2.29-mm-diameter psl spheres demon-
strate a higher-frequency speckle pattern with a cor-
responding decrease in the peak size.3 Quantitative
comparisons between experiment and theory are not
possible because of the limited information regarding
cluster configuration and orientation that was avail-
able at the time of the measurement. Despite our
inability to make a quantitative comparison, there
are some features present in all the calculations that

laboratory coordinates for three cluster orientations: 0°, top; 5°,
to the
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are observed in the experiment. It is these features
that should make it possible to determine the pri-
mary particle size as well as the overall cluster size.
What is needed to better predict the TAOS is knowl-
edge of the cluster orientation and a more-detailed
understanding of the nature of aggregate formation
to permit the primary particles of the cluster used in
the calculations to be more realistically positioned.
The presence of internal irregularities, e.g., unevapo-
rated liquid within the crystal, can also have a dra-
matic effect on the TAOS.7

What we have presented is merely one case dem-
onstrating qualitative agreement among the features
found in the experimentally observed and numeri-
cally calculated TAOS patterns for an aggregate of
spheres. What then happens if the size of the pri-
mary particle is changed? The effect of the primary
particles on the overall scattering pattern is quite
dramatic. The close proximity of the spheres and
the corresponding surface roughness of the aggregate
lead to near-field effects and multiple-scattering
events that further lead to the breakdown of the
smooth, continuous contours associated with scatter-
ing from a single sphere. Although we can infer
based on our knowledge of light scattering from a
sphere and previous experiments on clusters3 that, as
the aggregate size changes, the speckle pattern be-
comes more or less dense, the effect of size changes in
the primary particles is less obvious. One might ex-
pect that as the primary particle became smaller the
islands of intensity would become broader. In fact,
such appears to be the case. Figure 9 shows TAOS

Fig. 5. Eight representative TAOS measur
2

pattern calculations of the forward-scattering region
in the laboratory frame for two unrotated ~t 5 0°!
clusters that have the same size but contain
different-sized primary particles. The effect of pri-
mary particle size is noticeable in the forward scat-
tering, where diffraction is the dominant component
of the scattering. In Fig. 9~a! the cluster contains
2-mm-diameter spheres, whereas the cluster in Fig.
9~b! comprises 2.29-mm-diameter spheres. Even for
his modest change in diameter one can clearly see
he effect that primary particles have on the angular
ntensity distribution. The structure of both clus-
ers is the same as that shown in Fig. 3~c!. This
ymmetry is clearly seen in the diffraction regime of
he forward-scattered light. The intensity patches
n the TAOS pattern of Fig. 9~a! are broader, and
here appear to be fewer of them. In contrast, the
AOS pattern in Fig. 9~b! shows sharper peaks, par-
icularly in the diffraction-dominated region, as well
s a higher speckle density elsewhere. The TAOS
atterns in Fig. 9 are simply meant to corroborate our
esults presented above, and a more-detailed study of
he nature of light scattering from clusters that con-
ain different-sized primary particles will be pre-
ented at a later date.27

5. Summary

Although the results presented are not yet quantita-
tive, they do offer insight into the nature of light
scattering by an aggregate of spherical primary par-
ticles. The correspondence between the experimen-
tally observed two-dimensional angular optical

ts in the near-forward scattering direction.
emen
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scattering and the numerically calculated patterns is
good. Both experiment and theory yield the same
qualitative features within the same-sized angular
region. The difficulty in making quantitative com-
parisons lies in unraveling the means by which ag-
gregates of spheres are formed and determining a
means for discerning the orientation of the falling
cluster at the moment of the TAOS measurement.
Furthermore, providing for larger angular coverage
with the detector would improve the ability to make
quantitative comparisons. By far the easiest of
these improvements lies in the large-format detector
capable of recording the TAOS patterns over a wide
angular range.

The complicated morphology of airborne micro-
particle aggregates makes understanding their
light-scattering properties a challenging task.
From an experimental viewpoint it is almost impos-
sible to know the exact structure, orientation, and
number of primary particles of the cluster under
study. Likewise, memory limits and time con-
straints often restrict the sizes of aggregates that
can be studied computationally, and the cluster
structure is somewhat artificial and crystalline.
Despite these difficulties, experiments and theory
are rapidly finding a common ground, and compu-
tational techniques, computer speed with larger
memory, and a large format CCD camera will im-
prove in the future.
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Appendix A

1. Translation Addition Theorem

Stein28 and Cruzan29 introduced the translation ad-
dition theorem of spherical wave functions. This
theorem is formed by three different kinds of relation:

Re C1mn~kri, ui, fi! 5 (
mn

Re Amn
mn~rij, uij, fij!

3 Re C1mn~krj, uj, fj!

1 ReBmn
mn~rij, uij, fij!

3 Re C2mn~krj, uj, fj!,

Re C2mn~kri, ui, fi! 5 (
mn

ReBmn
mn ~rij, uij, fij!

3 Re C2mn~krj, uj, fj!

1 Re Amn
mn~rij, uij, fij!

3 Re C2mn~krj, uj, fj!. (A1)

If r , r0,

C1mn~kri, ui, fi! 5 (
mn

Amn
mn~rij, uij, fij!

3 Re C1mn~krj, uj, fj!

1 Bmn
mn~rij, uij, fij!

3 Re C2mn~krj, uj, fj!,
Fig. 6. Near-forward TAOS calculations, showing qualitative features found in the experiments.
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s

C2mn~kri, ui, fi! 5 (
mn

Bmn
mn~rij, uij, fij!

3 Re C1mn~krj, uj, fj!

1 Amn
mn~rij, uij, fij!

3 Re C2mn~krj, uj, fj!. (A2)

If r . r0,

C1mn~kri, ui, fi! 5 (
mn

Re Amn
mn ~rij, uij, fij!

3 C1mn~krj, uj, fj!

1 Re Bmn
mn~rij, uij, fij!

3 C2mn~krj, uj, fj!,

C2mn~kri, ui, fi! 5 (
mn

Re Bmn
mn ~rij, uij, fij!

3 C1mn~krj, uj, fj!

1 Re A
mn

~rij, uij, fij!

3 C2mn~krj, uj, fj!. (A3)

Amn
mn, Re Amn

mn, bmn
mn, and ReBmn

mn are translation coeffi-
cients that can be expressed in terms of Gaunt coef-
ficients:

Amn
mn 5

Îgmn

Îgmn

~21!m (
p

a~m, nu2m, nup!a~n, n, p!

3 hp~ka!Pp
m2m~cos u0k!exp@i~m 2 m!f0k#, (A4)

Fig. 7. Eight representative TAOS measure
2

Bmn
mn 5

Îgmn

Îgmn

~21!m11 (
p

a~m, nu2m, nup, p

2 1!b~n, n, p!hp~ka!Pp
m2m~cos u0k!

3 exp@i~m 2 m!f0k#. (A5)

The Gaunt coefficients a~m, nu 2 m, nup! and a~m, nu
m, nup, p 2 1! are expressed in terms of Wigner 3-j

ymbols

Fj1 j2 j3

0 0 0G ,

which are related to Clebsch–Gordon coefficients:

a~m, num, nup! 5 ~21!m1m~2p 1 1!

3 F~n 1 m!!~n 1 m!!~p 2 m 2 m!!
~n 2 m!!~n 2 m!!~p 1 m 1 m!!G

1y2

3 Fn n p
0 0 0GFn n p

m m 2m 2 mG ,

(A6)

a~m, num, nup, q! 5 ~21!m1m~2p 1 1!

3 F~n 1 m!!~n 1 m!!~p 2 m 2 m!!
~n 2 m!!~n 2 m!!~p 1 m 1 m!!G

1y2

3 Fn n q
0 0 0GFn n p

m m 2m 2 mG .

(A7)

s in the near-backward scattering direction.
ment
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Evaluation of the translation coefficients by use of
Stein’s formalism leads to a summation on a param-
eter p by use of Eqs. ~A4! and ~A5!. It seems that,
since the paper of Peterson and Ström, there is some
confusion in the literature about the correct values
that p takes. Xu has partially explicated the prob-
lem.23 Our study leads to the following explanation:
In accordance with the rules of addition of the kinetic
moment, parameter p should assume all the integer
values p 5 n Q n 5 ~n 1 n!, ~n 1 n 2 1!, ~n 1 n 2
2!, . . . , un 2 nu. However, Wigner 3-j symbols van-
ish if j1 1 j2 1 j3 is an odd integer. Then the con-
tribution of the p summation to the Amn

mn coefficient
alue is null when, because of the Wigner 3-j symbol

Fn n p
0 0 0G ,

takes the values ~n 1 n 2 1!, ~n 1 n 2 3! until un 2
nu 1 1. In the case of the Bmn

mn coefficient, the Wigner
3-j symbol is

Fn n q
0 0 0G

where q 5 p 2 1. Then the contribution of the p
ummation is null when p takes on the following
alues: ~n 1 n!, ~n 1 n 2 2! until un 2 nu. That is,

in the evaluation of the Amn
mn coefficients, p takes on

Fig. 8. Near-backward TAOS calculations, sho
884 APPLIED OPTICS y Vol. 39, No. 36 y 20 December 2000
the values from un 2 nu to ~n 1 n! in steps of 2; and in
the evaluation of the Bmn

mn coefficients, p takes on the
values from un 2 nu 1 1 to ~n 1 n! in steps of 2.

Index n is linked to the multipole expansion rep-
resentative of each dielectric sphere of the cluster.
The computation of the T matrix through the ex-
tended boundary condition technique requires the
truncation of an infinite-dimensional integral matrix
equation to a value n 5 nmax. This value must be
large enough to represent the physically relevant
partial waves correctly but not too large to be useful
numerically. It is usually admitted that Wiscombe’s
criterion allows for an accurate determination of this
value.31 There are as many different nmax as the
number of different types and sizes of sphere. We
truncate the incident and all the series expansions of
the scattered fields at the larger nmax value. Then f
and a are column vectors of dimension nmax 3 1.

2. Truncation of the Translation Addition Theorem Series

The computation of the N-spheres problem assumes
hat the series expansions of the translation addition
heorem @Eqs. ~A1!, ~A2!, and ~A3!# are uniformly
onvergent. Therefore we can truncate them at n 5

max, assuming that the resultant error is small
enough if nmax is sufficiently large.

The a# ~i, j! matrices describe the continuity of the
angential components of all the scattered electric

qualitative features found in the experiments.
wing
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fields across each surface of the ith sphere. Then, in
an iterative formalism, nmax represents the approxi-

ation’s order of multiple-scattering effects in the
ystem. Its maximal value for convergence is ap-
roximately equal to nmax. In the recursive algo-

rithm, all multiple-scattering effects are taken into
account during the matrix inversion of Eq. ~2.21!.

ollowing the analytical coherence of the RTMA for-
alism, nmax 5 nmax. Therefore the a# ~i, j! matrices’

dimensions are @2nmax~nmax 1 2!#2.
Equation ~2.17! can also be described as a phase

hift of the incident plane wave when it travels from
rigins O0 to Oi:

ai 5 a0 exp~ikincri!. (A8)

Fig. 9. Forward TAOS calculations for two clusters of the same
size that comprise primary particles with different sizes: ~a! clus-
er containing 2.0-mm-diameter spheres, ~b! cluster containing

2.26-mm-diameter spheres.
2

Starting with nmax 5 nmax, we calculate the absolute
variation between the numerical results of Eqs. ~A8!
and ~2.17! for each vector’s component owing to the
variation of nmax. The convergence speed also de-
pends on the distance and the orientation between
the coordinate systems. Nevertheless, at nmax 5
nmax the maximal absolute variation is approxi-
mately 1. When nmax 5 2nmax, the variation is only
6–10, and it is not until nmax 5 3nmax that an absolute
variation of 10–15 occurs in the best cases. The
dimensions of the b# ~i, 0! matrices are 4nmax~nmax 1 2!
3 nmax~nmax 1 2!.

Because of the analytical coherence of the RTMA
formalism,24 the series @Eqs. ~A3!# has to be truncated
at the same order nmax as Eqs. ~A2!. The dimension
of the matrices b# ~0, i! is 4nmax~nmax 1 2! 3
nmax~nmax 1 2!. The limits of convergence that we
have encountered for the b# ~i, 0! matrices are still

resent and are propagated into numerical evalua-
ions.

We can see that, if the indices nmax and nmax be-
ome too large, the numerical evaluations of the ma-
rices a# ~i, j!, b# ~i, 0!, and b# ~0, i! are limited by the free

memory available on the computer, realistic comput-
ing time, and numerical convergence of the series.
With these three factors taken into account, the com-
putation of the total scattered field by a random clus-
ter in terms of a single expansion on one principal
coordinate system is impracticable most of the time.
Consequently, the scattering parameter of the sphere
cluster ~cross sections and scattering matrix! cannot
be evaluated.

To circumvent this difficulty, Borghese et al.,32

Mackowski and Mishchenko,5 and Fuller4 derived ex-
plicit expressions for the total cross sections ~scatter-
ing, extinction, and absorption! of the sphere cluster
without any need for a single representation of the
total scattered field. This formalism is called the
sphere-centered formulation. Moreover, Xu23 re-
cently introduced a formalism with which to obtain a
single expression of the total scattered field in the
far-field region. This approach is the most suitable
for obtaining differential scattering cross sections of
an aggregate without taking the convergence of the
translation addition theorem series @Eqs. ~A3!# into
account. Indeed, for an arbitrary point M in the
far-field region at vector positions r in the principal
system and ri in the coordinate system of the ith
sphere, one can consider that these two vectors are
parallel. By introducing Di as the path variation
that is due to the relative position between the prin-
cipal and the ith systems, we obtain ri 5 r 2 Di, with

i 5 êr z r0i, where êr is a unit vector pointed in the
direction of M. Then it can be shown that, in the
ar-field region, the translation coefficient can be
ritten as

Re Amn
mn ~kr0i, u0i, f0i! 5 dnndmm exp~2ikDi!,

Re Bmn
mn ~kr0i, u0i, f0i! 5 0. (A9)

This formulation leads to a simplification of the an-
alytical formulation of b# ~0, i!. Finally, the total field
0 December 2000 y Vol. 39, No. 36 y APPLIED OPTICS 6885
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scattered by the entire cluster of Eq. ~2.18! can be
written in the far-field region as

fT~N! 5 (
i51

N

exp~2ikDi!fi~N!. (A10)

3. Recursive T-Matrix Formulation in the Far-Field Region

Because of the problems introduced in the Subsec-
tions A.1 and A.2, we introduce a new model of mul-
tiple scattering computation by an aggregate of
spheres based on the RTMA algorithm developed by
Chew24 modified to bypass the convergence problem
f Eqs. ~A.1!. Indeed, the evaluation of the incident
eld on each sphere is made by use of a phase-shift
ormalism instead of a matrix calculation. Then, in
he second stage, to circumvent the convergence prob-
em of Eqs. ~A3!, we use the far-field approximation

introduced by Xu.23 The fundamental equations of
his model are

T# N11~N11! 5 FI# 2 T# N11~1! (
i51

n

a# ~N 1 1, i!T# i~N!a# ~i, N

1 1!G21

T# N11~1!HI# 1 (
i51

n

a# ~N

1 1, i!T# i~N! exp@ikinc~rN11 2 ri!#J ,

(A11)

T# i~N11! 5 T# i~N!$I# 1 a# ~i, N 1 1!T# N11~N11!

3 exp@ikinc~rN11 2 ri!#%, i # N,
(12)

f~N11! 5 (
i51

N11

fi~N11! exp~2ikDi!, (A13)

fi~N11! 5 T# i~N11!a0 exp~ikincri!. (A14)
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