
Light interacting with small particles

1. The spectra of the extinction and scattering cross-sections of a silver nano-sphere (R =
25nm) in a homogeneous background medium are plotted in Figure 1 .

Figure 1: Cross section (normalized by the geometric cross section) of a silver sphere of radius
R = 25nm in air.

A. Associate the dotted and full lines to the extinction, σext and scattering σscat cross-
sections respectively (dotted line: .... cross-section; full line: .... cross-section).

Solution : (dotted line: scattering cross-section; full line: extinction cross-
section).

B. Give the expression for the absorption cross section, σabs, in terms of σext and
σscat.

Solution : For particles of any size and shape, cross sections by definition obey
the general relation:

σabs = σext − σscat .

C. What is remarkable about the size of the cross sections with respect to the ge-
ometric size of the sphere ? Do you expect similar behavior to be possible for
individual atoms ? (Hint : If you are unsure, come back to the question after
answering the next question.)

Solution : The cross sections in fig. 1 can be much larger than the geometric cross
section of the particle. This occurs because a resonance phenomenon modifies the
Poynting vectors of the fields far beyond the physical boundaries of the particle
itself. Given that it is resonance that is the key, and not particle size, a single
atom can have a cross section as large as our silver ‘meta’ atom. Indeed as seen
in the next exercise, where the limit size of the cross sections depends on the
wavelength, not the particle size.

2. One remarks that the silver sphere modeled in fig. 1 is quite small with respect to the
in-medium wavelengths, λ, of all the ‘incident’ electric fields, Einc(ω), considered in the
graph. Consequently, one expects the silver particle to be principally described by its
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induced electric dipole moment, p(ω). For a particle with isotropic linear response, p(ω) is
related to the incident field strength, Einc(ω), via the polarizability, α(ω), defined by the
relation:

p(ω) = ε0εbα(ω)Einc(ω) .

From considerations involving the Poynting vector and radiation flux, the extinction and
scattering cross sections of an electric dipole scatterer can be expressed in terms of polar-
izability, α(ω), as :

σext = k Imm {α(ω)} σscat =
k4

6π
|α(ω)|2 . (1)

Energy conservation during a scattering process imposes that the polarizability satisfies the
inequality:

k3

6π
|α(ω)|2 ≤ Imm {α(ω)} , (2)

A. What are the physical dimension of σ and α ? Explain why these are physically
reasonable dimensions.

Solution : σ has the dimensions of surface i.e. m2, while polarizability has the
dimensions of volume, m3.

B. Express the inequality of eq.(2) in terms of cross-sections given in eq.(1). The
inequality becomes an equality in the case of scattering in the absence of loss
into material degrees of freedom. What does this say about the extinction and
scattering cross sections in this case ?

Solution : Substitution of eq. (1)) in eq. (2)), tells us that:

σscat ≤ σext

C. Write the complex valued α(ω) = α′(ω) + iα′′(ω), (with α′(ω) and α′′(ω) real
valued). Express eq.(2) in terms of α′ and α′′, and deduce the constraint imposed
on the possible values of α′′. What constraint does this place on σext?

Solution : Eq.(2) can be written:

α′2 + α′′2 ≤ 6π

k3
α′′(ω) , (3)

and we see that the maximum value of |α(ω)| is obtained for α′ = 0, i.e. α(ω) =
iα′′(ω), purely imaginary, the constraint of eq.(3),

α′′ ≤ 6π

k3
.

In this case, σext = k Imm {α(ω)}, and the limit of cross section of a dipole
scatterer is,

σext ≤
6π

k2
.
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D. Recalling that the wavenumber is related to the wavelength in the external medium
by, k = 2π/λ, use the results of the previous question, and the approximation
π ' 3 to find the often stated (but seldom derived) unitary limit for a dipole

interaction cross section: σ . λ2

2 .

Solution : With the definition k = 2π
λ ,

σext ≤
6πλ2

4π2
≈ λ2

2
.

The value σext ' λ2/2 is is often called the unitary limit of cross section that
a dipole scatterer cannot surpass. This limitation on mono-mode cross sections
plays an important rule in photonics. It is often considered a “quantum” result
since the unitary limit first achieved notoriety in quantum scattering theory. Nev-
ertheless, it is a fundamental property of wave scattering theories in general and
doesn’t require field quantization in its proof (but it does remain true in quantum
theories).

3. The quasi-static expression for the electric dipolar polarizability of a sphere of volume, V ,
and dielectric permittivity εs, immersed in a background medium of dielectric permittivity,
εb, can be cast:

αqs ≡ lim
ω→0

α(ω) = 3V
εs − εb
εs + 2εb

. (4)

A. Since we expect αqs to be a reasonable approximation for a sphere much smaller
than the wavelength, what does fig. 1 tell us about the permittivity of silver
around 365nm ?

Solution : Since we are clearly near a resonance, we expect Re {εAu} ∼ −2εb.
so the real part of the permittivity of silver must be negative, which is indeed the
case. The denominator of eq. (4) is not zero however since Im {εAu} 6= 0

B. A commonly employed model for including ‘radiative corrections’ to the quasi-
static polarizability is given by:

α(ω) ' αqs

1− i k36παqs

. (5)

What is the value of α(ω) when αqs → ∞. Comment this result based on your
results from question 2. Why is this model superior to simply using the quasi-
static value for polarizability ?

Solution : When αqs → ∞ this implies that α(ω) → i6π
k2

which is the unitary
limit that we studied in the previous question.

C. Free-space electromagnetic Green’s function and the electric dipole
: The electromagnetic free-space dyadic Green function can be written :

←→g (r) =
eiκr

4πκ2r3
P.V.

{
(1− iκr)

(
3urur −

←→
I
)

+ κ2r2
(←→

I − urur

)}
−
←→
I

3κ2
δ3 (r) ,

(6)

where ur ≡ r
r is the unit vector in the radial direction, κ ≡ ω

√
εbµb
c ≡ 2π

λb
, is

the wavenumber in the external(background) medium, and finally P.V. stands for
principal value (associated with a 3D exclusion volume at the origin on account of
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the field being undefined when r → 0. With ←→g , one can directly obtain the time
harmonic electric field of an oscillating dipole, p, oriented along the unit vector
np (i.e. p = |p|np) and positioned at the coordinate system origin is :

Ep(r) =
ω2

ε0c2
←→g (r) · p

= P.V.

{
eiκr

4πεbε0r3
[
κ2r2 [pe − ur (ur · pe)] + (1− iκr)(3(ur · p)ur − p)

]}
− p

3εbε0
δ3(r) .

(7)

a) Explain the physical relevance of the − p
3εbε0

δ3(r) term in eq.(7) and explain
why it is directed in the direction opposite to the dipole, p.
Solution :

En.f.(r) =
eiκr

4πεbε0r3
[3(ur · p)ur − p]− p

3εbε0
δ3(r) .

The ‘traditional’ near field term is the first of these two terms, and it is
called the near field because it the other field contributions when r is small
on account of its r3 dependence; Nevertheless, the delta function term at the
position of the dipole can also be thought of as a ‘near’ field since it dominates
all others at the position of the dipole, r = 0.

b) In order to better visualize the dipole field, let us define the z axis to lie along
the dipole axis, p = |p|np −→ |p|uz, and adopt spherical coordinates for the
dipole field using the fact that uz = cosθur−sinθuθ. In spherical coordinates,
the dipole electric field in eq.(7) is written Ep(r) = Er(r, θ)ur + Eθ(r, θ)uθ,
which for r > 0 is :

Er(r, θ) =
|p|cosθ

4πεbε0

exp(iκr)

r
κ2
[

2

κ2r2
− 2i

κr

]
(8a)

Eθ(r, θ) =
|p|sinθ
4πεbε0

exp(iκr)

r
κ2
[

1

κ2r2
− i

κr
− 1

]
, (8b)

where we omit the delta function contribution which plays no role for r > 0.
Identify the near, intermediate, and far fields parts of each of these field
components. What do you remark about the far-field component of Er ?
Solution : The third (last) term of eq. (8b) are the far-field radiative dipole
terms that propagate off to infinity

Ei.f.(rur) =
−iκeiκr

4πεbε0r2
[3(ur · p)ur − p] .

The second terms of eq. (8a) and eq. (8b) are the intermediate field, and their
first terms are the near-field.
Bonus : What does this last point imply for light scattering of unpolarized
light by small particles at angles perpendicular to the incident field wave
vector k? (k must be perpendicular to p = |p|uz meaning that k lies in the
xy-plane.)
Solution : When setting θ = π/2 in eq. (8), we see that the far-field is
polarized in the uθ direction. This means that light scattering from a small
particle is linearly polarized. You can easily verify this by using a linear
polarizer to verify that light coming from straight overhead at sunset is indeed
linearly polarized.
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c) The electric field has no φ component, but another field in the harmonic electric
dipole problem only has a φ component in spherical coordinates with the
expression :

Fφ =
|p|sinθ
4πεbε0

exp(iκr)

r
κ2
[
− i

κr
− 1

]√
ε0εb
µ0µb

, (9)

Using your knowledge of this problem to identify the field, Fφ, and explain
what role it plays in the oscillating electric dipole.
Solution : The Fφ function is the magnetic field associated with the electric
dipole. Without having carried out the calculation, there are several indica-
tions of this: Fφ is orthogonal to the electric field given in eq. (8). Also, Fφ
has the dimensions of magnetic field due to the presence of the factor

√
ε0/µ0.

Yet another indication is that Fφ doesn’t have a near-field component.

c) The component of the dipole’s electric field parallel to p (E||(r, θ) ≡ np ·Ep)
plays an important role in the quantum theory of spontaneous emission and
in antenna theory. Demonstrate that (hint : easiest to demonstrate using
eq.(7) and np = uz = cosθur − sinθuθ) :

E||(r, θ) =
|p|

4πεbε0

exp(iκr)

r
P.V.

[
κ2sin2θ +

1

r2
(
3cos2 − 1

)
− iκ

r

(
3cos2θ − 1

)]
,

(10)

and again identify the far-field, near-field, and intermediate-field contribu-
tions.

d) Green function theory tells us that the local density of states (or local density
of modes) is related to the imaginary part of Ez(r, θ) in eq.(11). This is
indeed possible since even though the real part of Ez diverges as r → 0,
Im(Ez) remains finite. Use the development of the exponential for

small arguments (exp(ix) = 1 + ix− x2

2 + . . .) to verify that for small values
of r :

Im [Ez(r, θ)] =
|p|κ3

4πεbε0
P.V.

[
sin2θ +O(r2)

]
. (11)

e) The 3D P.V. can be viewed as averaging field over the surface of the exclusion
volume, which in this context means that we must average over all possible
angles :

P.V.
[
sin2θ

]
−→ 1

2

∫ 1

−1
sin2θd(cosθ) −→ 1

2

∫ 1

−1

(
1− cos2θ

)
d(cosθ) =

2

3
,

(12)

so that one finally obtains :

lim
r→0

Im [Ez(r, θ)] =
|p|κ3

6πεbε0
. (13)

With this result, show by referring back to eq.(7), the important result
for local density of states calculations that :

Im
{
np · ←→g (0) · np

}
=

κ

6π
. (14)

Page 5 / 6



Importance of this result : A spectral expansion of the Green’s func-
tion and mode counting arguments like those studied in class for black-body
radiation, yield the formula for the free space density of states :

ρf.s(r, ω) =
6ω

πc2
Im
{
np · ←→g (r, r) · np

}
=

ω2

π2c3
, (15)

where we used to the result of eq. (14) for the free-space Green’s function. The
advantage of this formula is that it remains valid for an inhomogeneous envi-
ronment, provided that one replaces the free space Green’s function,←→g (r, r)

by a Green’s function,
←→
G (r, r), describing the inhomogeneous material en-

vironment. In practice this amounts to placing a point-like electric dipole
at a given position and determining the field scattered back onto this same
position (and in same direction ) as dipole emitter. The “local density of
states”, so determined can be significantly different from the free density of
states, ω2/(π2c3), as has been repeatedly shown by both theory and experi-
ment using nano-structuring of matter near the emitter, or highly reflecting
surfaces. Note: The terminology “local” density of states is in reference to
the fact that the local density of states is a function of the dipole’s position
with respect to the material structure modifying the density of states from
its free-field value.
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