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[1] The rough surface radar cross section becomes very small at grazing incidence,
since most part of the energy travels in the forward direction. We build a rigorous model
that can estimate it accurately. It is based on a specific integral formalism, and applies
to both low‐grazing incidence and scattering angles. Reference data are produced to test
the validity of approximate models, and a technique for extrapolation is detailed.
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1. Introduction

[2] The way to compute the non‐grazing radar cross
section (RCS) from a random rough surface separating two
homogeneous media without any simplifying assumption
appears in the work ofWagner et al. [1997] and is detailed by
Tsang et al. [2001]. It is based on the numerical solution of a
set of boundary integral equations [Poggio and Miller, 1973;
Colton and Kress, 1983] for a deterministic rough surface of
finite area. A plane wave cannot be the incident field, because
of edge effects: a tapered polarized beam [Toporkov et al.,
1999; Braunisch et al., 2000] with a Gaussian‐like footprint
on the surface is the reference method in order to bound to the
finite area of the rough surface the numerical support of the
integral equations unknowns, namely the tangential compo-
nents of the total electromagnetic field. Statistical RCS is
obtained through Monte Carlo average.
[3] The RCS from a rough surface becomes very small at

low‐grazing incidence (LGI), since most part of the energy
travels in the forward direction. In the work of Spiga et al.
[2008], we have presented the Grazing Method of Moments
(GMoM), a different but rigorous approach dedicated to the
time harmonic electromagnetic wave scattering from rough
surfaces under grazing illumination. The rough surface is
represented by a bounded perturbation of a plane and is
enlightened by a plane wave. The integral equations are built
on specific unknowns and right hand sides that permit edge
effects to be avoided. In the work of Soriano et al. [2010], the
implementation of the GMoM for two‐dimensional pro-
blems is detailed, and numerical results on one‐dimensional
(1D) Gaussian surfaces in Optics and 1D ocean‐like surfaces
at microwave frequencies are shown. Note that several other
methods have been considered to eliminate the tapered wave
requirement in rough surface scattering. They are summa-
rized in the introduction of Spiga et al. [2008]. Plane wave

illuminating a bounded perturbation of the plane appears in
the work of West [2003] and Zhao et al. [2005], but in those
papers, edge effects are avoided thanks to resistive loadings.
Also, in the work of Zhao et al. [2005], an image theory
involving the half plane Green’s function is addressed. The
GMoM differs from those two pioneering approaches in that
sense that first, the physical boundary condition on the
rough surface is left untouched, and second, it only makes
use of classical integral operators, built on the free space
Green’s function.
[4] This paper is organized as follows. Below this intro-

duction, the boundary integral formalism is presented in
section 2: after classical theory is recalled, integral equations
are modified for numerical solution with an incident plane
wave. Also, lossy dielectrics and conductors dielectric are
given a specific treatment through an impedance boundary
condition. In spite of appearances, the scattered field theo-
retically shows at both LGI and low‐grazing scattering
angles (LGS) a very simple and general behavior. This
behavior, and how to enforce it numerically, is underlined in
section 3, while in section 4, a technique for extrapolation,
from one low‐grazing angle to another, is suggested. Then
in section 5, the GMoM is applied to two‐dimensional (2D)
perfectly conducting surfaces in the HH polarization case
(both the incident electric field and the scattered electric
field of interest are normal to the incidence plane). New
numerical results are presented for 2D surfaces with
Gaussian and ocean spectra.

2. Boundary Integral Formalism

[5] The study is time harmonic at pulsation w, with a time
dependence e−iwt assumed. We start by considering an
infinite rough surface separating vacuum as upper medium
from a semi‐infinite dielectric homogeneous lower medium,
illuminated by a wave impinging from vacuum. The surface
S is a perturbation of the (xOy) plane in the right Cartesian
coordinate (x, y, z) system with the z axis directed toward
vacuum (Figure 1). The surface height is given by equation
z = h(r) = h(x, y), and n̂ denotes its unit normal vector directed
upward. If �0 denotes the incidence angle, counted as indi-
cated on Figure 1, then the incident field is low grazing when
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�0 → ±p/2. The grazing angle can be defined as g0 = �
2 −

|�0| → 0 but we prefer to consider q0 = K0 cos �0 = K0 sin g0
that shares the same behavior. K0 = w

ffiffiffiffiffiffiffiffiffi
"0�0

p
= 2�

� is the wave
number for the vacuum and q0 is the positive z component of
the incident wave vector k0 − q0ẑ. At the end, we are mainly
concerned by the far field. Denoting k + qẑ the scattering
wave vector in air at angle � counted from normal or g =
p/2 − |�| from grazing, the LGS limit corresponds to g → 0
or q = K0 cos � = K0 sin g → 0.
[6] Following the classical Stratton‐Chu theory [Poggio

and Miller, 1973; Colton and Kress, 1983], the tangential
components of the total fields on the rough surface n̂ × E
and n̂ × H are the solution of integral equations for the air
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1

2
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n̂� Eþ i

!"0
P0 n̂�H ¼ n̂�Hi ð2Þ

and for the scattering medium

1

2
�M

� �
n̂�Hþ i

!�0
P n̂� E ¼ 0 ð3Þ

1

2
�M

� �
n̂� E� i

!"0"r
P n̂�H ¼ 0 ð4Þ

M0 and P0 are the integral operators as defined by Martin
and Ola [1993]. They write for a tangential density c

M0 c Rð Þ ¼ n̂� curl
Z
S
G0 c R′ð ÞdSR′ ð5Þ

P0 c Rð Þ ¼ n̂� curl curl
Z
S
G0 c R′ð ÞdSR′ ð6Þ

with R′ = r′ + h(r′)ẑ a point on the surface and expression

G0 ¼ � exp iK0jR � R′jð Þ
4�jR � R′j ð7Þ

for the free space Green’s function. Operators M and P
follow similar expressions, but with the wave number

K = K0
ffiffiffiffi
"r

p
instead of K0. The scattered field can be eval-

uated from n̂ × E and n̂ × H at any point or in far field.
[7] Due to the short coupling phenomenon for rough

surface scattering [Maystre, 1983], the numerical support of
the unknowns n̂ × E and n̂ × H is only some wavelengths
larger than the support of the right hand sides n̂ × Ei and
n̂ × Hi. A tapered incident beam thus bounds the problem to
a finite area of the interface. However, at LGI, the size of the
beam’s footprint on the surface increases as g0

−3 [Soriano
et al., 2006] and the tapered beam turns useless.
[8] Therefore, we consider plane wave illumination in

order to address LGI, and now following the GMoM, the
surface S is a local perturbation of the (xOy) plane, with
roughness over a given area. On Figure 1, L denotes the
horizontal extension of the roughness. The idea is to find
integral equations with right hand sides of numerical sup-
ports bounded to the perturbation. With an incident plane
wave of wave vector k0 − q0ẑ and electric field

Ei ¼ E0e
i k0�r�q0zð Þ ð8Þ

of vector amplitude E0 and since the rough surface S is a
perturbation of the (xOy) plane, it is interesting to define
Er and Et the fields that would be reflected and transmitted
by a plane interface h(r) = 0. In this paper, reflected and
transmitted fields will always refer to the solution of the
scattering from the (xOy) plane separating vacuum and
scattering medium.

Er ¼ R � E0e
i k0�rþq0zð Þ Et ¼ T � E0e

i k0 �r�q0′ zð Þ ð9Þ

R and T are the reflection and transmission dyads built on the
Fresnel coefficients. −q′0 the z component of the transmitted
wave vector k0 − q′0ẑ. It is defined by q′0 = (K0

2("r − 1) + q0
2)1/2

with 0 ≤ arg q′0 ≤ p/2.
[9] From now on, vector field F stands either for the

electric field E or the magnetic field H. The sole contribu-
tion from roughness to the total field in vacuum is Fs = F −
Fi − Fr. Hereafter Fs is called the scattered field, and its
tangentials components m = n̂ × Es and j = n̂ × Hs are
solution of modified integral equations for the air
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and for the lower medium.
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!�0
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� � ð12Þ

1
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�M
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P j ¼ 1

2
�M

� �
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� �

� i

!"0"r
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This can be proven for example by considering the integral
equations satisfied by the tangential components of Fi, Fr

Figure 1. The bounded perturbation of the plane model for
low‐grazing incidence angles wave scattering from rough
surfaces.
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and F t. By definition, n̂ × (Fi + Fr − Ft ) = 0 at any point of
the (xOy) plane, that is satisfying z = 0 and n̂ = ẑ. As a
consequence n̂ × (Ei + Er − Et ) and n̂ × (Hi + Hr − Ht ) both
vanish outside the rough region, and even if M and P are
integral operators, we can assume that the right hand sides
of (12) and (13) do show bounded support. Finally, the four
integral equations (10), (11), (12) and (13) can be combined
in the system

1þM0�M � i

!�0
P0 � Pð Þ

þ i

!�0
P0 � Pð Þ 1þ "r

2
þM0 � "rM

2
6664

3
7775

j

m

� �

¼

1

2
�M þ i

!�0
P

� i

!�0
P "r

1
2 �M
� �

2
6664

3
7775

n̂� Hi þHr �Htð Þ
n̂� Ei þ Er � Etð Þ

� �
ð14Þ

where the left‐hand side matrix bears only weakly singular
integral operators: M, M0 and P0 − P [Martin and Ola,
1993]. Operators P0 and P are hyper singular, since their
kernels include the second derivative of the Green’s func-
tion. They appear separately in the right‐hand side of (14),
but since they apply to fields with analytical expressions,
one [Poggio and Miller, 1973] or two [Nédélec, 2001]
derivatives can be transferred from the kernel to the fields.
System (14) is designed for the numerical solution of the
rough surface scattering problem at LGI, and can be dis-
cretized with low‐order method of moment.
[10] Since −q′0 the vertical component of the transmitted

wave vector has an imaginary part for lossy dielectrics and
conductors, the transmitted field is exponentially decreasing
for negative heights, but also exponentially increasing for
positive heights. This leads to difficulties with the numerical
solving of (14) in the case of very lossy dielectrics and
rough surfaces with large height root mean squares. This
integral system should be restricted to transparent or slightly
lossy dielectrics. For numerous media [Senior and Volakis,
1995] the total electric and magnetic fields satisfy a
boundary condition on the surface that is local, or can be
assumed to be so. This impedance boundary condition is of
general expression

n̂� E ¼ n̂� Zh n̂�H ð15Þ

with Zh a local operator defined for the rough surface z = h(r).
It is assumed that Zh turns to a constant Z0 on the (xOy) plane,
so that the reflected field is a plane wave for an incident
plane wave and satisfy on the mean plane (z = 0 ⇒ n̂ = ẑ)
the relation

ẑ� Ei þ Er
� � ¼ ẑ� Z0 ẑ� Hi þHr

� � ð16Þ

With (15) and (16) included in (10) or (11), two single
integral equations with unknown j are obtained. For
example, (15) in (10) gives

1

2
þM0

� �
� i

!�0
P0n̂� Zh

	 

j

¼ iP0n̂�
!�0

Zh n̂� Hi þHr
� �� Ei þ Er

� �� � ð17Þ

The relation (16) implies that the term n̂ × {Zhn̂ × (Hi +Hr ) −
(Ei + Er )} of the right hand side vanishes outside the rough
region, thus auguring a bounded right‐hand side for (17) or
other integral equation in the impedance case. The perfectly
conducting case corresponds to the trivial Zh = Z0 = 0, while
the Leontovich boundary condition writes Zh = Z0 =

ffiffiffiffiffiffi
�0

"0"r

q
.

Surface impedance with curvature correction for the
homogeneous complex dielectric lower medium is derived
from Maxwell’s equations in the work of Ong et al. [1994]
and Marvin and Celli [1994], and is included in a rough
surface scattering model for metals in Optics and the sea-
water at microwave frequency in the work of Soriano and
Saillard [2001, 2003].
[11] To conclude this section, integral equations (14) and

(17) allow the numerical computation of the tangential
components of the electromagnetic field in a rough surface
wave scattering problem with an incident plane wave and
without edge effects.

3. Scattered Field

[12] Following the boundary integral formalism in
homogeneous media, the electromagnetic field at any point
is related to the tangential components of the field on the
interface. With Fs = F − Fi − Fr for F = E,H andm = n̂ × Es,
j = n̂ × Hs and G0 the free space Green’s function for
vacuum (7), it writes for the electric field

� i

!"0
curl curl G0 * j �Sð Þ

� curl G0 * m �Sð Þ ¼ Es; z > h rð Þ
0; z < h rð Þ

	
ð18Þ

with * the space convolution operation and dS de Dirac
function associated to the surface. As soon as fictious cur-
rents m and j are of bounded numerical support, the scat-
tered field writes in far‐field condition as a spherical wave
of vector amplitude S. At point of the vacuum R0 = r0 + z0ẑ,
z0 > h(r0)

Es ¼ E� Ei � Er � �i
eiK0jR0j

jR0j Sþ kð Þ ð19Þ

at the far‐field limit for K|R0| = K0R0. One can define out of
equation (18) the so‐called vector scattering amplitude

S� kð Þ ¼ 1

4�

Z
S

�K �m Rð Þ þ 1

!"0
K � K � j Rð Þð Þ

� �

� exp �iK � Rð ÞdSR ð20Þ

associated to the wave vector K = k ± qẑ with K2 = k2 +
q2 = K0

2. The Normalized Radar Cross Section (NRCS) is
proportional to the square modulus of that scattering
amplitude. Since formula (18) is zero under the surface,
S− vanishes for all k.

S� kð Þ ¼ 0 ð21Þ
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This property is generally referred to as the extinction
theorem: m and j are fictitious surface currents in air that
do not radiate under the surface. As a consequence, the
scattering amplitude in the upper half‐space S+(k) can also
be written as the difference

Sd kð Þ ¼ Sþ kð Þ � S� kð Þ ð22Þ

Expressions S+(k) and Sd(k) are theoretically equivalent, but
reveal their difference when numerically evaluated at LGS.
This can be understood by comparing the term from (20)
exp(−iqh(r)) ∼ 1 at grazing q → 0, which turns in (22) to

exp �iqh rð Þð Þ � exp �iqh rð Þð Þ ¼ �2i sin qh rð Þð Þ ¼ O qð Þ

using Landau notation. Hence, in a numerical computation,
expression S+(k) would generally lead to a nonzero value at
q = 0, while expression Sd(k) would meet a O(q) behavior at
LGS. The choice between S+(k) and Sd(k) should thus be
funded on theoretical arguments.
[13] Since the work by Tatarskii and Charnotskii [1998a,

1998b] on scalar waves, we know that the asymptotic
behavior of the scattered far‐field at LGI and/or LGS can be
theoretically predicted. Moreover, LGI and LGS behaviors
are simply connected through the Lorenz reciprocity theorem.
At LGI, the limit is indicated by the right‐hand side of the
relevant integral equations (14) or (17). The reasoning is that
integral operators and scattering formula don’t depend on
the incident field and q0. Consequently, the behavior of the
right hand side is transferred to the unknowns m and j
through the integral equation and then to the scattering
amplitude. From the Fresnel’s coefficients for a finite per-
mittivity or conductivity, it can be easily shown that the
reflection and transmission dyadsR=−I+O(q0) and T=O(q0),
with Landau notation, and I the dyadic identity. Then
Ei + Er − Et = O(q0) and Hi + Hr − Ht = O(q0), with final
general result that S+(k) = O(q0q), with the LGS behavior
obtained by reciprocity. This holds in the impedance case, as
long as R = −I + O(q0) is met. A notable exception is the
perfectly conducting surface: when the permittivity is first
made infinite, or equivalently Zh = Z0 = 0, the reflection
coefficient for the V incident polarization is +1 for any
angle. The limit S+(k) = O(q0) at LGI is thus lost, and as
explained by Spiga et al. [2008], the perfectly conducting
model must be discarded in V polarization for incidence
angles around or larger than the Brewster angle, with
reciprocal situation for the V component of the scattering
amplitude at LGS.
[14] Therefore, it appears that the boundary integral for-

malism (14) and (17) is also a theoretical tool to predict the
behavior of the scattering amplitude for rough surface
scattering problem at low‐grazing angles. With this
knowledge, one can numerically evaluate the scattering
amplitude from the surface unknowns m and j through a
formula that enforce its theoretical behavior at LGS. When
the rough interface separates vacuum and an homogeneous
medium with finite permittivity, the scattering amplitude
show a S+(k) = O(q0) theoretical limit at LGI. Numerically
fitting this behavior with formula (20) requires accurate
cancelation of contributions from all over the rough area. It
will be proved in section 5 that the scattering amplitude
predicted by formula (22) coincides with the more classical

(20) at non‐grazing scattering angle and ensures the correct
asymptotic behavior at LGS.

4. Extrapolation

[15] Solving such scattering problems, even with fast
numerical solvers, remains time consuming. In addition, the
iterative solvers do not take benefit from the solution at a
given incidence angle to speed up the computation for
another incidence angle.
[16] With the aim of saving computation time, we show

how a single computation of the backscattered field for a
given grazing incidence can be extrapolated from the
knowledge of the theoretical asymptotic behavior of the
scattering amplitude. (17) and (14) are linear integral
equation or system that we symbolically denote

AX ¼ B ð23Þ

The integral operators, M0, P0 and so on, depend on the
roughness of the surface and boundary conditions, but not
on the incident field. As such, A is not a function of g0 or q0.
Equation (23) can be derived with respect to q0, and at the
LGI limit

A
@X
@q0

� �
q0¼0

¼ @B
@q0

� �
q0¼0

ð24Þ

This linear equation can be solved to compute @m
@q0


 �
q0=0

and @j
@q0


 �
q0=0.

[17] Since the scattering amplitude depends on q0 only
through m and j, the derivative @S�

@q0


 �
q0= 0 follows the same

expression (20) as S±, with only m and j replaced by their
LGI derivatives @m

@q0


 �
q0=0 and

@j
@q0


 �
q0=0, respectively.

[18] Denoting by sh the RMS height of the rough surface,
a first‐order expansion

S ’ q0
@S
@q0

� �
q0¼0

ð25Þ

is expected to be accurate as far the product q0sh remains
small.

5. Numerical Results

[19] Here, the integral equation or system derived in
section 2 is solved with the help of the method of moments.
Basis and testing functions are pulse (piecewise constant)
and Dirac functions, respectively. The linear system stem-
ming from discretization, with its matrix full, is far too large
for direct algorithms. Its solution is based on a fast iterative
scheme. With the multilevel canonical grid method [Li et al.,
2001; Soriano and Saillard, 2003], the matrix‐vector
product is performed at floating point operation (CPU) and
central memory (RAM) costs that behave as N log2 N and N,
respectively, where N is the number of unknowns. The
system is solved with a preconditioned GMRES.
[20] The first example aims at pointing out the advantage

of the approach used here. For this purpose, we consider the
sea surface described by a fully developed spectrum
[Elfouhaily et al., 1997], with wind speed 3 m/s. To speed up
the computation, it is assumed to be perfectly conducting.
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The HH bistatic NRCS at L band (1.2 GHz, wavelength
l = 25 cm) in the plane of incidence at 89° incidence, has
been computed through averaging over 100 samples, each of
them being 12 m = 48l square. The surface is sampled with
a one‐eighth wavelength step; an associated 4K0 high fre-
quency cut‐off is applied to the sea spectrum. The roughness
is limited to the central part of the samples, with 2l‐long
plateaus on the edges: this means with notations of Figure 1
that Lg = Ld = 2l and L = 44l. Note also that a smooth
transition is applied between the roughness and the plateaus,
over 4l. As a consequence, the area A for the normalization
of the RCS is difficult to define for the GMoM. Here, it is
set to A = 40l × 40l. This may have a little impact on
comparisons to other approaches or experimental data. All
those dimensions are chosen with no reference to the inci-
dence angle. Still, for the Monte Carlo average to be sta-
tistically significant, the length of the rough part of the
samples has to be much larger than the characteristic hori-
zontal scales of the roughness, that is the wavelength of the
peak wave in the ocean surface case. Three curves are
plotted in Figure 2: one represents the bistatic NRCS as
derived from Stratton‐Chu formula (S+), one is the NRCS in
the lower medium, which, according to the extinction the-
orem, should vanish (S−) and the third one is the NRCS
derived from the difference Sd = S+ − S−. As usual, the
angular resolution of those diagrams is inversely propor-
tional to the samples dimensions. In order for rapid angular
variations in radar cross sections to be studied, one has to

correctly set the surface size, and to test convergence on this
parameter.
[21] Clearly, the use of Stratton‐Chu formula S+ does not

provide an accurate estimation of the bistatic cross section
beyond −75°. The ratio between the largest and the smallest
value of the NRCS, which can be seen as the numerical
dynamic range, does not exceed 106. It is linked to the
accuracy with which the extinction theorem S− is satisfied.
Performing the difference (22) permits to significantly
improve the dynamic range and to compute the NRCS at
grazing scattering angles.
[22] We now test the performances of first orders

approximate surface scattering methods at low‐grazing
angles. Since the Kirchhoff approximation of Beckmann and
Spizzichino [1963] fails to show the correct qq0 behavior at
grazing, it is discarded and we focus on the small pertur-
bation method (SPM1) of Rice [1951] and the small slope
approximation (SSA1) of Voronovich [1994]. There exist
for such theories statistical formulations associated to a
plane wave illuminating an infinite surface with stationary
roughness. In order to avoid Monte Carlo and normalization
errors, and to focus on the impact of physical assumptions
on the scattering at grazing, approximate models NRCS are
computed through Monte Carlo average, with the same
samples and configuration as for the GMoM. Still consid-
ering the ocean surface at L band and 89° incidence, we
compare on Figure 3 the bistatic diagrams of the GMoM and
SSA1. The standard validity criterions are sh < l/20 for
SPM1 and K0shss < 1 for SSA1, with sh and ss the surface

Figure 2. HH component of the bistatic normalized scattering cross section at L band (1.2 GHz) and 89°
incidence versus scattering angle in the plane of incidence for sea surface with wind speed 3 m/s. The
surface is assumed to be perfectly conducting. The NRCS is derived from three different scattering ampli-
tude expressions S+ (solid line), S− (dotted line) and the difference Sd = S+ − S− (dash‐dotted line).
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height and slope root mean squares. Our surface is outside
SPM1’s validity domain, but inside SSA1’s, with K0shss =
0.16. Nevertheless, on this example, the SPM1 diagram do
coincide perfectly with SSA1 on the whole scattering angles
range, and thus is not plotted. It can be seen that the
approximate models underestimate the NRCS by several
dBs, with the error increasing from 2 dB at +80° to 8 dB in
low‐grazing backward angles and in the backscattering
direction.
[23] To extend this study, we now consider rough surfaces

with a Gaussian spectrum of correlation radius l/2 and a
height root mean square varying from 0.08l to 0.83l, in the
perfectly conducting case. With such a short correlation
radius, the sample side can be shortened to 16l, with 2l

plateaus, still. The number of samples for the Monte Carlo
average is now 200. In Figure 4, the HH monostatic NRCS
difference between SSA1 and the GMoM is plotted against
the surfaces height root mean square for angles 20°, 60°, 80°
and 89°. If the SPM1 enjoys a statistical expression for its
NRCS, the GMoM mean NRCS is obtained through Monte
Carlo average on a finite number of samples. Corresponding
error bars appear on plots of Figure 4. At the small height
limit, the curves for all angles tend toward zero, thus
underlining the accuracy of the GMoM. Then, the SSA1
error increases more or less linearly with the height root
mean square, but with slopes that strongly depend on the
angle. For a height of l/20, its error is smaller that 1 dB 20°
angle, around 3 dB at 60°, but reaches 8 dB at 80° and even
10 dB at 89°. For that Gaussian surfaces, SPM1 and SSA1
do not coincide exactly, still the results and conclusions are
similar. The GMoM clearly states that the domain of validity
of approximate methods varies with the angle and narrows
at grazing. Beyond 80°, the 3 dB error line is crossed as
soon as l/60 height root mean square for both SPM1 and
SSA1.
[24] Up to now, bistatic diagrams have been preferently

presented, since with the Method of Moment, for a given
incidence angle, it is easy and fast to compute through
formula (20) the scattered field for any (reasonable) number
of scattering angles, but when the incidence is varied, the
integral equation (17) or system (14) is to be solved for a
new right‐hand side. When direct methods such as LU
decomposition are used to solve the linear system that
comes from the discretization of integral equations, multiple
right‐hand sides are not a problem. However, the number of
unknowns N is too large for today’s computers, except for
one‐dimensional (1D) surfaces, i.e. with an invariance
along one horizontal direction. Beyond this assumption, the
system is solved iteratively, and the computing time is

Figure 3. HH component of the bistatic normalized scatter-
ing cross section predicted by the GMoM (dashed line) and
SPM1 or SSA1 (solid line) at L band (1.2 GHz) and 89°
incidence versus scattering angle in the plane of incidence
for sea surface with wind speed 3 m/s. The surface is
assumed to be perfectly conducting.

Figure 4. HH monostatic NRCS error in the plane of incidence between SPM1 and the GMoM versus
the surfaces height root mean square for perfectly conducting surfaces with Gaussian spectrum of corre-
lation radius l/2 and angles 20°, 60°, 80° and 89°, with error bars for the GMoM Monte Carlo average.
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proportional to the number of incidence angles. For the
monostatic diagram in the low‐grazing angles region, one
can try extrapolation (25). On Figure 5 is plotted for the
rougher Gaussian surface the bistatic NRCS at backward
scattering angles for incidence angles 60°, 80°, 87° and 89°,
and the NRCS obtained through (25). It appears that
extrapolation matches the rigorous computation at angles
89° and 87°. At 80°, a discrepancy starts being visible, but
the error is smaller than 1 dB, and obviously the extrapo-
lation looses accuracy at larger grazing angles, with a 3.5
dB error at 60°.

6. Conclusion

[25] The incidence angle is no longer a limit to the
numerical solution of the rough surface electromagnetic
wave scattering problem. We have presented a grazing
surface integral formalism with a numerical cost made
independent of the incidence. The cases of a rough interface
between two homogeneous media as well as the impedance
boundary condition are detailed in full vector theory. In this
paper, the model has been implemented following the
Method of Moments with pulse basis functions and Dirac
testing functions, a classical scheme. As a matter of fact, the
integral equations are modified, but the integral operators
being left untouched, the countless associated numerical
techniques published in the literature for discretization, such
as the Boundary ElementMethod [Rao et al., 1982;Chew et al.,
2008], or acceleration techniques such as the Forward

Backward Spectral Acceleration of Torrungrueng and
Johnson [2001] or the Fast Multipole Method of Jandhyala
et al. [1998], might be used as is.
[26] Also, the scattering amplitude formula shows an

alternative equivalent expression that reveals best fitted to
low‐grazing scattering angles. The presented surface inte-
gral formalism combined with the equivalent scattering
formula constitute a dedicated model for the wave scattering
from rough surfaces at low‐grazing incidence and scattering
angles.
[27] Tested first‐order approximate methods, namely the

small perturbation method and the small slope approxima-
tion perform very poorly at low‐grazing angles, with their
validity domain drastically narrowed. At grazing, multiple
scattering is often modelized by a shadowing function
[Bourlier et al., 2002]. However, it appears that first‐order
approximations systematically underestimate the Radar
Cross Section at grazing angles, and thus applying a sha-
dowing function would only increase the gap between rig-
orous and approximate computations.
[28] Nevertheless, the grazing angles regime also have

positive characteristics. It has been shown how the mono-
static diagram at large incidence angles can be extrapolated
from a single (statistical) calculus at grazing incidence. This
is a lead for the development of approximate scattering
models devoted to the low‐grazing angles.

[29] Acknowledgments. This work was partially supported by
DCNS.

Figure 5. HH bistatic NRCS for incidence angles 60°, 80°, 87° and 89° (solid lines) and extrapolated
HH monostatic NRCS (dashed line) for perfectly conducting surfaces with Gaussian spectrum of height
root mean square 0.83l and correlation radius l/2 versus scattering angle in the plane of incidence.
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