Faites particulièrement attention au mots en rouge (gras)

Exercise 6a

The fall of a skydiver can be **modeled** by the following differential equation :

$$m\frac{dv}{dt} = mg - \alpha v^2, \tag{1.1}$$

where v is the skydiver's velocity, m his mass, g the acceleration due to gravity, and α a real positive constant characterizing the frictional force of the fluid media.

- 1. **Calculate the derivative of** $\operatorname{arctanh} = \operatorname{tanh}^{-1}$.
- 2. Use this result to express the skydiver's velocity as a **function of time**. Show that this velocity **tends asymptotically towards** a value which you will give in terms of the constants of the problem.

Exercise 11b

Given a right triangle with hypotenuse *H* and legs *l* and *L*, one then measures the lengths of two of the sides. Let us take *H*=15cm with absolute uncertainties of $\Delta H = \Delta L = 0.1$ cm.

1. Express the length *l* of one **side** as a function of the two other sides (i.e. *H* and *L*). Write the expression of *dl* (respectively Δl) in function of *dH* and *dL* (respectively ΔH and ΔL). Calculate Δl for L = 7cm. Calculate the **relative uncertainty**, $\frac{\Delta L}{L}$, for L = 1cm, L = 7cm, and L = 14.5cm. What commentary do

these results inspire ?

- 2. Let us denote by θ , the angle between sides *l* and *H*. Give the expression for $d\theta$ (resp. $\Delta\theta$) in terms of *dL* and *dH* (resp. ΔL and ΔH). Calculate $\Delta\theta$ in the case where *L*=10cm.
- 3. Give the expression for $d\theta$ (resp. $\Delta\theta$) in function of dl and dH (resp. Δl and ΔH). Calculate again $\Delta\theta$ in the case where L = 10cm. Why do we not find the same result as in the **previous** question ?