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Abstract We study the main nonlinear solutions of plas-
monic slot waveguides made from an anisotropic metama-
terial core with a positive Kerr-type nonlinearity surrounded
by two semi-infinite metal regions. First, we demonstrate
that for a highly anisotropic diagonal elliptical core, the
bifurcation threshold of the asymmetric mode is reduced
from the GW/m level for the isotropic case to 50 MW/m
level indicating a strong enhancement of the spatial non-
linear effects. In addition, the slope of the dispersion curve
for the asymmetric mode remains positive, at least near the
bifurcation, suggesting a stable mode. Second, we show
that for the hyperbolic case, there is no physically mean-
ingful asymmetric mode, and that the sign of the effective
nonlinearity can become negative.
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Introduction

Nonlinear plasmonics is now a thriving research field [1].
Its integrated branch, where surface plasmon polariton
waves propagate at least partially in nonlinear media, is
seen as promising in high-speed small footprint signal pro-
cessing [2]. As a building block for nonlinear plasmonic
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circuitry, the nonlinear plasmonic slot waveguide (NPSW)
is of crucial importance even in its simplest version [3, 4].
Since all the key features can be studied and understood in
detail, this structure allows future generalizations from more
complex linear structures like the plasmonic waveguide [5].
The strong field confinement provided by these plasmonic
waveguides ensures a reinforcement of the nonlinear effects
which can be boosted further using epsilon-near-zero (ENZ)
materials, as was already shown [6, 7]. It is worth mention-
ing that metal nonlinearities have already been investigated;
in one study, at least, the wavelength range of enhanced
nonlinearity has been controlled using metamaterials [8].
Here, we focus on structures where the nonlinearity is pro-
vided by dielectric materials like hydrogenated amorphous
silicon (a-Si:H) [9] due to its high intrinsic third-order non-
linearity around the telecommunication wavelength and to
its manufacturing capabilities.

In [6], nonlinear guided waves were investigated in
anisotropic structures with an isotropic effective dielec-
tric response for transverse magnetic (TM) waves, while
here, we consider a metamaterial core with an anisotropic
effective dielectric response for TM waves. Other related
studies [7, 8] neither focused on nonlinear waveguides nor
considered plasmonic structures. The present study tackles
these issues. Furthermore, a record change of 0.72 in the
refractive index increase induced by a third-order nonlin-
earity has recently been reported for an indium tin oxide
layer [10]. As concluded by the authors, this result chal-
lenges the usual hypothesis that the nonlinear term can be
treated as a perturbation. One way to address this prob-
lem, for the case of nonlinear stationary waves, is to take
into account the spatial profile of the fields directly from
Maxwell’s equations, as for example in [11, 12]. This way
of proceeding is well established in studies on linear or non-
linear waveguides since the modal approach is the first key
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step [13] in investigating the self-coherent stationary states
of Maxwell’s equations. It has already been used many
times for the study of nonlinear plasmonic structures [4,
14–17].

One of the most common phenomena in symmetric non-
linear devices including photonic ones is the symmetry
breaking. It refers to the existence of solutions that do not
preserve the original symmetries of the underlying system
and is typically associated with a pitchfork bifurcation [18–
20]; the solutions breaking the symmetry can exist only
after a certain power threshold. In nonlinear optics, the
symmetry breaking caused by the Kerr-type nonlinearity
has been extensively studied [18, 21–23]. During the last
decade, the symmetry breaking has been observed in sym-
metric nonlinear plasmonic waveguides composed of an
isotropic nonlinear core of Kerr-type embedded between
two semi-infinite metal regions at the telecommunication
wavelength [4, 15, 24, 25]. The symmetry breaking in these
NPSWs is associated with the emergence of an asymmetric
mode which has no analogue in the linear case, and it bifur-
cates from the fundamental symmetric mode above a power
threshold. Moreover, for the symmetric nonlinear structures
with a thin nonlinear metal film surrounded by two lin-
ear dielectric regions [26], the asymmetric mode has also
been observed in which the metal film presents a Kerr-like
nonlinear term in its Drude dielectric response at the vis-
ible wavelength. The bifurcation of the asymmetric mode
from the fundamental symmetric mode indicates a strong
impact of the nonlinearity on the waveguide properties. It is
a clear label of a highly nonlinear waveguide. This asym-
metric mode is crucial for nonlinear optical devices and it
is the key point for the power switching operation in non-
linear fiber couplers [27, 28] and for nonlinear plasmonic
directional couplers composed of two adjacent symmetric
NPSWs [29, 30]. These adjacent NPSWs are usually called
the arms (channels) of the nonlinear directional coupler.
In the nonlinear directional couplers, the optical power is
coupled to one of the waveguide channels (one arm of the
structure), and the output power is measured in the same
waveguide channel after some distance (after all the power
transfers to the second channel in a linear regime). As it is
described in [29], for small input powers, the ratio between
the output and the input power in the first channel (where
the power is coupled) remains close to zero since all the
power is transferred to the second channel. However, when
the input power overcomes a fixed threshold, namely when
the asymmetric mode appears, light remains mostly in the
first channel providing an increase in the measured output
power in this waveguide channel. The idea behind this appli-
cation is the discrimination of the signals according to their
power levels which cannot occur in the low power regime
(before the bifurcation threshold). The interesting features
in the NPSWs open even more ways to control light by light,

for applications in optical signal processing in general and
all-optical switching [31]. Nevertheless, it appears that the
power needed to observe the interesting nonlinear effects
including symmetry breaking in the symmetric NPSWs is
in the range of GW/m which is still too high [4, 15, 24,
25] even for its improved version [32]. The high power
level needed limits the practical implementation of such
waveguides.

Here, extending to the anisotropic case the methods
we have developed to study stationary states in isotropic
NPSWs [16, 25], we describe the main properties obtained
when a nonlinear metamaterial is used as core medium. The
examples of metamaterial nonlinear cores used in the fol-
lowing are built applying the effective medium theory from
well-known materials and realistic parameters. The main
nonlinear solutions in both the elliptical and the hyperbolic
case are investigated. In the first cases, we demonstrate both
numerically and theoretically that for a highly anisotropic
case, the effective nonlinearity [16] can be enhanced nearly
up to five orders of magnitude allowing a decrease of nearly
three orders of magnitude in the bifurcation threshold of
the asymmetric mode existing in the symmetric structure [4,
25]. It is worth mentioning that a strong dependency of
the dispersion curve on the power is observed even before
the bifurcation of the asymmetric mode. In another word,
at low powers, the change of the effective index becomes
important (compared with its linear regime value), this is
a clear indication that the nonlinear phase shift and conse-
quently the third-order nonlinear properties like self-phase
modulation, cross-phase modulation, and four-wave mixing
can be extremely enhanced at low powers. These third-
order nonlinear properties are crucial for all-optical signal
processing.

Next, we show that, in the hyperbolic case, changes
appear in the field profiles compared with those of the sim-
ple isotropic NPSWs. We also demonstrate that, due to the
peculiar anisotropy, an effective defocusing effect can be
obtained from the initial positive Kerr nonlinearity. In this
work, we focus only on the key physical results and the used
methods will be mentioned briefly. For more details about
the derivation and validation of these methods, we refer to
our recent technical work [33].

Model

Figure 1 shows a scheme of the nonlinear waveguide
we investigate. Compared with already studied NPSWs
with an isotropic nonlinear dielectric core [3, 4, 34], the
new structure contains a metamaterial nonlinear core. We
will study only symmetric structures even if asymmetric
isotropic NPSWs have already been considered [25]. We
consider monochromatic TM waves propagating along the



Plasmonics

(a) (b)

Fig. 1 a Symmetric NPSW geometry with its metamaterial nonlinear core and the two semi-infinite metal regions. b Metamaterial nonlinear core
obtained from a stack of two types of layers with permittivities and thicknesses ε1 and d1 and ε2 and d2, respectively. Only material 1 is nonlinear

z direction (all field components evolve proportionally to
exp[i(k0neff z−ωt)]) in a one-dimensional NPSW depicted
in Fig. 1. Here, k0 = ω/c, where c denotes the speed of light
in vacuum, neff denotes the effective mode index and ω is
the light angular frequency. The electric field components
are (Ex, 0, iEz) and the magnetic field is (0, Hy, 0). In all
the waveguide, the magnetic permeability is equal to μ0,
that of vacuum. The nonlinear Kerr-type metamaterial core
of thickness dcore is anisotropic (see Fig. 1). Its full effec-
tive permittivity tensor ¯̄εeff has only three non-null diagonal
terms. Its linear diagonal elements are εjj ∀j ∈ {x, y, z}.
We derive these terms from simple effective medium theory
(EMT) applied to a stack of two isotropic material layers.
d1 and d2 are the layer thicknesses of isotropic material
1 (nonlinear, of focusing Kerr-type) and material 2 (lin-
ear), respectively. Their respective linear permittivities are
ε1 and ε2. The EMT is typically valid when the light wave-
length λ is much larger than d1 and d2. Depending on the
chosen orientation of the compound layers relative to the
Cartesian coordinate axes, different anisotropic permittivity
tensors can be built for the core. Due to the required z-
invariance, only two tensor types, where the z-axis belongs
to the layers, have to be considered. For the first one where
the layers are parallel to the x-axis, one has, for the linear
diagonal terms of ¯̄εeff : [εxx = ε// εyy = ε⊥ εzz = ε//]
with ε// = �e(rε2 + (1 − r)ε1), ε⊥ = �e((ε1ε2)/(rε1 +
(1 − r)ε2)), and r = d2/(d1 + d2). For the second case
where the layers are parallel to the y-axis (see Fig. 1b),
one gets: [ε⊥ ε// ε//]. We will focus only on this sec-
ond case. In this study, only the real parts of the material

permittivities will be considered since we are interested
only in determining the effective indices of the propagating
waves. The presence of losses in the considered metamate-
rials is unavoidable and mainly depends on the imaginary
parts of its constituent materials with permittivities ε1 and
ε2. Nevertheless, the loss problem can be alleviated by
incorporating gain medium in the core. Numerous theoreti-
cal [35–38] and experimental [39, 40] studies have already
introduced an active medium to compensate for the losses
in structures based on layered metamaterials.

To model these anisotropic waveguides, we assume that
the nonlinear Kerr term is isotropic. The j-th component of
the full effective permittivity tensor, εeff,j = εjj + α̃(E2

x +
E2

z ) with α̃ = ε0c�e(ε1)(1−r)n2,1 where n2,1 is the nonlin-
ear coefficient of the material 1, and is set at 2.10−17m2/W

as used in [25]. This is an approximation compared with
the full treatment of the anisotropic nonlinearity [33, 41].
To tackle the full case is beyond the scope of our study,
which is mostly dedicated to the impact of the anisotropy of
the linear terms (its extension, though, can be seen as what
the next step should be in this research field). In this study,
the wavelength is 1.55 μm. The permittivity of material 1,
ε1 (corresponding to a-Si:H), and the permittivity of the
gold metal claddings (see Fig. 1a) are the same as in [32],
while dcore is fixed at 400 nm (except in Fig. 2). Next, the
two used models of the Kerr nonlinear field dependence are
described.

In the first model, only the transverse component of
the electric field Ex , which is usually larger than the lon-
gitudinal one is taken into account. This approximation

Fig. 2 Linear dispersion curves
for symmetric NPSWs as a
function of r parameter in the
elliptical case for three different
core thicknesses dcore with
ε2 = 1.0 10−5 + i0.62. Solid
lines stand for first symmetric
modes, dashed lines for first
antisymmetric modes, and
points for first higher-order
symmetric modes. Inset: zoom
for the region near r = 0
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has already been used for several models of isotropic
NPSWs [16, 32, 34]. Its results are similar to those of more
accurate approaches where all the electric field compo-
nents are considered in the optical Kerr effect [16, 34]. This
first model allows to use our new semi-analytical approach
called EJEM (for Extended Jacobi Elliptical Model, which
is an extension to the anisotropic case [33] of our previously
developed JEM valid for isotropic configurations [16]). This
approach will provide insights into the effective nonlinearity
dependence on the opto-geometric parameters. This approx-
imation for the nonlinear term also allows to use the simple
fixed power algorithm in the finite element method (FEM)
to compute the nonlinear stationary solutions and their non-
linear dispersion curves [12, 14, 42, 43] in order to validate
our EJEM results.

In the second model, all the electric field components are
considered in the nonlinear term, and we need to use the
more general FEM approach we developed [33] to general-
ize the one-component fixed power algorithm [34] in such
structures.

Results for the Elliptical Case

Now, we investigate the elliptical case for the metamaterial
nonlinear core such that εxx > 0 and εzz > 0. For mate-
rial 2 in the core, we choose an ENZ material such that

ε2 = 1.0 10−5 + i0.62 being similar to the one provided
in [44]. We start this study with the linear case in which the
main linear modes we found are of plasmonic type. For the
metamaterial core, besides the permittivities, we have the
ratio r defined above as new degree of freedom. As a result,
one can obtain linear dispersion curves as a function of r .
Figure 2 shows such curves for several values of the core
thickness dcore. nL

eff indicates neff of the linear case. One
can see that it is possible to choose configurations where
only the first symmetric mode is kept. This kind of behavior
can be an advantage to achieve simpler and better control of
nonlinear propagating solutions as a function of power [45]
or to tune the linear dispersion properties as a function
of wavelength to manage the dispersion coefficients. As
a test signature for strong nonlinear spatial behavior and
a demanding validity check, we depict the Hopf bifurca-
tion of the symmetric mode toward the asymmetric mode
in symmetric isotropic and anisotropic NPSWs. In Fig. 3,
we provide the results obtained with the methods we used,
the EJEM and the two FEMs without and with all the elec-
tric field components in the nonlinear term. For comparison
with this latter case, we also use the interface model (IM)
we developed previously to study the isotropic case taking
into account all the electric field components [16].

First for the isotropic case (Fig. 3a), the FEM taking into
account only the electric field transverse component (cyan
curves) is able to recover the results from the EJEM (blue

Fig. 3 Nonlinear dispersion
curves for symmetric NPSWs as
a function of total power Ptot .
Both the symmetric modes
(bottom branch for each color)
denoted S0-plas and the
asymmetric ones AS1-plas
(upper branch after bifurcation)
are shown, the mode notation is
fully coherent with the ones
used for the simple [16, 25] or
improved [32] isotropic NPSWs.
a Isotropic case (r = 0) with the
EJEM, the FEM with and
without all the electric field
components in the nonlinear
term, and the IM. b Elliptical
anisotropic case (r = 0.35) with
the EJEM, and the two FEMs

(a)

(b)
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curves), and our FEM with both electric field components
(black curves) reproduces the results obtained from the IM
(red curves). Second, for the anisotropic case (Fig. 3b),
EJEM and FEM agree well with one another. As expected,
the results for FEM with and without all the electric field
components in the nonlinear term differ slightly at high
powers. Consequently, these results prove the validity of
our numerical methods for nonlinear studies including the
anisotropic case (for more details about our two new meth-
ods the reader can relate to Ref. [33]).

In Fig. 4, we provide the field profiles for the three non-
null electromagnetic field components for the anisotropic
case with r = 0.35 at two different power values. These
field profiles correspond to the symmetric S0-plas mode
and the asymmetric AS1-plas mode depicted in Fig. 3b. The
asymmetric mode AS1-plas bifurcates from the nonlinear
symmetric mode S0-plas at a critical power value Ptot ≈
1.6×107 W/m. Moreover, this mode tends to be more local-
ized at one of the interfaces with the increase of the power
as it can be seen in Fig. 4. It is worth mentioning that the

field profiles obtained in the anisotropic elliptical case are
similar to the ones already found in the isotropic case with
r = 0 [25]. Nevertheless, due to the anisotropy, we can dras-
tically reduce the bifurcation threshold and make it as low
as the 50 MW/m level (see Fig. 3b).

Despite the enhancement of nonlinear effects due to the
use of ENZ materials demonstrated both theoretically [6–8]
and experimentally [10], Fig. 5 shows that, in the isotropic
case, the ENZ material core does not reduce the bifurcation
threshold but increases it. This can be understood qualita-
tively as follows. In ENZ material the wavelength light is
stretched, thus the two core interfaces are more tightly cou-
pled and more power is needed by the nonlinearity to break
the symmetry of the field profile. In the anisotropic case,
as it can be seen in Figs. 3b and 6, considering a nonlin-
ear core with ENZ εxx and large εzz allows the total power
needed to induce symmetry breaking in NPSWs to be drasti-
cally reduced compared with what is needed in the isotropic
case. As a result, the threshold is shifted from the GW/m
level to approximately 50 MW/m. Using our semi-analytical

Fig. 4 The field profiles in the
anisotropic elliptical case with
r = 0.35 at two different power
values. The first column is
obtained for Ptot = 1.62 × 107

W/m while the second column
for Ptot = 5.99 × 107 W/m. The
first and the second rows
represent the electric field
components for the symmetric
mode S0-plas and the
asymmetric mode AS1-plas,
respectively. The third row
corresponds to the magnetic
field profile Hy for both the
symmetric (dark-blue) and the
asymmetric (dark-green). These
field profiles are computed
using our FEM taking into
account the full treatment of the
Kerr nonlinearity
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Fig. 5 Nonlinear dispersion
curves for isotropic symmetric
NPSWs as a function of total
power Ptot and for different
values of linear core
permittivity. Both the symmetric
modes and the asymmetric ones
are shown. The curves have
been translated along the y-axis
to improve visibility, nL

eff

representing the effective index
neff in the linear case 0.0
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EJEM, we obtain the following analytical expression for the
effective nonlinearity term [16] in the studied anisotropic
NPSWs [33]:

aEJEM
nl = −α̃[�e(neff )]2

ε4
xxc

2ε2
0

(
[�e(neff )]2 (εxx − εzz)− ε2

xx

)
.

(1)

Consequently, for the NPSWs, the reinforcement of the
effective nonlinearity with ENZ εxx and large εzz is clearly
understood and quantified. It seems to have been partially
overlooked in some previous studies, due to the fact that
more attention was dedicated to the permittivity tensor case
one [ε// ε⊥ ε//] leading to εxx = εzz = ε//, and not
the case two, as studied here with [ε⊥ ε// ε//] leading to
non-vanishing terms in Eq. 1. The observed reduction of
the bifurcation threshold is not possible either in isotropic
improved NPSWs [32] or in isotropic ENZ NPSWs, as
shown in Fig. 5. Figure 7 gives the bifurcation thresholds
as a function of transverse and longitudinal permittivities
for several configurations. Above the black line associated
with the isotropic case, the thresholds are higher while they

are smaller below. In the anisotropic case, for ENZ εxx ,
one can see the strong decrease in threshold. For a fixed
εxx , an increase in εzz induces a decrease in the bifurcation
threshold (see inset in Fig. 7).

Nevertheless, it can be argued that threshold decreases
of several orders of magnitude have already been pre-
dicted [16, 25], but this result was obtained using a
large increase of the core size, shifting the structure from
nanophotonics to large integrated optics structures. In the
present case, small core thicknesses can be kept, allowing
not only a limited footprint for the devices but also a lim-
ited number of propagating modes in the metamaterial based
NPSWs, possibly only the fundamental symmetric mode
(see Fig. 2) and the associated asymmetric one. One can also
notice that the dispersion curve slopes of the symmetric non-
linear mode, for the highly anisotropic NPSWs studied, are
not negligible even below the reduced bifurcation threshold,
involving important nonlinear effects on the propagation of
this mode even at lower powers. Another consequence of the
use of a highly anisotropic elliptical metamaterial core is the
low value of the effective indices for the main modes (see
Fig. 3b), ensuring a slow light enhancement for the nonlin-
ear effects in temporal propagation configurations [46]. The
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Fig. 6 Nonlinear dispersion curves for elliptical anisotropic and
isotropic symmetric NPSWs as a function of the total power Ptot for
different values of the ratio r . Both the symmetric modes and the
asymmetric ones are shown. The curves have been translated along the

y-axis to improve visibility. The associated values of the effective non-
linearity aEJEM

nl at the bifurcation threshold are also given. The solid
curves have been obtained with the full FEM while the circles have
been obtained with the EJEM
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Fig. 7 Power at the bifurcation
threshold Ptot,th as a function of
linear transverse permittivity εxx

in the elliptical case for two
longitudinal permittivity εzz

values. Isotropic case is shown
by the black curve. Inset: Ptot,th

as a function of εzz for two εxx

values
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impact of the core anisotropy is also seen on the dispersion
curve of the main asymmetric mode. As shown in Fig. 5
(isotropic case), the lower the core permittivity, the larger
the slope of the asymmetric mode branch. Moreover, for
ENZ isotropic cores (εcore � 1), the slope is negative while,
as shown in Fig. 6, for highly anisotropic cores with ENZ
εxx and large εzz, the slope of the asymmetric mode near
the bifurcation point remains positive. If we assume that
the stability results we obtained for isotropic NPSWs [25]
can be extended to the anisotropic case, these two features
suggest that the asymmetric mode should be unstable in
isotropic ENZ core NPSWs ( εcore � 1) while the same
mode should be stable for highly anisotropic core with ENZ
εxx and large εzz (a full stability study of the main modes
as described in [25] for simple NPSWs is beyond the scope
of this study). To conclude this discussion of the elliptical
case, we can notice that if the nonlinearity of the ENZ mate-
rial [7, 10] used for material 2 was taken into account then
the effective nonlinearity of the full core would increase,
and consequently the bifurcation threshold would be further
reduced compared to the configuration we described.

Results for the Hyperbolic Case

We now investigate the hyperbolic case where the metama-
terial core is such that εxx > 0 and εzz < 0. In this case,
it is known that non-local effects can be neglected in EMT
as soon as the condition d1 = d2 is fulfilled, corresponding
to r = 0.5 [47]. We will limit our study to such config-
urations. generate this case, material 2 in the core is now
copper [48] while material 1 is hydrogenated amorphous sil-
icon [9] and the claddings are made of gold as in all our
study; the wavelength being fixed at 1.55 μm like in the pre-
vious case. Linear studies of waveguides involving similar
linear metamaterial core have already been published [49].
For NPSWs, we found that the main modes are core local-
ized unlike those of simple NPSWs, and that the effective

nonlinearity can be negative for the investigated modes,
meaning that the initial positive Kerr nonlinearity can finally
act as a negative one in such anisotropic configuration. This
can be understood looking at Eq. 1. Figure 8 illustrates this
phenomenon.

We also found that the asymmetric mode we can obtain as
a mathematical solution to the nonlinear dispersion equation
is actually unbounded [33], knowing that similar unbounded
modes have already been obtained in other nonlinear struc-
tures [50]. Therefore, this asymmetric mode cannot be
considered as an acceptable solution to our physical prob-
lem. The nonlinear dispersion curves of the main symmetric
and antisymmetric modes are given in Fig. 9. Once again,
one can see the crucial influence of the metamaterial core
properties on the type and behavior of the propagating non-
linear solutions. It is worth mentioning that the nonlinearity
of noble metal can be neglected at the telecommunication
wavelength, while it is not the case in the visible as it can be
seen in [8].
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Fig. 8 Hyperbolic symmetric NPSWs for εxx = 26.716 and εzz =
−51.514 (obtained from material 2 permittivity ε2 = −115 + i6
(copper [48]) and r = 0.5). For α̃ (See the second paragraph of
Section “Model”. Field profiles Hy(x) for the main symmetric (S0-
cos) and antisymmetric (AN0-sin) modes as a function of total power
Ptot (in W/m)
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Fig. 9 Hyperbolic symmetric NPSWs for the same parameters as in
Fig. 8: εxx = 26.716 and εzz = −51.514, and r=0.5. Nonlinear disper-
sion curves as a function of Ptot . The curves for the main symmetric
(S0-cos) and antisymmetric (AN0-sin) modes are shown for both the
EJEM and the two FEMs

Conclusion

We have studied new NPSWs with an anisotropic meta-
material nonlinear core of positive Kerr-type embedded
between two semi-infinite metal claddings. The found spa-
tial nonlinear effects are a signature of a strong nonlinear
reinforcement. The GW/m bifurcation threshold needed in
the isotropic cases [25], even in improved NPSWs [32], is
lowered to tens of MW/m for elliptical anisotropic NPSWs
with ENZ εxx and large εzz. This improvement makes the
properties of the proposed waveguides really attainable for
materials used in current fabrication processes in photonics
and also to most characterization setups. For hyperbolic
anisotropic NPSWs, the effective nonlinearity can change its
sign passing from a focusing nonlinearity to a defocusing one.
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28. Maes B, Soljačić M, Joannopoulos JD, Bienstman P, Baets R,
Gorza SP, Haelterman M (2006) Opt Express 14(22):10678.
doi:10.1364/OE.14.010678. http://www.opticsexpress.org/abstract.
cfm?URI=oe-14-22-10678

29. Salgueiro JR, Kivshar YS (2010) Appl Phys Lett 97(8):081106.
doi:10.1063/1.3482939. http://aip.scitation.org/doi/abs/10.1063/
1.3482939

30. Kusko C (2012) In: CAS 2012 (International semiconductor con-
ference), vol 1, pp 143–146. doi:10.1109/SMICND.2012.6400673

31. Nozhat N, Granpayeh N (2014) Appl Opt 53(15):3328. doi:10.13
64/AO.53.003328. http://ao.osa.org/abstract.cfm?URI=ao-53-15-3328

32. Elsawy MMR, Renversez G (2016) Opt Lett 41(7):1542. doi:10.
1364/OL.41.001542. http://ol.osa.org/abstract.cfm?URI=ol-41-7-
1542

33. Elsawy MMR, Renversez G (2017) J Opt doi:10.1088/2040-
8986/aa7094

34. Walasik W, Rodriguez A, Renversez G (2015) Plasmonics 10:33
35. Smalley JST, Vallini F, Kanté B., Fainman Y (2014) Opt
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