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First-order theories of light scattering previously revealed
the existence of anti-scattering effects in optical multilayers.
Here we present an exact electromagnetic theory that is able
to complete the scattering analysis when first-order scatter-
ing is cancelled. The theory is valid for arbitrary rough
multilayers. © 2019 Optical Society of America

https://doi.org/10.1364/OL.44.004455

Light scattering from slightly rough multilayers [1–5] has been
extensively studied in the field of optical interference coatings
[6,7]. Such planar multilayers most often consist of dielectric
materials produced with vacuum deposition technologies (elec-
tron beam deposition, ion assisted deposition, dual ion beam
sputtering, magnetron sputtering) which allow materials to
grow in amorphous thin film form on fused silica substrates
and others. It is well known [2,3,5] that in the optical bandpass
of spatial frequencies [8], substrate roughness is replicated from
one interface to another within these multilayers, and that this
replication effect creates a roughness threshold which is most
often responsible for the major scattering contribution. Since
polishing techniques have allowed the reduction of substrate
roughness to values down to a fraction of nanometer, all inter-
faces of optical coatings are slightly rough; this is the reason
why first-order electromagnetic theories have shown great suc-
cess when analyzing angular and wavelength scattering patterns
from these components. Numerous results can be found [2,3,5]
that emphasize an excellent agreement between theory and
experiment, even for complex coatings involving hundreds
of layers.

However, there are a few situations where the first-order
theory must be completed, even though the surfaces are slightly
rough. One iconic situation is that of the anti-scattering
effect that was shown [9,10] to occur at specific angles or
wavelengths, due to destructive interferences between waves
scattered from different fully correlated surfaces. In this case,
the first-order scattering is perfectly cancelled, while low-level
signals can still be measured and must be taken into account;
indeed, for an increasing number of applications (complex
micro-filters for space multiplexing, mirrors for gravitational-
wave detection), the energy balance (including reflection, trans-
mission, absorption, and scattering) must be known with an

absolute accuracy of 1 ppm (1 ppm � 10−6). Hence, facing
this difficulty requires a higher-order theory [11–13], or rather
an exact electromagnetic theory [14,15], which is able to pre-
dict light scattering from arbitrary rough multilayers.

Though different formalisms [16–18] were developed to
take account of arbitrary roughness at one single (uncoated)
surface, until now, only a few of them have addressed the case
of multilayers [19]. The goal of this Letter to present an exact
electromagnetic theory based on an extension of the boundary
integral equation (BIE) method [18,20–22]. A numerical cal-
culation is given in two-dimensional scattering configuration
[23] for single layers involving a set of roughness parameters
[24], allowing the anti-scattering effect to occur, and the results
are focused on a comparison with a first-order theory.

We consider a three homogeneous media problem (see
Fig. 1) where the layer Ω2 is bounded by two non-intersecting
rough surfaces Σn with equations z � zn � hn�r� for n � 1, 2
in the Cartesian coordinates �x, y, z�, and denoting �x, y� � r.
It is assumed that the two boundaries do not overlap; that is,
z1 � h1�r� > z2 � h2�r� for all r. The layer is enlightened from
superstrate Ω1:z > z1 � h1�r� through interface Σ1. A wave-
length in vacuum is denoted λ0, so that angular frequency is
ω � 2πc∕λ0. Surface Σ2 interfaces the layer from substrate
Ω3. Electromagnetic parameters at wavelength λ0 are denoted
�εm, μm� with m � 1 in the superstrate, m � 2 in the layer and
m � 3 in the substrate.

Assuming an e−iωt implicit time-dependency, the electro-
magnetic field �E,H� satisfies in domain Ωm the time-
harmonic Maxwell’s equations curlE��iωμmH and curlH �
−iωεmE. The tangential components of the field n̂p × E and
n̂p ×H on both interfaces p � 1, 2 are continuous. n̂p denotes
the unit normal vector, oriented from Ωp�1 toward Ωp. This
field also satisfies an outgoing wave condition in the substrate
Ω3. The incident field �Einc,Hinc� satisfies the Maxwell’s equa-
tions for m � 1, but in the whole space. It writes as a sum of
downward-directed plane waves:

Einc�r, z� �
Z
IR2

E0−
1 �k�ei�k·r−q1z�dk, (1)

with k2 � q21 � ω2ε1μ1 and 0 ≤ arg q1 ≤ π∕2. The scattered
field �E − Einc,H −Hinc� satisfies an outgoing wave condition
in the superstrate.
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The reference field �E0,H0� corresponds to the field �E,H�
in the case where the layer surfaces are two parallel planes
z � z1 and z � z2. The plane wave decompositions of the
reference field in the three media writeZ

IR2

fE0�
m �k�ei�k·r�qmz� � E0−

m �k�ei�k·r−qmz�gdk � E0
m�r, z�,

(2)

with k2 � q2m � ω2εmμm and 0 ≤ arg qm ≤ π∕2. Outgoing
wave condition in the substrate leads to E0�

3 �k� � 0 for all
k. In Eq. (2), those three plane wave decompositions are ex-
tended to the whole space to define the three fields �E0

m,H0
m�.

Now, for rough interfaces, the tangential components of the
field n̂p × E and n̂p ×H, cast into the vector form

X �

2
64
n̂1 × E
n̂1 ×H
n̂2 × E
n̂2 ×H

3
75, (3)

satisfy the linear system

A�X − Y � � C�Z − Y �, (4)

of coupled BIEs. The two vectors

Y �

2
6664

n̂1 × E0
1

n̂1 ×H0
1

n̂2 × E0
2

n̂2 ×H0
2

3
7775 Z �

2
66664

n̂1 × E0
2

n̂1 ×H0
2

n̂2 × E0
3

n̂2 ×H0
3

3
77775, (5)

are determined from the reference field on the rough
boundaries. Matrix A writes

A �

2
666664

1
2 −K

11
1 −μ1T 11

1 0 0

1
2
�K11

2 �μ2T 11
2 −K12

2 −μ2T 12
2

�K21
2 �μ2T 21

2
1
2 −K

22
2 −μ2T 22

2

0 0 1
2 �K22

3 �μ3T 22
3

3
777775
, (6)

introducing (notations are derived from [25] and generalized to
layered media) the electric field integral equation (EFIE) oper-
ator

T np
m j�Rn� � n̂n ×

Z
Σp

iωḠm�Rn − Rp� · j�Rp�dSp, (7)

and the magnetic field integral equation (MFIE) operator

Knp
m j�Rn� � n̂n ×

Z
Σp

curlḠm�Rn − Rp� · j�Rp�dSp, (8)

with j a tangential vector field and for two points Rn and Rp

on interfaces Σn and Σp, respectively. Those operators
involve the free-space dyadic Green’s functions Ḡm�R� �
�Ī� K −2

m grad div�Gm�R�. For passive media m � 1, 2, 3,
the wavenumbers K m satisfy K 2

m � �2π∕λ�2εmμm with
0 ≤ arg K m ≤ π∕2. The scalar Green’s functions are driven by
equations �div grad − K 2

m�Gm�R� � −δ�R� and radiation
condition. Matrix C ,

C �

2
64

0 0 0 0
1
2
�K11

2 �μ2T 11
2 0 0

�K21
2 �μ2T 21

2 0 0
0 0 1

2 �K22
3 �μ3T 22

3

3
75, (9)

is a sparsified version of matrix A. Such a theory can easily be
extended to structures with an arbitrary number of layers.

Then the scattered electric field writes in the
z > z1 �max h1 region of the superstrate as the sum of plane
waves:

�E − Einc��r, z� �
Z
IR2

E��k�ei�k·r�q1z�dk: (10)

Their amplitude is related to the tangential components of the
fields on Σ1 through the expression

E��k� �� K1

8π2q1
×
Z
Σ1

�
K1

ωε1
× �n̂1 ×H� − n̂1 ×E

�
e−iK1·R1dS1,

(11)

with K1 � k � q1ẑ being the upward-directed wavevector.
Finally, this electric field formulation is turned into a mag-

netic field formulation by substituting E↔H and μ↔−ε in
Eqs. (1)–(6) and Eqs. (9)–(11).

Because a numerical calculation is highly time consuming,
the BIE theory (4) was implemented for one-dimensional
surfaces and discretized with the method of moments [23]. A
first step consisted of a direct comparison with a first-order
theory small perturbation method (SPM). For that, we consid-
ered a sample which is a non-absorbing high-index quarter-
wave layer (nHeH � λ0∕4) at the illumination wavelength
λ0 � 632.8 nm, with nH � 2.3 being the optical index and eH
being the layer thickness. The superstrate is air (n1 � 1), and the
substrate is glass (n3 � 1.52). The incident field is a Gaussian
beam, centered on normal incidence (i � 0°) and with 1.5°
divergence (tapering parameter [18] is g � 8 μm). Both surfaces
have a Gaussian roughness with autocorrelation length L �
300 nm, and their cross-correlation coefficient [13] is denoted
α. In Fig. 2, their height root mean squares (δ1 � δ2 � 5 nm)
are set identical, but the surface profiles can be fully cross-
correlated (α � 1) or totally cross-uncorrelated (α � 0).

We observe in Fig. 2, where polarization is TM, a very high
agreement with the first-order theory, due to the low rough-
ness-to-wavelength ratio. Such agreement holds in the whole
angular range and for the two extreme cases of cross-correlation.
As a reminder, the cross-correlated (α � 1) scattering takes
account of interferences between the waves scattered by the

Fig. 1. Geometry of the problem.
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two interfaces, while no interference occurs in the uncorrelated
case (α � 0). This is due to the fact that cross-correlation acts
as a mutual coherence factor [9,10]. Hence, these first results
validate the comparison with a first-order theory.

Now we focus the analysis on the anti-scattering effect [9]
predicted with a first-order theory. Actually, in Ref. [9] it was
shown that single layers may reveal an analytical zero of light
scattering under the assumption of fully cross-correlated surfa-
ces and specific roughness values. This effect is the result of
destructive interferences between the waves scattered from sur-
faces Σ1 and Σ2, for which reason full cross-correlation is re-
quired. Furthermore, for these interferences to be destructive,
the thin film should be low-index quarter-wave or high-index
half-wave at the illumination wavelength λ0. Eventually, the
roughness ratio δ1∕δ2 of the two surfaces must satisfy a con-
dition related to the three index materials; that is [9],

δ1
δ2

� n22
n23

n23 − n
2
2

n22 − n
2
1

, (12)

for the low-index quarter-wave layer, and

δ1
δ2

� n22 − n
2
3

n22 − n
2
1

, (13)

for the high-index half-wave layer. This last condition is given
for a scattering cancellation at the scattering angle θ � 0°.

In Figs. 3 and 4, we considered similar samples (single
layers) and used our exact theory for a Monte Carlo comparison
to a first-order theory under normal illumination. The Monte
Carlo average is performed over 32 samples. The thin film ma-
terials are non-absorbing, and their real indices are given at the
illumination wavelength λ0 � 632.8 nm by nH � 2.3 and
nL � 1.3. Such indices were given in Ref. [9] for ZnS and
Na3AlF6 thin film materials. Hence, the optical thicknesses
follow nH eH � λ0∕2 and nLeL � λ0∕4 with e being the
thickness. As previously, the (glass) substrate roughness is
δ1 � 5 nm.

Figures 3 and 4, respectively, are given for the low-index
quarter-wave layer in TE polarization and the high-index
half-wave layer in TM polarization, with the roughness ratios
given by Eqs. (12) and (13). As in Fig. 2, for the scattering from
cross-uncorrelated rough profiles (α � 0 curves on Figs. 3
and 4), we observe a high agreement between a first-order
theory and the exact calculation in the whole angular range.
As for the cross-correlated (α � 1 curves on Figs. 3 and 4) scat-
tering, the agreement still remains high for most scattering
angles, but it fails in the close vicinity of the specular beam
(θ � 0°). Such a difference was expected, since first-order scat-
tering is zero in this vicinity; hence, the remaining signal is
characteristic of higher-order scattering. This result emphasizes
the interest of an exact theory for further analysis of the anti-
scattering effect.
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Fig. 2. Scattering diagram for a high-index quarter-wave layer at a
632.8 nm wavelength, normal incidence, and polarization TM. The
roughness is 5 nm for both interfaces. The surface profiles are either
totally uncorrelated (α � 0, top plot) or fully correlated (α � 1,
bottom plot).
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Fig. 3. Scattering diagram for a low-index quarter-wave layer at a
632.8 nm wavelength, normal incidence, and polarization TE. The
layer-glass interface roughness is 5 nm, while the air-layer interface
roughness satisfies the antiscattering condition (12).
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Fig. 4. Scattering diagram for a high-index half-wave layer at a
632.8 nm wavelength, normal incidence, and polarization TM.
The layer-glass interface roughness is 5 nm, while the air-layer inter-
face roughness satisfies the antiscattering condition (13).
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However, before conclusion, it should be stressed that the
analytical zero of first-order light scattering is highly sensitive to
the cross-correlation coefficient around unity. Actually, even a
slight departure from the value α � 1 will break the interferen-
tial balance and increase the first-order signal. This is empha-
sized in Figs. 3 and 4, where first-order and exact scattering are
also plotted for a cross-correlation value of α � 0.99. With
these supplementary curves, it is clear that the first-order scat-
tering is far from zero at θ � 0°, even though the variation in
cross-correlation is only 1%. Furthermore, we observe that the
two theories (first-order and exact) again reveal a high agree-
ment for α � 0.99, due to the fact that first-order scattering
is again predominant. This result justifies why first-order cal-
culation in multilayers is most often considered with cross-cor-
relation values around 0.99 [5] (rather than 1), even more than
a quasi-perfect (rather than perfect) replication of topography.

We have developed an exact electromagnetic theory of light
scattering from arbitrary rough surfaces. The theory is a discre-
tized set of coupled BIEs. However, with a modified right-hand
side, it differs from the classical formulation [22]. Our ap-
proach was compared with great success to the first-order
theory in the whole angular range. In order to emphasize
higher-order scattering, we analyzed anti-scattering effects pre-
dicted by the first-order theory. The exact theory was able to
quantify the scattering level when first-order scattering is zero.
This is a key point, since new trends in optical coatings are
about to take profit of the anti-scattering effect to minimize
losses [26,27]. The exact theory might also lead, through future
works, to the definition of improved anti-scattering conditions.
We also quantified the sensitivity of scattering to interfaces
cross-correlation. This allows us to establish a more accurate
energy balance, as required in high-precision optical systems
(pixelated filters for space micro-multiplexing, mirrors for
detection of gravitational waves…). To conclude, this exact
theory will also meet other applications in the field of radar
probing of soil and moisture, cosmetics and living tissues, light-
ing, textiles, and stationery.
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