Électromagnétisme – contrôle continu 3

Mercredi 12 décembre 2012

Pas de documents - calculatrices collège autorisées - durée 1h30

Dans l'énoncé, les vecteurs sont notés en **gras** et les autres grandeurs en *italique*. Sur les copies, les vecteurs sont marqués d'une flèche. L'unité physique devra être indiquée pour toute application numérique.

A - Auto-induction

On considère une bobine longue de rayon $a=2.5\,\mathrm{cm}$ et de longueur $\ell=40\,\mathrm{cm}$ comportant N=700 spires.

- 1. Quelle est la densité de spires n de la bobine?
- 2. La bobine est alimentée par un courant continu d'intensité $I_0 = 460 \,\mathrm{mA}$. Calculer l'amplitude $B_0 = \mu_0 n I_0$ du champ magnétique dans la bobine; on donne la perméabilité du vide $\mu_0 = 4\pi.10^{-7} \,\mathrm{H/m}$.
- 3. Quelle est l'unité du champ magnétique? L'exprimer en fonction des unités fondamentales kg, m, s et A.
- 4. Donner l'expression de l'inductance L de la bobine dans l'approximation du solénoïde infini. Calculer la valeur de L.
- 5. La bobine est alimentée par un courant alternatif sinusoïdal $i_1(t)$ d'amplitude I_0 et de fréquence f = 2,3 kHz. Calculer la valeur maximum E_1 de la force électromotrice (fem) $e_1(t)$ induite dans la bobine.
- 6. La bobine est alimentée par un courant alternatif triangulaire $i_2(t)$ d'amplitude maximale I_0 et de fréquence f. On note E_2 la valeur maximale de la fem $e_2(t)$ induite dans la bobine. Représenter le courant triangulaire $i_2(t)$ et la fem induite $e_2(t)$ en fonction du temps sur une période T = 1/f.
- 7. Calculer E_2 .

B - Générateur électrique

Une bobine plate constituée de N spires d'aire S reliée à un résistor de résistance R est en rotation à la pulsation $\omega = 2\pi/T$ dans un champ magnétostatique d'amplitude B et de direction perpendiculaire à l'axe de rotation. On note $u(t) = U \sin \theta(t)$ la tension aux bornes du résistor, avec $\theta = \omega t$, et i(t) l'intensité qui le traverse.

1. Donner en fonction de N, S, ω , B et R l'expression de l'amplitude U de la tension u(t) puis de la puissance Joule moyenne

$$P_J = \frac{1}{T} \int_0^T u(t)i(t)dt$$

dissipée par le résistor. On rappelle

$$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$$

2. Avec le moment dipolaire magnétique de la bobine $\mathbf{m} = NiS\mathbf{u}_n$, le couple exercé par le champ magnétique $\mathbf{\Gamma} = \mathbf{m} \wedge \mathbf{B}$ et le travail $dW = \mathbf{\Gamma} d\theta$ associé à une rotation élémentaire $d\theta = \omega dt$, calculer la puissance mécanique moyenne P_m requise pour faire tourner la bobine

C - Effet Kelvin

On donne l'expression suivante pour l'épaisseur de peau :

$$\delta = \sqrt{\frac{2}{\omega\mu\gamma}}$$

- 1. On utilise une plaque métallique de conductivité $\gamma = 5.10^7 \, \mathrm{S/m}$, de perméabilité $\mu = 200 \mu_0$ et d'épaisseur $d = 2 \, \mathrm{mm}$ pour isoler un équipement des ondes électromagnétiques extérieures. A partir de quelle fréquence les ondes sont-elles atténuées en amplitude d'un facteur $e^{d/\delta} = 1000$?
- 2. La résistance

$$R(\omega) = \frac{\ell}{\gamma S}$$

fait intervenir à haute-fréquence la surface effective $S=2\pi a\delta$ où a est le rayon du cable et δ son épaisseur de peau. Comment évolue alors la résistance quand la fréquence est quadruplée?

D - Onde électromagnétique

On considère deux fonctions d'onde monodimensionnelles $F_1(x,t) = f(x+ut)$ et $F_2(x,t) = f(x-ut)$.

- 1. Indiquer le sens de propagation de chacune des deux ondes.
- 2. Quelle est l'unité de u et préciser sa nature.
- 3. Quelle équation d'onde est vérifiée par ces deux fonctions d'onde?
- 4. On considère maintenant une onde plane électromagnétique harmonique de vecteur d'onde \mathbf{k} , de champ électrique \mathbf{E} et de champ magnétique \mathbf{B} au point M et à l'instant t. Indiquer les orientations relatives de ces trois vecteurs.