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We study the propagation of nonlinear waves in layered nonlinear dielectric/linear dielectric/metal planar struc-
tures. We develop vector models that describe the light propagation in such configurations and allow us to obtain
both one- and two-dimensional solutions. We compute the nonlinear dispersion relation and the field profiles, and
estimate losses. We use our models to design realistic structures, in terms of linear and nonlinear properties, which
support soliton waves with a plasmon tail at low peak power around or below 1 GW∕cm2. These results open the
way for potential observation of such states in chalcogenide waveguides associated with silica and metal films. In
the proposed structures, the nonlinearity confines the field in both transverse directions. A recordable plasmonic
part of the field extends in air. © 2012 Optical Society of America
OCIS codes: 190.6135, 240.6680, 230.7400, 190.3270.

It is now well established that plasmonics is a flourishing
research field that attracts a lot of attention [1]. Similarly,
optical solitons have been studied for more than 40 years
and are still an active research domain [2,3]. Several
works have been recently published about self-
sustained solutions that combine soliton and plasmon
features in metal/nonlinear dielectric structures [4–6].
The first descriptions of one-dimensional (1D) nonlinear
plasmon–soliton and surface waves on metal/dielectric
and dielectric/dielectric interfaces were given more than
30 years ago [7–11]. The plasmon–soliton state consists
of a spatial soliton coupled with a plasmon, though
different terms were used to describe such states
(see. Fig. 2 in [9]).
Nevertheless, up to now no experimental results have

been published on the issue of plasmon–soliton coupling.
The main reason is that for the proposed structures the
nonlinear refractive index change required for the for-
mation of plasmon–soliton waves is too high compared
to the one attainable in real materials, or equivalently
the peak power is too high using values of nonlinear co-
efficients of conventional materials used in integrated
optics [2,12].
In this Letter, we describe for the first time planar

structures made of conventional materials support-
ing low-peak-power solutions that combine a two-
dimensional (2D) soliton profile with a plasmonic field.
They are composed of a chalcogenide glass coated with
silica and gold films. It is worth mentioning that struc-
tures similar to the ones we propose have already been
fabricated [13] even they were not intended for plasmon–
soliton studies. Moreover, optical solitons have already
been observed in chalcogenide planar waveguides for
peak power around 2 GW∕cm2 [14].
The configurations we propose offer the possibility to

realize an experiment where the soliton–plasmon wave
can be easily excited using low-peak-intensity beams
[14], and where the plasmonic part of the nonlinear

solution can be recorded using near-field optics because
it is strong enough at the interface between the metal
layer and the external dielectric. Furthermore, this kind
of configuration can be made suitable for sensor applica-
tions since the decaying part of the plasmon field can be
located at a metal/air or at a metal/water interface.

We found out that to couple in the same wave a pro-
nounced low-power soliton with a plasmon part that ex-
tends in a linear low-index external medium, a nonlinear
dielectric/linear dielectric/metal structure is needed. To
describe such a structure, a four-layer model is necessary
(see Fig. 1). Due to the plasmon part of the nonlinear
waves, a vector approach is required. Therefore, we ex-
pand the 1D vector model used for a symmetric three-
layer configuration made of a metal film embedded in
semi-infinite nonlinear dielectric regions [9] to study
the propagation of nonlinear waves in a four-layer con-
figuration. A complete study of the solutions in such
structures will be published elsewhere. We find that no
TM-like nonlinear waves with or without a pronounced
soliton part can be obtained if the metal layer is replaced
by a dielectric even at powers up to five times above the
material damage threshold.

In our method, the nonlinear solution of a 1D problem
obtained in the four-layer configuration is used to con-
struct the 2D nonlinear profile, which is not the case
in [4,5].

Let us consider the propagation of nonlinear light
waves in a layered metal/nonlinear dielectric/linear

Fig. 1. Geometry of the four-layer nonlinear model used to
study three-layer structures. ϵj denotes the linear permittivity
of the jth layer (j ∈ f1; 2; 3; 4g).
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dielectric structure presented in Fig. 1. We consider
a Kerr type nonlinearity of the form α�x� �
H�−x�ϵ0cϵ�x�n2, where H�x� denotes the Heaviside step
function, ϵ0 the vacuum permittivity, c the speed of light,
n2 the Kerr nonlinear coefficient, and ϵ�x� the stepwise
linear permittivity profile as defined in Fig. 1. For TM-
polarized light the electromagnetic field is written as E �
�Ex; 0; Ez� and H � �0; Hy; 0�. For the 1D problem we look
for stationary solutions in the following form:

E�x; z; t� � ENL�x� exp�i�βNLk0z − ωt��; (1)

where k0 � 2π∕λ, λ denotes the free-space wavelength
and βNL is the effective index of this nonlinear wave.
The magnetic field H has the same form.
First we find the x-component of the ENL field denoted

by ENL;x�x� by solving the 1D nonlinear problem along x
direction. As in [9], we assume that jEzj ≪ jExj and we
expand the nonlinear term in the wave equation into
Taylor series with respect to the small parameter
αjENL;xj2. This results in a nonlinear wave equation:

d2ENL;x

dx2
− k20q

2�x�ENL;x � k20a�x�E3
NL;x � 0; (2)

in which a�x� � β2NLα�x�∕ϵ�x� and q2�x� � β2NL − ϵ�x�.
The solution of Eq. (2) provides analytical expressions
for ENL;x�x�, and Maxwell’s equations yield the expres-
sions for the remaining [ENL;z�x� and HNL;y�x�] field com-
ponents. Finally using the field continuity conditions at
the interfaces, we get the analytical implicit form of
the nonlinear dispersion relation of the four-layer model:

Φ��~q4 � ~q3� exp�2k0 ~q3ϵ3d� �Φ−�~q4 − ~q3� � 0; (3)

Φ� �
�
1� ~q1NL

~q3

�
�

�
~q1NL
~q2

� ~q2
~q4

�
tanh�k0 ~q2ϵ2L�; (4)

where ~qj � q�x�∕ϵ�x� in the jth layer, ~q1NL �
~q1 tanh�k0 ~q1ϵ1x0�; and x0 denotes the center of the
soliton part of the nonlinear wave that appears in the
expression for the field in the nonlinear dielectric
layer: ENL;x�x���2∕a�x��1∕2 ~q1ϵ1sech�k0 ~q1ϵ1�x−x0��. From
Eq. (3), we compute the allowed βNL values of this non-
linear 1D problem that are then used to determine all the
field components from Eq. (2). In Fig. 2, the dispersion
relation obtained by solving Eq. (3) (dashed line) is pre-
sented. The 1D intensity profile for a peak power around
1 GW∕cm2 is shown in Fig. 3. We verify a posteriori that
the assumption jEzj ≪ jExj is fulfilled in the nonlinear
medium (in our example jExj∕jEzj > 50 for soliton peak
intensities <10 GW∕cm2). From the limit case L → 0 in
Eqs. (3) and (4), we can recover the results obtained
in [9].
Knowing the x-profiles of the electric field ENL�x� for

the 1D nonlinear problem, we look for solutions that are
also localized along y-axis using the 2D model. In this ap-
proach, we assume the same arrangement of materials
along x-axis and suppose that they are infinite along
y-axis. We consequently look for solutions of the form

E�x; y; z; t� � ENL�x�ψ�y; z� exp�i�βNLk0z − ωt��: (5)

To simplify the equation ∇ × �∇ × E� − ϵk20E � 0 we
search again for TM modes imposing the relation
(∂x�ϵxEx� � −∂z�ϵzEz�). This approximation allows us
to obtain a differential equation for Ex. Finally, multiply-
ing this differential equation by ENL;x and assuming that
ψ�y; z� � ψ�y� exp�iΔβk0z�, we integrate over the x-
direction to get a nonlinear second-order differential
equation for ψ�y� [4,5]:

�
F − �βNL �Δβ�2 − G� 1

k20

d2·

dy2
� Ajψ j2

�
ψ � 0; (6)

in which the parameters are

G�hϵ�x�E2
NL;xi; F� 1

k20

�
d2ENL;x

dx2
ENL;x

�
;

A�
�
3α�x�
ϵ�x�k20

ENL;x

�
ENL;x

d2ENL;x

dx2
�2

�
dENL;x

dx

�
2
�

�α�x�E4
NL;x

�
; and h•i�

Z �∞

−∞

•dx∕
Z �∞

−∞

E2
NL;xdx: (7)

It is worth mentioning that the last term in A is the lead-
ing one. We must emphasize that the used nonlinear se-
paration of variables is a crude approximation in our case
since the field widths along x and y are comparable.
Nevertheless, the comparison of the normalized power
of the obtained solution with the one of the Townes
soliton reveals the difference of about 20%, which indi-
cates on reasonable accuracy of this approach. A more
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Fig. 2. (Color online) Dispersion curves obtained from the 1D
model (dashed line) and from the 2D model (solid line). Param-
eters used are ϵ1 � 2.47072, n2 � 10−13 cm2∕W (chalcogenide
glass), ϵ2 � 1.4432 (silica), ϵ3 � −96 (gold), ϵ4 � 1 (air),
L � 15 nm, d � 40 nm, λ � 1.55 μm.
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Fig. 3. (Color online) Intensity profiles for low-power solu-
tions of 1D problem. (a) Full solution and (b) zoom on the plas-
mon part at the metal interfaces. Material and geometric
parameters are the same as in Fig. 2, x0 � −30 μm.
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rigorous approach requires the development of a truly
2D model.
In our 2D model, the peak power is set to the value

previously obtained from the 1D model, in order to pre-
serve the properties of the 1D nonlinear solution since
the superposition principle is no longer valid [15]. Using
the test function ψ�y� � sech�y∕ωy� to solve Eq. (6), we
find the necessary values of parametersωy � �2∕�k20A��1∕2
and Δβ. The solid line in Fig. 2 shows the power depen-
dency of the effective index β of the 2D plasmon–soliton:

β � βNL �Δβ � �G� F � �k0ωy�−2�1∕2: (8)

In Fig. 4 we present an example of such 2D plasmon–
soliton profiles. The peak intensity is found to be
1.07 GW∕cm2 (which is twice lower than intensities re-
quired for formations of solitons in chalcogenide wave-
guides [14]). The resulting value of the effective index
is β � 2.470717, while half-widths along x and y direc-
tions are given by ωx ≈ 15.2 μm and ωy ≈ 18.4 μm. It is im-
portant to note that in the proposed structure the low-
intensity solution exists even if we use the nonlinear Kerr
coefficient of chalcogenide glass n2 � 10−13 cm2∕W [12],
which is much lower than the ones used in previous
works on plasmon–solitons [4,5,9]. Three-layer struc-
tures made of the same materials as those considered
here can also be designed to support low peak power
(≈0.6 GW∕cm2) plasmon–solitons at a metal/water
interface.
The propagation losses in the structure are estimated

using the method based on the field profiles and imagin-
ary parts of the permittivities described in [9], which
is similar to the one from [5]. For the examples shown
in Figs. 3 and 4 (assuming ℑm�ϵ1� � ℑm�ϵ2� � 10−5,
ℑm�ϵ3� � 10), the losses are at the level ℑm�β�≈
0.8 × 10−5, corresponding approximately to 2.8 dB∕cm.
Even though the part of electromagnetic energy located
in the metal layer is small compared to the total one (less
than 2 × 10−3%) and the level of losses is small, a more
rigorous approach should take into account the imagin-
ary parts of the permittivities and of the propagation con-
stant at the first step of the calculus. The plasmon peak
light intensity is one-tenth of the soliton one that corre-
sponds to a peak electric field value in the metal layer of
approximatively 4.5 × 106 V∕m which makes it record-
able using current near-field optics techniques [1].

Our simple planar structure can be improved or tuned
by using metal gratings or nanoparticles at the surface of
the metal layer [1]. In accordance with the Vakhitov–
Kolokolov stability criterion, monotonic growth of power
with increase of propagation constant indicates the
stability of the obtained soliton family. The required com-
plete study of the stability of the found stationary solu-
tions [using finite-difference time-domain (FDTD), for
example] will be provided elsewhere. Furthermore, we
can mention that we are not looking for propagation
as long as in fiber optics, and that losses will have to
be taken into account in the study of stability.

In conclusion, we have described a simple planar
structure made of conventional materials that support
a soliton with a plasmonic part on the tail having low
peak powers, comparable to powers of solitons in chal-
cogenide waveguides [14]. The structure we propose is a
first step toward the experimental demonstration of a
plasmonic sensor involving plasmon–soliton coupling.
Experimental work is in progress to validate our
modeling results.

This work was supported by the European Commis-
sion through the Erasmus Mundus Joint Doctorate
Programme Europhotonics (Grant No. 159224-1-2009-1-
FR-ERA MUNDUS-EMJD) and by the PICS CNRS pro-
gram CAPLA.
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Fig. 4. (Color online) 2D intensity profile for the low-power
plasmon–soliton in the four-layer planar nonlinear configura-
tion. (a) Full solution and (b) zoom of the plasmon part at
the metal/air interface. Parameters same as in Fig. 3.
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