Part 2 :

= Light forces : :
» radiation pressure
= optical tweezers
= E = mc? inertial mass, rest mass

» Generalities of photonic theory :
= Subtleties with electromagnetic units in Si
= Time-harmonic formalism and Fourier transforms
» Transverse and longitudinal fields
= Light matter interactions in terms of response functions



Peter Debye (1909) — radiation pressure

A photon transports Radiation pressure
both energy and momentum "

E=cp

/'F

Radiation forces




Optical Tweezers

High numerical aperture optics :




Light transports energy and momentum

VA =c¢

h
Quantum mechanics: E = hv = co=¢p

Maxwell’'s equations : I=cP—>E=cp



A consequence of light carrying momentum

Photon source
M /

]

Maxwell equations + Lorentz equation tells us that :

I has the units of power per unit surface [W.m™?] = [[.m 2.s7!] = [N.m™1.s71]

Light pressure, P, has the units N.m™2

I =cP->E=cp

Quantum mechanics also tells us that :

E=hv= h_
= v—cl—cp




The patent clerk argument
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The patent clerk argument Step 2
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The patent clerk argument Step 2
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Relativistic (inertial) mass

We deduced that photons have a Relativistic (inertial) mass : E = mc?

o

Recall for photons that: E = cp mmm) m=

Recall for ordinary particles of mass m in Newton’s mechanics that p = mv

This leads us to define inertial mass as : m = %

. _ : _D LE_D pc
Putting E = mc? back into the LHS of m ==, we have : 5 => mmmm)| = "—

Recall from Newton’s laws that dE = Fdx = “Zdx = = dp = vdp dE = vdp



Rest mass m,

2

Multiplying both sides of dE = vdp by E = % , we obtain EdE = c?pdp

Integrating this relation [ EdE = ¢? [ pdp E? = c?p? + E¢

Where E, is a constant of integration

Given E = mc?, it is natural to define E, = myc? , with m, being henceforth referred to as the rest mass

E? = c?p? + mjct

This is the final relativistic relation between the energy and momentum with a rest mass of m,

Taking rest mass of light to be m, = 0, we recover our starting point, E = cp for light.
Light has inertial mass but no rest mass !
(A distinction that continues to be a source of confusion !)
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Relativistic (inertial) mass : m(v)v

E? = c?p? + mic* is the relativistic relation between energy, E , momentum, p and rest mass m,

Note that if we take the particle to be at rest, p = 0, then we obtain E, = m,c?

pe 2.2 E?v? 2 2.2 2 .4 E?v? 2 4
E_T ) 2p2 = = mmm)  E? = c?p? + mict = 2 + mgc
2 4 2
mgc mMoC
2-_0 E=—""-= 2 wher is the inertial m
mm) £ 2 —> = m(v)c ere m(v) is the inertial mass
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Check that this agrees with non-relativistic mechanics
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Electromagnetic field equations in the vacuum
There are only 2 "Maxwell” equations

. 0
Local charge conservation : 6_5 +V-j=0
] . N Electromagnetic equations for
ectror_nagnetlc eq_uatlons in uniformed units
International SI units
0B ( OB
VXE=— _ _ _ — =—cVXE
ot Uniformed field units ot
oF _ OF )
VXBSI—E(),L(O +,u0] B_CBSI E—) E=CVXB—EL
0

C
\

dp p
V-E)+V-j=0 L iv.j=0 E =2
an( )+V-j otV = V -E -
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Electromagnetic field equations in the vacuum

Uniformed "S.I.” units Gaussian units ¢, — —

oF _ V X B — 4mj
55 = € — 4mj

0B
— = —cVXEFE
Jt
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Electromagnetic field equations in the vacuum
"Quantum’ formulation definitions

v =(rd) e ) R=(] ) wo=(Co

Sl %G e W Goo)= (o)

0 : . :
: T — i Maxwell equations become a single equation
i —Tp|¥) — L|¥) = |j) . ome a single g

dt (currents are an electric “source” of fields)

F = qge + q% x p  Lorentz force equation determines how fields affect particles
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Electromagnetic field equations in the vacuum
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Helmholtz theorem :
a field can be separated into transverse and longitudinal components

J=J1L 1]
Suchthat:V-j, = 0 everywhere ! j . is called the transverse field
Such that : V x j, = 0 everywhere ! Jj, is called the longitudinal field
Since
V- (VXf)=0
2
0°b ¢ 2 0°b, ¢ .
29 x V X — xj = c°VXVXb, + =—VXj,
c“V XV b+6t2 EOV j 9t2 €o
b" == O
0%e 1 0j d%e 1 0j
CUXUXetor =——d = c’VxVxe, + Lo~
dat? € Ot ot? €o Ot

17



Helmholtz theorem :
a field can be separated into transverse and longitudinal components

We can define charge density as V - e = Eﬁ so that % (B(V;-te" + EiV 'in) =0
0 0

Is the statement of charge conservation % +V-j=0

We can solve for e, by remembering that a longitudinal field can be written as e, = —V¢
p 1 (p@,0)
V-Vb=A4A¢p = —— ‘ t) = —dr'
¢ ¢ €o P, 0) Amey ) |r — 1| r

_ 1 (pG,0)
‘ e"(r, t) = 47‘[60 |r_r,|2dr

The problem is that this interaction is “Instantaneous” and “violates” causality

18



Antenna theory — Quantum field theory solution to the
transverse-longitudinal problem

We introduce a “vector potential” such that: b, =VxXxa=VXa,

aa”

And a scalar potential : e = —2% — V¢ ) V¢=---V. ot

ot €o

4 02 1 9%a,
, 1% . a¢ T e
2 1 aza" 1
a
c2 0t?2 €
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Antenna theory — Quantum field theory solution to the
transverse-longitudinal problem

We introduce a “vector potential” such that: b, =VxXxa=VXa, oa

Via- 20 =pj+V|v-a+532

c2 at

) — ] 2 :—ﬁ— .M
c? 0t? Eoczll Ve €0 v ot

The potentials have introduced a “gauge” degree of freedom

a, 1s “gauge” independent, while a; can be chosen to “simplify” the equations

Lorenz gauge : V- a; + = L% -0

10°¢p  p
— 2p . ——* - _ I
c? ot v c2 otz ¢,
Coulomb gauge : a; =0 — V2 = _P
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Photonics typically requires dealing with material properties

Electromagnetic field equations in lossless

Electromagnetic equations in
International Sl units

0B
VXE=——3t
Jt
VXH —aDSI+'
SI = "o¢ Is

F=CIE+quBSI

Y o :
E(V -€-E)+V-j,=0

Uniformed field units

local media

Electromagnetic equations for

uniformed units

( OB_ VxE
ot
oD ]
—=CVXH—]—S
at EO
\

(%
F=qE+q_xB

Local charge conservation

+V-jo=0 = V- -D=—

Ps
€o
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Transverse electromagnetic fields in optics (4 = 1 no sources) :

2

VxVxE—e(r)(%) E=0

V. (VXF)=0 === V.¢(r)Er)=V- D) =0

Source-free fields, D and B are transverse, in heterogeneous media

V-D=V-B=0 VXD+0 VXB+0

The fields E and H are transverse, V- E =V - H = 0, only in source-free and homogenous media

In free space without sources, longitudinal electric fields (VX E; = 0 butV - E, # 0)
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Instantaneous constitutive relations

t
0B oD Js D(r,t) = j gr,t—t) -E(r, t)dt
—=—cVXE —=cVxH-= ~w

at at EO

t
B(r,t) = j w(r,t —t" - H(r, thdt'

Instantaneous interaction gr,t—t) (t—t)

or quasi-static limit ~ , ; Real symmetric
Um (T, t —t) 6(t —t) matrices

i) - aH(r ) = —cVXE(r,t)

(7 - aEa(:” eV X H(r,t) - &
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Time-harmonic vs Fourier Transform

(28: g) — Re {(283) e—iwt} i (0) = Re {(f(r)o/ie()) e—iwt}

N— g
~

Time-harmonic

o e(r,—w*) = e*(r,w)

(e(r; t)) _ f dow (e(r» (U)) p~liwt  E— b(r,—w*) = b*(r,w)
b(r,t) b(r,w)

oo jir,—w") =j*(r, )
\ 7

—~

Fourier transform
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Maxwell equations in the frequency domain

t
D(r,t) = j gr,t—t)-E(r, tHdt
—00

t
B(r,t) = J w(r,t —t") - H(r, t"dt'

0B

E=—CVXE

oD Js —
— =cVXH——

ot €o

D(r,w) = g(r,w) - E(r,w)

B(r,w) = u(f,w) - HF, w)

ilwB =cVXE
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Time-harmonic vs Fourier Transform

Y, (rt) = Re{l/) (r, w)e“""t}

— 7
~

Time-harmonic formalism

(0.0)

W t) = j dop(r w)e- @ = P —0") = P w)

—00
— 7
~

Temporal Fourier transform
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‘ot

Space-time evolution of "classical’ electromagnetic fields

G, Jt o (?(r,t— t")
- 0

In-medium Maxwell equation

0
—pu(r,t—t)

)(

e(r,t)
h(r,t)

)=ic(

0
V X

V X
0

I

e(r,t)
h(r,t)

) n (]'(T; tg/ifo

)
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Space-time evolution of "classical’ electromagnetic fields

"Quantum’ formulation definitions

=00 pee(l ) @o=(Ty
o ~n_ (Er,t—1t") 0
F(t_t)z( 0 —ﬁ’(r,t—t’))

)
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Space-time evolution of "classical’ electromagnetic fields

Time dependent Maxwell equations

0 [t - .
laj_oodt ['(t —tH|W(t")) = icL|¥(t)) + |j(t))
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Frequency Domain Maxwell equations

e(r,—w") =e*(r,w)

e(r,w)

W(r, b)) = j da)(h(r,w))e_"“’t= f do [P(w)e @ ==  h(r—w") = h* (o)

— 00

j(r; _w*) = j* (rr (1))

{ w (?(r, ) 0 ) (e(r, a))) e (VO>< \v x) (e(r, a))) _ (j(r, w)/ieg

0

—u(r,w)/ \h(r, w) 0 /\h(r,w) 0

)

—

7

—~—
lo

Time independent Maxwell equation !

{ wl, |¥) — L|®) = |j) }
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Inhomogeneous media in the frequency domain

D(r,w) =e(r,w)E(r, o)

B(r,w) = u(r,w)H(r, o)

iwB = cV X E iwp(r, w)H(r,w) = cV X E(r, w)
j r,w
cVx H = —iwD + i—s — cVX H(r,w) = —iwe(r, w)E(r, w) +]S(€ )
0 0
v VxE w> ( )E( ) 0] P
X — —&(r, T, —
u(r, w) oz S WIEIN @) =2

2

" .
VXH—C—Z,Lt(r,a))H(r,a))=V>< Js

V X
e(r,w) e4C

s(r, w)
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Resonant States (Quasi-Normal Modes)

Complex eigenstates of the homogeneous Maxwell equation

-
2(3)
[wI'(w) — L] |chgi)> o= ic(, ") (%‘(’ Y

Electric dipole RS frequencies satisfying
outgoing boundary conditions (blue dots) in
the complex plane while red dots are
eigenvalues satisfying incoming boundary
conditions
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