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A Cutoff Invariant Two-Scale Model in
Electromagnetic Scattering From Sea Surfaces

Gabriel Soriano and Charles-Antoine Guérin

Abstract—The two-scale model (TSM) is one of the most fre-
quently employed approaches in scattering from multiscale sur-
faces such as ocean surfaces. It consists of combining geometrical
optics (GO) with the small-perturbation model (SPM) to be able
to cope with both the small- and large-scale components of the
surface. However, well-known shortcomings of this method are
the arbitrariness of the dividing scale and the sensitivity of the
scattering cross section to the choice of this parameter. We propose
to replace SPM with the first-order small-slope approximation
(SSA1) to treat the small-scale roughness and derive the formulas
for the corresponding TSM, referred to as GO-SSA. We show that
GO-SSA is robust to the choice of the frequency cutoff and give a
numerical illustration for the sea surface.

Index Terms—Ocean scattering, small slope approximation
(SSA), two-scale model (TSM).

I. INTRODUCTION

THE composite-surface model, or two-scale model (TSM)
[1]–[4], is currently the most employed for calculation of

ocean-surface scattering. In this model, the surface is consid-
ered as a superposition of long waves and short ripples. The
contribution of each kind of roughness to the scattering process
is then treated differently. The formulation of the TSM varies
with authors and applications: radar backscattering coefficient,
surface brightness temperature, etc.

In its simplest expression, the TSM combines geometrical
optics (GO) for long waves and the small-perturbation method
at first order (SPM1) for short waves. In terms of scattering
cross section, it can be symbolically summarized as follows:

GO − SPM = GO + SPM1 ∗ (pdf slopes). (1)

The TSM relies on a cutoff parameter, which divides the
elevation spectrum into small- and large-scale waves. In the
derivation of this model, the cutoff frequency is chosen large
enough to ensure that the exponential quantities involving the
small-scale wave correlation function can be linearized (see,
e.g., the discussion in [5]). However, the applicability of the
GO to the remaining long-wave components is not guaranteed,
as there is, in general, no common regime for Bragg and
GO scattering from ocean surfaces. Therefore, some authors
recommend that values of the cutoff be obtained by comparison
with experimental data or numerical simulations [6], [7]. This
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value will change with the electromagnetic (EM) frequency but
also with the incidence angle and the wind condition. Another
weakness of (1) is that GO-SPM is at least equal to the GO
and that small-scale roughness has no impact on this term.
Since Wright in 1968 [1], several advanced methods have been
published that can theoretically cope with the ocean-surface
scattering at any frequency (see, e.g., [8], for a review). How-
ever, these methods are often complex, and their application
to multiscale surfaces, such as the ocean, can quickly become
tricky and computationally intensive. The aim of this letter is
to show that, with minimum change, the TSM can be made
more reliable in the sense that its dependence on the cutoff is
relegated to a position of secondary importance.

The main idea is that SPM1 has too tight of a validity domain
and should be replaced with the small-slope approximation
[9], [10] at first order (SSA1). This method has a wider validity
domain than SPM1 while being of the same complexity as
a mere Kirchhoff approximation. Furthermore, it has been
shown [11] to be very accurate on the ocean elevation spectrum
as long as the lowest frequency components of the spectrum
are truncated. However, the main weakness of SSA1 is its in-
consistency with GO for large scales, which makes it unable to
cope with the longest ocean waves (except at low EM frequency
and/or low wind speed). This is why SSA1 cannot be used alone
to treat the whole ocean surface and has to be incorporated in
a TSM. Nevertheless, its domain of validity is sufficiently large
to allow a displacement of the cutoff toward nonresonant fre-
quencies in the validity domain of GO. Therefore, we propose
to combine the GO for long waves and SSA1 for short waves
in an improved TSM, called GO-SSA. In Section II, a complete
development of the GO-SSA is given. For the convenience of
the practitioner, we provide explicit formulas of the GO-SSA
model in Section III. In Section IV, the GO-SSA applied to the
unified directional ocean spectrum [12] is proved to be quasi
independent of the cutoff. A numerical illustration is given for
both the monostatic and the bistatic case.

II. FORMULATION OF THE MODEL

We consider a rough surface Σ, centered about the horizontal
(x, y) plane separating vacuum (upper medium) from a homo-
geneous medium with complex relative permittivity εr (lower
medium). The surface is illuminated from above by a unitary
plane wave eiK0·R with wave vector K0, where R = (x, y, z)
is the 3-D position vector. The scattered waves in the upper
medium are labeled by their wave vector K. The scattering
tensor S associated with the surface is defined by

Es = −i
eiKR

R
S(K,K0)E0 (2)
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where Es is scattered far field at distance R and in direction
K and E0 is the incident polarization. As usual, in the TSM,
the surface elevation is decomposed into small- and large-
scale components. We assimilate the large-scale component to
a succession of adjoining randomly tilted plane facets with
the same projected area A. We denote nj as the unit normal
vector of the jth facet and Rj as the position vector of its
center. The small-scale component hs is a stationary centered
Gaussian random process with rms deviation σs = 〈h2

s 〉1/2,
superimposed on the facets along their normal direction. Hence,
the surface is described by the position vector

R|Σ = r̃ + hs(r̃)n (3)

where r̃ is a vector along the large-scale facet, n is the local
normal vector, and hs is understood as a function of two coor-
dinates in the framework of this facet. We suppose that there is
no correlation between the successive facet slopes nor between
the small- and large-scale processes. Our analysis relies on the
fundamental assumption that the rough facets scatter coherently
yet without coupling. We therefore write

S(K,K0) =
∑
j∈Z2

Sj (4)

with the convention that Sj is the scattering amplitude of the jth
facet illuminated by a truncated plane wave eiK0·RΠA(R −
Rj). Here, the cutoff function ΠA delimits the region of space
whose vertical projection falls within the area A: ΠA(x, y, z)=1
if (x, y) ∈ A, else ΠA(x, y, z) = 0. The scattering amplitude
of each rough facet will be calculated by means of SSA1,
evaluated in its local framework. We now proceed with the
evaluation of the coherent and incoherent cross sections, which
are related to the mean and fluctuation of the scattering ampli-
tude over the roughness process. We denote by 〈·〉s, 〈·〉L, and
〈·〉s,L the ensemble average over small-, large-, and composite
scales, respectively. At this stage, it is convenient to introduce
the Ewald vector Q = K − K0. We denote qj

⊥ = Q · nj and
qj
‖ = Q − qj

⊥nj as its normal and in-plane component, respec-
tively, with respect to a facet with normal nj . The scattering
amplitude of the jth facet under SSA1 is given by

Sj =
2π

qj
⊥

e−iQ·Rj B(K;K0;nj)

× 1
4π2

∫
dr̃ΠA(r̃)e−iQ·[r̃+h(r̃)nj ] (5)

where the vector r̃ runs over the facet and B(K;K0;nj) is
the Bragg scattering tensor associated with the tilted plane.
Performing an ensemble average over small scales, we obtain
the coherent component of each facet

〈Sj〉s =
2π

qj
⊥

e−iQ·Rj B(K;K0;nj)e−
1
2 (qj

⊥σs)2

× 1
4π2

∫
dr̃ΠA(r̃)e−iqj

‖·r̃. (6)

The integration variable can be converted to a horizontal vari-
able r through the correspondence

dr̃→
(
1+s2

j

)1/2
dr ΠA(r̃)→ΠA(r) qj

‖ ·r̃→qH+qzsj ·r

where qz = Q · ẑ and qH = Q − qz ẑ designate the vertical and
horizontal components of the Ewald vector, respectively. Hence

〈Sj〉s =
2π

qj
⊥

e−iQ·Rj B(K;K0;nj)e−
1
2 (qj

⊥σs)2

×
(
1 + s2

j

)1/2 Π̂A(qH + qzsj) (7)

where Π̂A is the 2-D Fourier transform of ΠA

Π̂A(ξ) =
1

4π2

∫
R2

dre−iξ·rΠA(r). (8)

Typically, the facet is much larger than the incident wavelength
so that the function Π̂A is sharply peaked around the local spec-
ular direction. Hence, the involved quantities must be evaluated
at the specular slope

sj → −qH/qz nj → Q̂ :=
Q

Q
. (9)

The Bragg scattering tensor in the local specular direction can
be expressed [8] through the Fresnel reflection operator (see
Section III for explicit definitions)

B(K;K0; Q̂) =
Q2

2
R

(
K + K0

2
; Q̂

)
. (10)

Altogether, this gives the coherent contribution of a single facet

〈Sj〉s = e−iQ·Rj VΠ̂A(qH + qzsj) (11)

where we have introduced the tensor

V = 2πe−(Qσs)
2/2 Q2

2qz
R

(
K + K0

2
; Q̂

)
. (12)

Further averaging over the large scales under the assumption
that the facet altitudes Hj = Rj · ẑ and slopes sj are Gaussian
and independent random variables leads to

〈Sj〉s,L = Ve−(qzσL)2/2e−iqH ·rj

[
Π̂A(−qz·) ∗ P

]
(−qH/qz)

(13)

where σL = 〈H2
j 〉L is the large-scale rms height, P is the pdf

of slopes, and the asterisk stands for the convolution. The
incoherent scattering cross section is obtained by normalizing
the scattered intensity by an increasing illuminated area. It can
therefore be written as

σ(K,K0) = lim
N→∞

1
NA

σN (K,K0) (14)

where σN is the intensity produced by the illumination of N
facets, each of which has projected area A

σN (K,K0)=
∑

|j|,|j′|≤N

[〈
SjS

∗
j′

〉
s,L

−〈Sj〉s,L
〈
S∗

j′
〉
s,L

]
. (15)
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Here, Sj refers to any of the four components of the scattering
tensor in a polarization basis. Now, we can decompose each
elementary scattering amplitude into a mean and fluctuating
part with respect to the small-scale average

Sj = 〈Sj〉s + δSj . (16)

The assumption that the facets’ slopes are independent implies
that both the mean and fluctuating part of the local scatter-
ing amplitudes are uncorrelated from one facet to another,
leading to

σ(K,K0) =
1
A

(〈〈
|δSj |2

〉
s

〉
L

+
〈
|〈Sj〉s|2

〉
L
− |〈Sj〉s,L|2

)
.

(17)

The first term is the incoherent cross section of SSA1 applied to
small scales in their local framework and averaged over large-
scale slopes

1
A

〈〈
|δSj |2

〉
s

〉
L

= 〈σSSA1(K,K0;n)〉L . (18)

The remaining contribution in (17) is the variance over large
scales, Var(〈Sj〉s)〉L, of the small-scale coherent field, normal-
ized by the area

Var (〈Sj〉s)〉L
A

=
|V |2
A

( ∣∣∣Π̂A(−qz·)
∣∣∣2 ∗ P

− e−(qzσL)2
∣∣∣Π̂A(−qz·) ∗ P

∣∣∣2 )
(−qH/qz). (19)

Here, V stands for any component of V in the polarization
basis. When the facet area A is much larger than the EM wave-
length, we have Π̂A(ξ) ∼ δ(ξ) and |Π̂A(ξ)|2 ∼ A/(4π2)δ(ξ).
On the other hand, the large-scale rms height σL and slope
sL tend to zero as the facet size is increased, since there are
fewer and fewer scales beyond this dividing scale. Hence, we
have also P (ξ) → δ(ξ) in the limit A → ∞, and the term
(19) must be handled with caution. If the support of the func-
tion P is much smaller than that of Π̂A (i.e., q2

zAs2
L � 1),

then we can first replace P with a delta function in the con-
volution to obtain

Var (〈Sj〉s)〉L
A

=
|V |2
4π2

δ(qH)
(
1 − e−(qzσL)2

)
. (20)

If on the contrary q2
zAs2

L � 1, then it is Π̂A that plays the role
of a delta function in the convolution, and we have

Var (〈Sj〉s)〉L
A


 |V |2
4π2q2

z

P (−qH/qz). (21)

Note that the contribution arising from the latter term in (19)
is negligible in that case, since for Gaussian pdf, it is of the
order P 2/(q2

zA) ∼ P/(q2
zAs2

L). Since σL and sL have the same
monotonic behavior with respect to the facet size, we chose to
condense (20) and (21) into a single approximate form

Var (〈Sj〉s)〉L
A

=
|V |2

4π2q2
z

P (−qH/qz)
[
1−e−(qzσL)2

]
. (22)

Altogether, the two-scale incoherent cross section can be
written

σ(K,K0) = 〈σSSA1(K,K0;n)〉L +
(
1 − e−(qzσL)2

)

× e−Q2σ2
s

∣∣∣∣R
(

K + K0

2
; Q̂

)∣∣∣∣2 Q4

4q4
z

P (−qH/qz) (23)

which holds for any of the four components of the involved
quantities in a polarization basis. The first term is the orien-
tation average over large-scale slopes of the local SSA1 cross
section applied to the small scale. The second term is identified
as the usual GO cross section of large scales damped by an
exponential attenuation factor due to the small-scale coherent
field. The main result of this paper can thus be summed up in
the symbolic equation as follows:

GO − SSA = GO × e−Q2σ2
s

[
1 − e−(qzσL)2

]
+ SSA1 ∗ (pdf slopes). (24)

A consistency test on this formula can be performed by in-
specting the limiting cases. GO is plainly recovered in the ab-
sence of small scale (σs =0) and for large Rayleigh parameter
(qzσL � 1). If the large-scale components are set to zero, the
pdf of slope becomes a delta function, and the incoherent cross
section reduces to that of SSA1. The qualitative behavior of
each of the terms as the cutoff frequency (Kc ∼ A−1/2) is
varied makes GO-SSA robust to the latter. Indeed, moving Kc

toward high frequencies diminishes the small-scale rms and the
SSA1 incoherent cross section. This is, however, compensated
by the increase of the damping exponential factor due to small-
scale roughness.

Note that this factor has already appeared in the literature, in
earlier attempts to modify the TSM, by treating the small-scale
part with a different theory from SPM, essentially the Kirchhoff
approximation [13]–[15].

III. EXPLICIT FORMULAS FOR THE GO-SSA MODEL

For the convenience of the practitioner, we provide explicit
formulas of the GO-SSA model in the standard polarization
basis. To avoid tedious use of change of basis matrices, it
is convenient to express the SSA1 scattering amplitude in a
dyadic form, which is not bound to the choice of a reference
framework. The Bragg scattering matrix involved in SSA1 can
be written as per [8], [16]

B(K;K0;n)=−ε−1
2

K2
[
1 − K̂K̂+R(K;n)

]

×
[
1+

(
1
ε
−1

)
nn

] [
1−K̂0K̂0+R(K0;n)

]
with K̂ = K/K and K̂0 = K0/K. The involved Fresnel
reflection operator is given by

R(K;n) =
∑

i=1,2

ri(K⊥)p+
i (K;n)p−

i (K;n) (25)

where K⊥ = |K · n| is the absolute normal component of the
wave vector and r1 and r2 are the Fresnel reflection coefficients
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in vertical and horizontal polarization, respectively, evaluated at
the local angle. We have denoted p±

i as the vectors forming the
canonical polarization basis in the framework of the tilted plane
for upgoing (p+

i ) and downgoing (p−
i ) plane waves. They are

given by

p±
2 (K;n) =

n × K

‖n × K‖

p±
1 (K;n) =

1
K

(K‖ ± K⊥n) × p±
2 (K;n)

with K‖ = K − K · nn. Each of the components of the inco-

herent SSA1 cross section, 〈σji
SSA1(K,K0;n)〉L, is obtained

through

〈∣∣p+
j (K; ẑ)B(K;K0;n)p−

i (K0; ẑ)
∣∣2 L(Q;n)

〉
L

(26)

where i and j denote the incident and scattered polarization,
respectively. Here, the function L is given by

L(Q;n) =
1

4π2
e−q2

⊥σ2
s

∫
R2

dre−iq‖·r
[
eq2

⊥C(r) − 1
]

(27)

where C(r) = 〈h(0)h(r)〉s is the correlation function of the
small-scale process. In the literature, the Fourier transform of
the ocean correlation, the elevation spectrum

Ψ(k, ϕ) =
B(k)
2πk4

(1 + ∆(k) cos 2ϕ) (28)

is generally expressed in polar coordinates (k, ϕ), ϕ = 0 being
the upwind direction, with the help of the omnidirectional
curvature spectrum B(k) and the spreading function ∆(k) [12].
Consequently, the small-scale correlation in polar coordinates
can be written as C(r, θ) = C0(r) + C2(r) cos 2θ with

C0(r) =
∫

k>Kc

B(k)
k3

J0(kr)dk

C2(r) = −
∫

k>Kc

B(k)∆(k)
k3

J2(kr)dk. (29)

Under the assumption that the small-scale roughness is weakly
anisotropic: K2C2 � 1, integral (27) is also a sum L = L0 +
L2 cos 2ϕ with

L0 =
e−q2

⊥σ2
s

2π

∞∫
0

[
eq2

⊥C0(r) − 1
]
J0(q‖r)rdr

L2 = − q2
⊥

e−q2
⊥σ2

s

2π

∞∫
0

C2(r)eq2
⊥C0(r)J2(q‖r)rdr (30)

and q‖ = (q‖, ϕ) in polar coordinates.

Fig. 1. Ocean backscattering cross section at Ku-band (f = 14.6 GHz)
predicted by the GO-SSA versus the monostatic incidence angle, along wind,
for a wind speed of 15 m/s and for three values of the cutoff wavenumber.
For clarity, a 10-dB attenuation has been applied to the horizontally polarized
component.

Numerical evaluation of (29) and (30) is quite tricky, due to
oscillating and slowly decreasing integrands. However, increas-
ing the cutoff wavenumber Kc makes the computation easier.

IV. NUMERICAL RESULTS AND CONCLUSION

The GO-SSA model has been applied to the unified direc-
tional ocean spectrum [12]. The sea is fully developed, with
a wind speed at 15 m/s. EM frequency is in Ku-band, at
14.6 GHz. A monostatic configuration has been chosen, in the
plane along the wind. The scattering cross section predicted
by GO-SSA is plotted versus the monostatic incidence angle
in Fig. 1 for three different values of the cutoff wavenumber:
Kc = K/4,K/8,K/16, where K is the EM wavenumber.
Only copolarized components of the scattered field are shown,
VV and HH, and a 10-dB attenuation has been applied to
the HH signal to distinguish the two curves around normal
incidence. As one can see, the value of the cutoff has the
following minor impact on the monostatic diagram: the curves
Kc = K/4 and Kc = K/16 are always closer than 1 dB,
except in HH beyond 65◦. Note that differences between ocean-
spectrum models can induce larger errors. Due to slope mod-
ulation, the TSM models give a nonzero cross-polarization in
the plane of incidence, which is absent for GO, SPM1, and
SSA1 taken separately. These components are discarded, since
cross-polarization is a multiple-scattering effect that cannot be
handled by combining two single-scattering methods.

The backscattering cross section of Fig. 1 is, following
expression (24), the sum of two terms, a damped GO term,
GO × e−Q2σ2

s [1 − e−(qzσL)2 ], and an SSA1 term averaged over
large slopes, SSA1 ∗ (pdf slopes). The contribution of each term
is shown in Fig. 2 for vertical polarization and three different
values of the cutoff. For Kc = K/4, the larger term is GO
at small angles (< 20◦) and SSA at larger angles. At smaller
cutoffs, Kc = K/8, the SSA term dominates everywhere. For
Kc = K/16, the contribution of the GO term at nadir is as low
as 0.2 dB.

Fig. 3 shows a comparison of GO-SSA with GO-SPM at
various values of the cutoff (Kc = K/16,K/8,K/3). The
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Fig. 2. Contribution of the GO term GO × e−Q2σ2
s [1 − e−(qzσL)2 ] and

of the SSA term SSA1 ∗ (pdf slopes) to the ocean VV backscattering cross
section at Ku-band (f = 14.6 GHz) versus the monostatic incidence angle,
along wind, for a 15-m/s wind speed and for the cutoff wavenumbers Kc =
K/4, K/8, K/16.

Fig. 3. V-polarized ocean bistatic cross section at L-band (f = 1.25 GHz)
versus the scattering angle (plane of incidence), along wind, for a 5-m/s wind
speed, predicted by GO-SPM for three values of the cutoff wavenumber and
GO-SSA.

configuration is bistatic, with an incidence angle of 60◦ at
L-band frequency (1.25 GHz) and for low wind speed (5 m/s).
Only the VV component is shown. Due to the damping expo-
nential factor, the diagrams differ around the specular direction,
where GO is dominant: here, from 30◦ to 90◦. Replacing SPM1
by SSA1 in the convolution by the pdf of large-scale slopes has
also an impact, as it appears on the diagrams between −30◦ and
30◦, where GO-SSA has a larger scattering cross section than

GO-SPM regardless of the cutoff. It is interesting to note that
the value of the cutoff has a dramatic impact on the level of both
GO and SSA taken separately, even though the sum of these two
terms remains stable.

To conclude, we have shown in this letter how the principal
weakness of the classical TSM for ocean scattering, namely,
its dependence on the cutoff, can be amended. The improved
model GO-SSA combines two first-order methods, GO and
SSA1. The cutoff can be set to nonresonant scales such as
Kc = K/16, its exact value being unimportant.
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