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Part 2 :

 Light forces : : 
 radiation pressure

 optical tweezers

 𝐸 = 𝑚𝑐2 inertial mass, rest mass

 Generalities of photonic theory : 
 Subtleties with electromagnetic units in SI

 Time-harmonic formalism and Fourier transforms

 Transverse and longitudinal fields

 Light matter interactions in terms of response functions
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Radiation forces

A photon transports 
both energy and momentum

E = cp

Peter Debye (1909) – radiation pressure
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Radiation pressure



Optical Tweezers

High numerical aperture optics : 
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Light transports energy and momentum
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𝐼 = 𝑐𝑃 → 𝐸 = 𝑐𝑝Maxwell’s equations :

𝐸 = ℎ𝜈 = 𝑐
ℎ

𝜆
= 𝑐𝑝Quantum mechanics :

𝜈𝜆 = 𝑐c



A consequence of light carrying momentum
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𝑀

𝐼 = 𝑐𝑃 → 𝐸 = 𝑐𝑝

Photon source

𝐸 = ℎ𝜈 = 𝑐
ℎ

𝜆
= 𝑐𝑝

Light pressure, 𝑃, has the units N.m−2

𝐼 has the units of power per unit surface W.m−2 = J.m−2. 𝑠−1 = N.m−1. 𝑠−1

Maxwell equations + Lorentz equation tells us that :

Quantum mechanics also tells us that :



The patent clerk argument : step 1
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𝛾 𝒗

𝑀

𝑣 =
𝑝

𝑀
=

𝐸

𝑀𝑐

Photon source

𝐿 Δ𝑥

𝑣 =
Δ𝑥

Δ𝑡
=

𝐸

𝑀𝑐

Δ𝑡 =
𝐿

𝑐

Δ𝑥 = 𝐿
𝐸

𝑀𝑐2

(1)

⇜

𝐸 = 𝑐𝑝 → 𝑝 =
𝐸

𝑐



The patent clerk argument Step 2
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𝛾 𝒗

𝑀

𝐶𝑀 =
𝑚𝑥1
𝑀 +𝑚

𝐿 = 𝑥1 − 𝑥2 Δ𝑥

Δ𝑥 = 𝐿
𝐸

𝑀𝑐2

𝑥1𝑥2

𝑚

Box initially centered at 𝑥 = 0

𝐶𝑀 =
𝑀Δ𝑥 +𝑚𝑥2

𝑀 +𝑚

𝑚𝑥1
𝑀 +𝑚

=
𝑀Δ𝑥 +𝑚𝑥2
𝑀 +𝑚

Δ𝑥 = 𝐿
𝑚

𝑀

𝐿
𝑚

𝑀
= 𝐿

𝐸

𝑀𝑐2

𝑚

𝑥2 𝑥1
(1)

(2)

1 = (2)

𝑚
⇜



The patent clerk argument Step 2
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𝛾 𝒗

𝑀

𝐶𝑀 =
𝑚𝑥1
𝑀 +𝑚

𝐿 = 𝑥1 − 𝑥2 Δ𝑥

Δ𝑥 = 𝐿
𝐸

𝑀𝑐2

𝑥1𝑥2

𝑚

Box initially centered at 𝑥 = 0

𝐶𝑀 =
𝑀Δ𝑥 +𝑚𝑥2

𝑀 +𝑚

𝑚𝑥1
𝑀 +𝑚

=
𝑀Δ𝑥 +𝑚𝑥2
𝑀 +𝑚

Δ𝑥 = 𝐿
𝑚

𝑀

𝐿
𝑚

𝑀
= 𝐿

𝐸

𝑀𝑐2

𝑚

𝐸 = 𝑚𝑐2

𝑥2 𝑥1
(1)

(2)

1 = (2)

⇜
𝑚



Relativistic (inertial) mass
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We deduced that photons have a Relativistic (inertial) mass : 𝐸 = 𝑚𝑐2

Recall for photons that : 𝐸 = 𝑐𝑝 𝑚 =
𝑝

𝑐

Recall for ordinary particles of mass 𝑚 in Newton’s mechanics that 𝑝 = 𝑚𝑣

This leads us to define inertial mass as : 𝑚 ≡
𝑝

𝑣

Putting 𝐸 = 𝑚𝑐2 back into the LHS of 𝑚 ≡
𝑝

𝑣
, we have : 

𝐸

𝑐2
≡

𝑝

𝑣 𝐸 =
𝑝𝑐2

𝑣

Recall from Newton’s laws that 𝑑𝐸 = 𝐹𝑑𝑥 =
𝑑𝑝

𝑑𝑡
𝑑𝑥 =

𝑑𝑥

𝑑𝑡
𝑑𝑝 = 𝑣𝑑𝑝 𝑑𝐸 = 𝑣𝑑𝑝



Rest mass 𝑚0
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This is the final relativistic relation between the energy and momentum with a rest mass of 𝑚0

Multiplying both sides of 𝑑𝐸 = 𝑣𝑑𝑝 by 𝐸 =
𝑝𝑐2

𝑣
, we obtain 𝐸𝑑𝐸 = 𝑐2𝑝𝑑𝑝

Integrating this relation ׬𝐸𝑑𝐸 = 𝑐2 𝑝𝑑𝑝׬ 𝐸2 = 𝑐2𝑝2 + 𝐸0
2=

Where 𝐸0 is a constant of integration

Given 𝐸 = 𝑚𝑐2, it is natural to define 𝐸0 = 𝑚0𝑐
2 , with 𝑚0 being henceforth referred to as the rest mass

𝐸2 = 𝑐2𝑝2 +𝑚0
2𝑐4=

Taking rest mass of light to be 𝑚0 = 0, we recover our starting point, 𝐸 = 𝑐𝑝 for light. 

Light has inertial mass but no rest mass ! 

(A distinction that continues to be a source of confusion !)



Relativistic (inertial) mass : 𝑚 𝑣 v
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𝐸2 = 𝑐2𝑝2 +𝑚0
2𝑐4=is the relativistic relation between energy, 𝐸 , momentum, 𝑝 and rest mass 𝑚0

Note that if we take the particle to be at rest, 𝑝 = 0, then we obtain 𝐸0 = 𝑚0𝑐
2

𝐸2 = 𝑐2𝑝2 +𝑚0
2𝑐4 =

𝐸2𝑣2

𝑐2
+𝑚0

2𝑐4𝐸 =
𝑝𝑐2

𝑣 𝑐2𝑝2 =
𝐸2𝑣2

𝑐2

𝐸2 =
𝑚0

2𝑐4

1 −
𝑣2

𝑐2

𝐸 =
𝑚0𝑐

2

1 −
𝑣2

𝑐2

= 𝑚 𝑣 𝑐2 where 𝑚 𝑣 is the inertial mass 

𝑚 𝑣 =
𝑚0𝑐

2

1 −
𝑣2

𝑐2

= 𝛾𝑚0𝑐
2 𝑚2 =

𝑝2

𝑐2
+𝑚0

2𝛾 ≡
1

1 −
𝑣2

𝑐2



Check that this agrees with non-relativistic mechanics
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𝐸 =
𝑚0𝑐

2

1 −
𝑣2

𝑐2

𝑥 ≪ 1 ⟶ 1 − 𝑥 𝛼 ≅ 1 − 𝛼𝑥

1

1 −
𝑣2

𝑐2

= 1 −
𝑣2

𝑐2

−1/2

≅ 1 +
1

2

𝑣2

𝑐2

𝐸 =
𝑚0𝑐

2

1 −
𝑣2

𝑐2

= 𝑚0𝑐
2 1 −

𝑣2

𝑐2

−1/2

≅ 𝑚0𝑐
2 1 +

1

2

𝑣2

𝑐2
= 𝑚0𝑐

2 +
1

2
𝑚0𝑣

2

K =
1

2
𝑚0𝑣

2
We recognize our ordinary mechanics expression for kinetic energy :
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Electromagnetic field equations in the vacuum
There are only 2 “Maxwell” equations

Electromagnetic equations in

International SI units

𝛁 × 𝑬 = −
𝜕𝑩SI

𝜕𝑡

𝛁 × 𝑩SI = 𝜖0𝜇0
𝜕𝑬

𝜕𝑡
+ 𝜇0 Ԧ𝒋

𝑭 = 𝑞𝑬 + 𝑞𝒗 × 𝑩SI

𝑩 ≡ 𝑐𝑩SI

Uniformed field units

𝜕𝑩

𝜕𝑡
= −𝑐𝛁 × 𝑬

𝜕𝑬

𝜕𝑡
= 𝑐𝛁 × 𝑩 −

𝒋

𝜖0

𝑭 = 𝑞𝑬 + 𝑞
𝒗

𝑐
× 𝑩

Electromagnetic equations for 

uniformed units

𝜖0
𝜕

𝜕𝑡
𝛁 ∙ 𝑬 + 𝛁 ∙ 𝒋 = 0 𝛁 ∙ 𝑬 =

𝜌

𝜖0

𝜕𝜌

𝜕𝑡
+ 𝛁 ∙ 𝒋 = 0

Local charge conservation :
𝜕𝜌

𝜕𝑡
+ 𝛁 ∙ 𝒋 = 0
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Electromagnetic field equations in the vacuum

Uniformed `S.I.’ units

𝜕𝑬

𝜕𝑡
= 𝑐𝛁 × 𝑩 −

Ԧ𝒋

𝜖0

𝜕𝑩

𝜕𝑡
= −𝑐𝛁 × 𝑬

𝜕𝑬

𝜕𝑡
= 𝑐𝛁 × 𝑩 − 4𝜋𝒋

𝜕𝑩

𝜕𝑡
= −𝑐𝛁 × 𝑬

𝑭 = 𝑞𝑬 + 𝑞
𝒗

𝑐
× 𝑩

Gaussian units

𝑭 = 𝑞𝑬 + 𝑞
𝒗

𝑐
× 𝑩

𝜖0 →
1

4𝜋
=
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Electromagnetic field equations in the vacuum

෠Γ0 ≡
ി𝕀 0

0 −ി𝕀
𝒓|𝑗 𝑡 ≡

Τ𝒋 𝒓, 𝑡 𝑖𝜖0
𝟎

෡𝕃 ≡ 𝑖𝑐
0 𝛁 ×
𝛁 × 0

𝒓|Ψ 𝑡 ≡
𝒆 𝒓, 𝑡
𝒃 𝒓, 𝑡

`Quantum’ formulation definitions

𝑖
𝜕

𝜕𝑡
෠Γ0| ۧΨ − ෡𝕃ห ۧΨ = | ۧ𝑗

𝑖
𝜕

𝜕𝑡

ി𝕀 0

0 −ി𝕀

𝒆 𝒓, 𝑡
𝒃 𝒓, 𝑡

− 𝑖𝑐
0 𝛁 ×
𝛁 × 0

𝒆 𝒓, 𝑡
𝒃 𝒓, 𝑡

=
Τ𝒋 𝒓, 𝑡 𝑖𝜖0

𝟎

𝑭 = 𝑞𝒆 + 𝑞
𝒗

𝑐
× 𝒃

Maxwell equations become a single equation
(currents are an electric “source” of fields)

Lorentz force equation determines how fields affect particles
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Electromagnetic field equations in the vacuum

𝑖
𝜕

𝜕𝑡

ി𝕀 0

0 −ി𝕀

𝒆 𝒓, 𝑡
𝒃 𝒓, 𝑡

− 𝑖𝑐
0 𝛁 ×
𝛁 × 0

𝒆 𝒓, 𝑡
𝒃 𝒓, 𝑡

=
Τ𝒋 𝒓, 𝑡 𝑖𝜖0

𝟎

𝜕2𝒆

𝜕𝑡2
= 𝑐𝛁 ×

𝜕𝒃

𝜕𝑡
−

1

𝜖0

𝜕𝒋

𝜕𝑡

𝜕𝒃

𝜕𝑡
= −𝑐𝛁 × 𝒆

𝑐2𝛁 × 𝛁 × 𝒆 +
𝜕2𝒆

𝜕𝑡2
= −

1

𝜖0

𝜕𝒋

𝜕𝑡

𝑐2𝛁 × 𝛁 × 𝒃 +
𝜕2𝒃

𝜕𝑡2
=

𝑐

𝜖0
𝛁 × 𝒋

𝜕𝒆

𝜕𝑡
= 𝑐𝛁 × 𝒃 −

𝒋

𝜖0



17

Helmholtz theorem : 
a field can be separated into transverse and longitudinal components

𝒋 = 𝒋⊥ + 𝒋∥
Such that : 𝛁 ∙ 𝒋⊥ ≡ 0 everywhere ! 𝒋⊥ is called the transverse field

Such that : 𝛁 × 𝒋∥ ≡ 0 everywhere ! 𝒋∥ is called the longitudinal field

𝑐2𝛁 × 𝛁 × 𝒃 +
𝜕2𝒃

𝜕𝑡2
=

𝑐

𝜖0
𝛁 × 𝒋

Since

𝛁 ∙ 𝛁 × 𝒇 ≡ 0

𝑐2𝛁 × 𝛁 × 𝒃⊥ +
𝜕2𝒃⊥
𝜕𝑡2

=
𝑐

𝜖0
𝛁 × 𝒋⊥

𝒃∥ = 𝟎

𝑐2𝛁 × 𝛁 × 𝒆 +
𝜕2𝒆

𝜕𝑡2
= −

1

𝜖0

𝜕𝒋

𝜕𝑡
𝑐2𝛁 × 𝛁 × 𝒆⊥ +

𝜕2𝒆⊥
𝜕𝑡2

= −
1

𝜖0

𝜕𝒋⊥
𝜕𝑡

𝜕

𝜕𝑡

𝜕𝛁 ∙ 𝒆∥
𝜕𝑡

+
1

𝜖0
𝛁 ∙ 𝒋∥ = 0
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Helmholtz theorem : 
a field can be separated into transverse and longitudinal components

We can define charge density as 𝛁 ∙ 𝒆∥ ≡
𝜌

𝜖0
so that 

𝜕

𝜕𝑡

𝜕𝛁∙𝒆∥

𝜕𝑡
+

1

𝜖0
𝛁 ∙ 𝒋∥ = 0

is the statement of charge conservation
𝜕𝜌

𝜕𝑡
+ 𝛁 ∙ 𝒋∥ = 0=

We can solve for 𝒆∥ by remembering that a longitudinal field can be written as 𝒆∥ = −𝛁𝜙

𝛁 ∙ 𝛁𝜙 ≡ 𝛥𝜙 ≡ −
𝜌

𝜖0
𝜙 𝒓, 𝑡 ≡

1

4𝜋𝜖0
න
𝜌 𝒓′, 𝑡

𝒓 − 𝒓′
𝑑𝒓′

𝒆∥ 𝒓, 𝑡 ≡
1

4𝜋𝜖0
න

𝜌 𝒓′, 𝑡

𝒓 − 𝒓′ 2
𝑑𝒓′

The problem is that this interaction is “Instantaneous” and “violates” causality
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Antenna theory – Quantum field theory solution to the 

transverse-longitudinal problem

We introduce a “vector potential” such that : 𝒃⊥= 𝛁 × 𝒂 = 𝛁 × 𝒂⊥

And a scalar potential ∶ 𝒆 = −
𝜕𝒂

𝜕𝑡
− 𝛁𝜙

𝛁2𝒂 −
1

𝑐2
𝜕2𝒂

𝜕𝑡2
= 𝜇0𝒋 + 𝛁 𝛁 ∙ 𝒂 +

𝜕𝜙

𝜕𝑡
+

𝜇0 =
1

𝜖0𝑐
2

𝛁2𝜙 = −
𝜌

𝜖0
− 𝛁 ∙

𝜕𝒂∥

𝜕𝑡
+

𝛁2𝒂⊥ −
1

𝑐2
𝜕2𝒂⊥
𝜕𝑡2

=
1

𝜖0𝑐
2 𝒋⊥

𝛁2𝒂∥ −
1

𝑐2
𝜕2𝒂∥
𝜕𝑡2

=
1

𝜖0𝑐
2 𝒋∥ + 𝛁 𝛁 ∙ 𝒂∥ +

𝜕𝜙

𝜕𝑡
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Antenna theory – Quantum field theory solution to the 

transverse-longitudinal problem

We introduce a “vector potential” such that : 𝒃⊥= 𝛁 × 𝒂 = 𝛁 × 𝒂⊥

𝛁2𝜙 = −
𝜌

𝜖0
− 𝛁 ∙

𝜕𝒂∥

𝜕𝑡
+𝛁2𝒂⊥ −

1

𝑐2
𝜕2𝒂⊥
𝜕𝑡2

=
1

𝜖0𝑐
2 𝒋⊥

The potentials have introduced a “gauge” degree of freedom

𝒂⊥ is “gauge” independent, while 𝒂∥ can be chosen to “simplify” the equations

Lorenz gauge : 𝛁 ∙ 𝒂∥ +
1

𝑐2
𝜕𝜙

𝜕𝑡
= 0

𝒆 = −
𝜕𝒂

𝜕𝑡
− 𝛁𝜙

𝛁2𝒂 −
1

𝑐2
𝜕2𝒂

𝜕𝑡2
= 𝜇0𝒋 + 𝛁 𝛁 ∙ 𝒂 +

1

𝑐2
𝜕𝜙

𝜕𝑡
+

𝛁2𝜙 −
1

𝑐2
𝜕2𝜙

𝜕𝑡2
= −

𝜌

𝜖0

Coulomb gauge : 𝒂∥ = 𝟎 𝛁2𝜙 = −
𝜌

𝜖0
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Photonics typically requires dealing with material properties 

Electromagnetic equations in

International SI units

𝛁 × 𝑬 = −
𝜕𝑩SI

𝜕𝑡

𝛁 × 𝑯SI =
𝜕𝑫SI

𝜕𝑡
+ 𝒋𝑠

Uniformed field units

𝜕𝑩

𝜕𝑡
= −𝑐𝛁 × 𝑬

𝜕𝑫

𝜕𝑡
= 𝑐𝛁 × 𝑯−

𝒋𝑠
𝜖0

Electromagnetic equations for 

uniformed units

𝜕

𝜕𝑡
𝛁 ∙ ി𝜺 ∙ 𝑬 + 𝛁 ∙ 𝒋𝑠 = 0 𝛁 ∙ 𝑫 =

𝜌𝑠
𝜖0

𝜕𝜌

𝜕𝑡
+ 𝛁 ∙ 𝒋𝑠 = 0

Local charge conservation

𝑫 ≡
𝑫SI

𝜖0
𝑩 ≡ 𝑐𝑩SI

𝑯 ≡
𝜇0
𝜖0

𝑯SI =
𝑯SI

𝜖0𝑐

𝑭 = 𝑞𝑬 + 𝑞
𝒗

𝑐
× 𝑩𝑭 = 𝑞𝑬 + 𝑞𝒗 × 𝑩SI

Electromagnetic field equations in lossless 

local media
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Transverse electromagnetic fields in optics (𝜇 = 1 no sources) :

𝛁 × 𝛁 × 𝑬 − 𝜀 𝒓
𝜔

𝑐

2

𝑬 = 𝟎

𝛁 ∙ 𝜀 𝒓 𝑬 𝒓 = 𝛁 ∙ 𝑫 𝒓 =0𝛁 ∙ 𝛁 × 𝑭 ≡ 0

Source-free fields, 𝑫 and 𝑩 are transverse, in heterogeneous media 

The fields 𝑬 and 𝑯 are transverse, 𝛁 ∙ 𝑬 = 𝛁 ∙ 𝑯 = 𝟎, only in source-free and homogenous media

In free space without sources, longitudinal electric fields ( 𝛁 × 𝑬∥ = 𝟎 but 𝛁 ∙ 𝑬∥ ≠ 0) 

𝛁 ∙ 𝑫 = 𝛁 ∙ 𝑩 =0 𝛁 × 𝑫 ≠ 𝟎 𝛁 × 𝑩 ≠ 𝟎
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Instantaneous constitutive relations

𝜕𝑩

𝜕𝑡
= −𝑐𝛁 × 𝑬

𝜕𝑫

𝜕𝑡
= 𝑐𝛁 × 𝑯−

𝒋𝑠
𝜖0

𝑫 𝒓, 𝑡 = න
−∞

𝑡

ി𝜀 𝒓, 𝑡 − 𝑡′ ∙ 𝑬 𝒓, 𝑡′ 𝑑𝑡′

𝑩 𝒓, 𝑡 = න
−∞

𝑡

ി𝜇 𝒓, 𝑡 − 𝑡′ ∙ 𝑯 𝒓, 𝑡′ 𝑑𝑡′

ി𝜀 𝒓, 𝑡 − 𝑡′ =ി𝜀 𝒓 𝛿 𝑡 − 𝑡′Instantaneous interaction

or quasi-static limit
ി𝜇𝑚 𝒓, 𝑡 − 𝑡′ = ി𝜇 𝒓 𝛿 𝑡 − 𝑡′

Real symmetric 

matrices

ി𝜇 𝒓 ∙
𝜕𝑯 𝒓, 𝑡

𝜕𝑡
= −𝑐𝛁 × 𝑬 𝒓, 𝑡

ി𝜀 𝒓 ∙
𝜕𝑬 𝒓,𝑡

𝜕𝑡
= 𝑐𝛁 × 𝑯 𝒓, 𝑡 −

Ԧ𝒋𝑠

𝜖0
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Time-harmonic vs Fourier Transform

ۧ𝑗𝜔 𝑡 = Re
Τ𝒋 𝒓 𝑖𝜖0
𝟎

𝑒−𝑖𝜔𝑡

𝒆 𝒓, −𝜔∗ = 𝒆∗ 𝒓, 𝜔

𝒃 𝒓,−𝜔∗ = 𝒃∗ 𝒓,𝜔

𝒋 𝒓, −𝜔∗ = 𝒋∗ 𝒓, 𝜔

𝒆 𝒓, 𝑡
𝒃 𝒓, 𝑡

= Re
𝒆 𝒓
𝒃 𝒓

𝑒−𝑖𝜔𝑡

𝒆 𝒓, 𝑡
𝒃 𝒓, 𝑡

= න

−∞

∞

𝑑𝜔
𝒆 𝒓,𝜔
𝒃 𝒓,𝜔

𝑒−𝑖𝜔𝑡

Time-harmonic

Fourier transform
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Maxwell equations in the frequency domain

𝜕𝑩

𝜕𝑡
= −𝑐𝛁 × 𝑬

𝜕𝑫

𝜕𝑡
= 𝑐𝛁 × 𝑯−

𝒋𝑠
𝜖0

𝑫 𝒓,𝜔 = ി𝜀 𝒓, 𝜔 ∙ 𝑬 𝒓, 𝜔

𝑩 𝒓,𝜔 = ി𝜇 Ԧ𝐫, 𝜔 ∙ 𝑯 Ԧ𝐫, 𝜔

𝑫 𝒓, 𝑡 = න
−∞

𝑡

ി𝜀 𝒓, 𝑡 − 𝑡′ ∙ 𝑬 𝒓, 𝑡′ 𝑑𝑡′

𝑩 𝒓, 𝑡 = න
−∞

𝑡

ി𝜇 𝒓, 𝑡 − 𝑡′ ∙ 𝑯 𝒓, 𝑡′ 𝑑𝑡′

𝑖𝜔𝑩 = 𝑐𝛁 × 𝑬

−𝑖𝜔𝑫 = 𝑐𝛁 × 𝑯−
𝒋𝑠
𝜖0
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Time-harmonic vs Fourier Transform

𝜓𝜔 𝒓, 𝑡 = Re 𝜓 𝒓,𝜔 𝑒−𝑖𝜔𝑡

𝜓 𝒓, 𝑡 = න

−∞

∞

𝑑𝜔𝜓 𝒓,𝜔 𝑒−𝑖𝜔𝑡

Time-harmonic formalism

Temporal Fourier transform

𝜓 𝒓,−𝜔∗ = 𝜓∗ 𝒓,𝜔
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𝑖
𝜕

𝜕𝑡
න
−∞

𝑡

𝑑𝑡′
ി𝜀 𝒓, 𝑡 − 𝑡′ 0

0 −ി𝜇 𝒓, 𝑡 − 𝑡′

𝒆 𝒓, 𝑡′

𝒉 𝒓, 𝑡′
= 𝑖𝑐

0 𝛁 ×
𝛁 × 0

𝒆 𝒓, 𝑡
𝒉 𝒓, 𝑡

+
Τ𝒋 𝒓, 𝑡 𝑖𝜖0

𝟎

In-medium Maxwell equation

Space-time evolution of `classical’ electromagnetic fields
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𝑖
𝜕

𝜕𝑡
න
−∞

𝑡

𝑑𝑡′
ി𝜀 𝒓, 𝑡 − 𝑡′ 0

0 −ി𝜇 𝒓, 𝑡 − 𝑡′

𝒆 𝒓, 𝑡′

𝒉 𝒓, 𝑡′
= 𝑖𝑐

0 𝛁 ×
𝛁 × 0

𝒆 𝒓, 𝑡
𝒉 𝒓, 𝑡

+
Τ𝒋 𝒓, 𝑡 𝑖𝜖0

𝟎

In-medium Maxwell equation

Space-time evolution of `classical’ electromagnetic fields

෠Γ 𝑡 − 𝑡′ ≡
ി𝜀 𝒓, 𝑡 − 𝑡′ 0

0 −ി𝜇 𝒓, 𝑡 − 𝑡′

𝒓|𝑗 𝑡 ≡
Τ𝒋 𝒓, 𝑡 𝑖𝜖0

𝟎
෡𝕃 ≡ 𝑖𝑐

0 𝛁 ×
𝛁 × 0

𝒓|Ψ 𝑡 ≡
𝒆 𝒓, 𝑡
𝒉 𝒓, 𝑡

`Quantum’ formulation definitions
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In-medium Maxwell equation

Space-time evolution of `classical’ electromagnetic fields

𝑖
𝜕

𝜕𝑡
න
−∞

𝑡

𝑑𝑡′෠Γ 𝑡 − 𝑡′ | ۧΨ 𝑡′ = 𝑖𝑐෡𝕃| ۧΨ 𝑡 + | ۧ𝑗 𝑡

Time dependent Maxwell equations

𝑖
𝜕

𝜕𝑡
න
−∞

𝑡

𝑑𝑡′
ി𝜀 𝒓, 𝑡 − 𝑡′ 0

0 −ി𝜇 𝒓, 𝑡 − 𝑡′

𝒆 𝒓, 𝑡′

𝒉 𝒓, 𝑡′
= 𝑖𝑐

0 𝛁 ×
𝛁 × 0

𝒆 𝒓, 𝑡
𝒉 𝒓, 𝑡

+
Τ𝒋 𝒓, 𝑡 𝑖𝜖0

𝟎

෠Γ 𝑡 − 𝑡′ ≡
ി𝜀 𝒓, 𝑡 − 𝑡′ 0

0 −ി𝜇 𝒓, 𝑡 − 𝑡′

𝒓|𝑗 𝑡 ≡
Τ𝒋 𝒓, 𝑡 𝑖𝜖0

𝟎
෡𝕃 ≡ 𝑖𝑐

0 𝛁 ×
𝛁 × 0

𝒓|Ψ 𝑡 ≡
𝒆 𝒓, 𝑡
𝒉 𝒓, 𝑡

`Quantum’ formulation definitions
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Frequency Domain Maxwell equations

𝒆 𝒓, −𝜔∗ = 𝒆∗ 𝒓,𝜔

𝒉 𝒓, −𝜔∗ = 𝒉∗ 𝒓, 𝜔

𝒋 𝒓, −𝜔∗ = 𝒋∗ 𝒓,𝜔

| ۧΨ 𝒓, 𝑡 = න

−∞

∞

𝑑𝜔
𝒆 𝒓,𝜔
𝒉 𝒓, 𝜔

𝑒−𝑖𝜔𝑡 = න

−∞

∞

𝑑𝜔 | ۧΨ 𝜔 𝑒−𝑖𝜔𝑡

𝜔
ി𝜀 𝒓, 𝜔 0

0 −ി𝜇 𝒓,𝜔

𝒆 𝒓, 𝜔
𝒉 𝒓,𝜔

− 𝑖𝑐
0 𝛁 ×
𝛁 × 0

𝒆 𝒓,𝜔
𝒉 𝒓,𝜔

=
Τ𝒋 𝒓, 𝜔 𝑖𝜖0

𝟎

𝜔෠Γ𝜔| ۧΨ − ෡𝕃ห ۧΨ = | ۧ𝑗

Time independent Maxwell equation !

෠Γ𝜔
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Inhomogeneous media in the frequency domain

𝑫 𝒓,𝜔 = 𝜀 𝒓, 𝜔 𝑬 𝒓, 𝜔

𝑩 𝒓,𝜔 = 𝜇 𝒓,𝜔 𝑯 𝒓,𝜔

𝑖𝜔𝑩 = 𝑐𝛁 × 𝑬

𝑐𝛁 × 𝑯 = −𝑖𝜔𝑫 +
𝒋𝑠
𝜖0

𝑖𝜔𝜇 𝒓, 𝜔 𝑯 𝒓,𝜔 = 𝑐𝛁 × 𝑬 𝒓,𝜔

𝑐𝛁 × 𝑯 𝒓,𝜔 = −𝑖𝜔𝜀 𝒓, 𝜔 𝑬 𝒓,𝜔 +
𝒋𝑠 𝒓,𝜔

𝜖0

𝛁 ×
1

𝜀 𝒓,𝜔
𝛁 × 𝑯−

𝜔2

𝑐2
𝜇 𝒓, 𝜔 𝑯 𝒓,𝜔 = 𝛁 ×

1

𝜀 𝒓, 𝜔

𝒋𝑠
𝜖0𝑐

𝛁 ×
1

𝜇 𝒓,𝜔
𝛁 × 𝑬 −

𝜔2

𝑐2
𝜀 𝒓, 𝜔 𝑬 𝒓,𝜔 =

𝑖𝜔𝒋𝑠
𝜖0𝑐

2



Resonant States (Quasi-Normal Modes)
Complex eigenstates of the homogeneous Maxwell equation

𝑖𝑐
0 𝛁 ×
𝛁 × 0

𝒆𝑞
(±)

𝒉𝑞
(±)

= 𝜔𝑞
(±)

𝜀 𝒓, 𝜔𝑞
(±)

0

0 −𝜇 𝒓,𝜔𝑞
(±)

𝒆𝑞
(±)

𝒉𝑞
(±)

Electric dipole RS frequencies satisfying 

outgoing boundary conditions (blue dots) in 

the complex plane while red dots  are 

eigenvalues satisfying incoming boundary 

conditions
32

෡𝕃 ቚ ඀Ψ𝑞
(±)

= 𝜔𝑞
(±)

Γ 𝜔𝑞
(±)

ቚ ඀Ψ𝑞
(±)

𝜔Γ 𝜔 − 𝕃 ቚ ඀Ψ𝑞
(±)

= 0


