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Second mode transition in microstructured optical
fibers: determination of the critical geometrical

parameter and study of the matrix refractive index
and effects of cladding size
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We carried out a numerical study of the second mode transition in finite-sized, microstructured optical fibers
(MOFs) for several values of the matrix refractive index. We determined a unique critical geometrical pa-
rameter for the second mode cutoff that is valid for all the matrix refractive indices studied. Finite size ef-
fects and extrapolated results for infinite structures are described. Using scaling laws, we provide a gener-
alized phase diagram for solid-core MOFs that is valid for all refractive indices, including those of the
promising chalcogenide MOFs. © 2005 Optical Society of America
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Arguably, the most striking property of microstruc-
tured optical fibers (MOFs) is that they can be end-
lessly single mode.1 In conventional step-index fibers
there exist a finite number of modes that are strictly
guided, characterized by the fact that their propaga-
tion constants b are real. All other modes are leaky,
with propagation constants that have nonzero imagi-
nary parts. The number of guided modes increases
with decreasing wavelength, and it is only at wave-
lengths longer than the cutoff wavelength that the fi-
ber is single mode.2,3 In contrast, ideal (or infinite)
solid-core MOFs, which consist of single defects in in-
finite two-dimensional photonic crystals, can remain
single mode at all wavelengths if the holes are suffi-
ciently small.4,5 Those fibers are said to be endlessly
single mode.

Previous studies of the second mode cutoff in
MOFs have led to a so-called phase diagram that par-
titions the parameter space into three regions, de-
pending on whether the MOF is single mode, multi-
mode, or endlessly single mode. However, this phase
diagram was established solely for silica MOFs.4,6

Given that MOFs can be made from a variety of di-
electrics and that some of the most promising MOF
applications, notably nonlinear ones, rely on high-
refractive-index materials such as chalcogenides,7 it
is important to know whether high-index solid-core
MOFs can exhibit the endlessly single-mode property
within a realistic range of fiber parameters and
wavelengths. We numerically investigate the effect of
matrix refractive index nmat of the MOF’s matrix ma-
terial on the phase diagram by using the multipole
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method.6,8 We accurately determine the critical rela-
tive hole size that delimits the endlessly single-mode
region, which is independent of nmat.

Our studies also highlight finite size effects, which
were ignored in previous studies and have an effect
on the precise value of the critical relative hole size
that delimits the endlessly single-mode region. Fi-
nally, using approximate scaling laws for binary step-
index structures, we derive a generalized phase dia-
gram that is valid for a large range of refractive-
index contrasts.

We consider solid-core MOFs consisting of a finite
number Nr of rings of triangularly arranged holes
with circular cross sections (diameter d, refractive in-
dex ni) in an infinite matrix (refractive index, nmat);
the core is a missing hole at the center. The center-
to-center distance between holes (the pitch) is de-
noted L and is fixed at a value of 2.3 mm, and the ef-
fective index of modes is defined as neff=b /k0, in
which k0=2p /l is the free-space wave number and l
denotes the wavelength. We study the second mode
cutoff of such MOFs to define their phase diagram in
parameter space sd /L ,l /Ld.

For such MOFs with finite Nr, the cutoff is not so
clearly defined as for infinite MOFs. Indeed, in that
case all modes are leaky; their propagation constants
have nonzero imaginary parts. For these fibers the
cutoff is a transition between two states of the same
mode, one localized in the core and the other extend-
ing into the cladding. This transition has been stud-
ied, e.g., in terms of the sudden expansion of the sec-
ond mode’s effective area5 or, equivalently, in terms of
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a qualitative change of behavior of losses as a func-
tion of wavelength.4 Here we use the latter definition
of the cutoff, relying on peaks of quantity Q, defined
here as

Q =
]2flog Imsneffdg

]flog lg2 , s1d

in which Imsneffd is the imaginary part of neff. Quan-
tity Q is related to the curvature in a log–log plot of
the losses as a function of wavelength, and its peaks
are associated with qualitative changes in the nature
of the mode. For a detailed discussion of the meaning
of Q we refer the reader to Refs. 4, 6, 9, and 10. neff is
the effective index of the second mode and was com-
puted by the multipole method.6,8,11

First, we concentrate on MOFs with a high matrix
refractive index, nmat=2.5. Figure 1 shows Q as a
function of normalized wavelength l /L for various
diameter-to-pitch ratios; Nr=7. The minimum of
those curves precisely defines the normalized cutoff
wavelength sl /LdS.M..

4 Further, as the Q peaks reflect
the change of slope of Imsneffd, the larger and nar-
rower the peaks are, the sharper the transition be-
tween confined and unconfined modes is. Whereas in
the research reported in Ref. 4 the Q minima were
studied at fixed Nr, it appears that the behavior of
the Q curves depends on Nr, as shown in Figs. 2 and
3. Figure 2 shows Q as a function of the normalized
wavelength for two values of d /L , Nr ranging from 7
to 12, and nmat=2.5. For the same matrix index the
magnitude of the Q minima uQminu as a function of Nr
is shown in Fig. 3 for four d /L ratios.

Depending on the value of d /L, two different be-
haviors can be distinguished: for d /L ratios greater
than or equal to 0.425 the minimum of Q becomes
narrower (complete study not shown) and deeper
with increasing Nr. Figure 3 shows that, in that case,
uQminu diverges with Nr and, as can be seen from the
curve for d /L=0.43, the rate at which uQminu diverges
increases quickly with d /L. The divergence of uQminu
implies that the cutoff transition becomes sharper

Fig. 1. Q as a function of normalized wavelength l /L for
eight d /L ratios for a seven-ring MOF made from a high—
index matrix snmat=2.5d with L=2.3 mm. Thinner curves
(left) are associated with the left-hand y scale (lowest d /L
and uQu values); the thicker curves use the right-hand y

scale.
with increasing numbers of rings, consistent with the
fact that the cutoff should be infinitely sharp for in-
finite Nr.

9 Consequently the second mode does un-
dergo a cutoff at finite wavelength for infinite MOFs
with d /L ù 0.425.

For d /L=0.420 and d /L ratios below this value,
however; the minimum of Q vanishes slowly with in-
creasing Nr. This behavior indicates that no transi-
tion should occur for the infinite MOF and therefore
that the infinite MOF is endlessly single mode for
d /L ø 0.420. The critical value sd /LdS.M. below
which the MOF is endlessly single mode must there-
fore lie in the interval [0.420, 0.425].

Second, we investigate the effect of nmat on the sec-
ond mode transition. We repeat the above analysis of
Q behavior for nmat=1.1 and nmat=1.444024 (Fig. 3).
In all cases sd /LdS.M. is strictly bounded by 0.420 and
0.425. Hence, from a numerical point of view,
sd /LdS.M. can depend only weakly on the matrix in-
dex; the theoretical aspects of this critical value are
briefly discussed at the end of this Letter. sd /LdS.M.
can be considered a critical geometrical parameter
associated with the second mode cutoff or similarly
with the endlessly single-mode behavior of MOFs.
Note that nmat=1.444024 was used in Ref. 4, in which
sd /LdS.M. was found to be 0.406. However, in that Let-

Fig. 2. Q as a function of l /L for d /L=0.42 (thinner
curves) and for d /L=0.425 (thicker curves) for several val-
ues of Nr.

Fig. 3. uQminu as a function of Nr for three values of matrix
index nmat for several close d /L values.
ter a different criterion to establish the endlessly
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single-mode limit was used, based on a study at fixed
Nr. The fact that the Q minima disappear with in-
creasing Nr at values close to but greater than 0.406
had been overlooked.

Third, we sum all our numerical results in the
MOF parameter space sd /L ,l /Ld. Figure 4 shows a
phase diagram of the second mode [i.e., sl /LdS.M. as a
function of d /L] for the three matrix indices studied,
obtained for Nr=7, along with the extrapolated phase
diagram for the infinite MOF with nmat=2.5 that re-
sults from an extrapolation of the sl /LdS.M. data com-
puted for several values of Nr by use of a nonlinear
least-squares algorithm. Note that for values of d /L
close to sd /LdS.M. the cutoff curves for finite and infi-
nite Nr differ substantially. One must keep in mind
that sl /LdS.M. is defined by the Q minimum and not
directly by Imsneffd. The nontrivial behavior of
sl /LdS.M. with Nr should be studied by use of a
W-profile fiber model, for example.

Increasing the index contrast shifts the cutoff
curve toward longer wavelengths; however, the limit
of the endlessly single-mode regime is conserved.
Birks’s analysis of scaling laws of photonic states
with refractive-index contrast12 shows that if
l , L , nmat, or ni varies, photonic states change, such
that quantity n=2pLsnmat

2 −ni
2d1/2 /l remains invari-

ant within the scalar approximation: For two struc-
tures with fixed d /L but different nmat and ni (say,
nmat and ni and nmat8 and ni8, respectively), the cutoff
will occur at different wavelengths l and l8 to keep n
constant at a value of nS.M.. Following this argument,
we have

sl/LdS.M.8 = sl/LdS.M.Snmat82 − ni8
2

nmat
2 − ni

2 D1/2

. s2d

Fig. 4. Phase diagram for the second mode. The points
correspond to the computed values of sl /LdS.M. for the three
matrix indices for Nr=7; the thicker curves, to the fits. The
thinner, solid curve is associated with the fit of the extrapo-
lated results for Nr→` computed for nmat=2.5. The shaded
region is the approximate endlessly single-mode region
valid for the three matrix indices for Nrù7. Lighter curves
(right-hand scale) show the value of n at cutoff for the same
refractive indices as the corresponding darker curves.
We can hence draw a unified phase diagram by using
quantity n instead of l /L (Fig. 4, lighter curves):
MOFs with n values that lie above the nS.M. curve are
multimode, whereas MOFs with n values below the
nS.M. curve are single mode. As can be seen from Fig.
4, the nS.M. curves for different nmat are surprisingly
consistent. (Keep in mind that the scaling laws used
are valid only within the scalar approximation.) Fur-
thermore, in the limit l→0, the scalar approxima-
tion applied to the MOF becomes exact, and Eq. (2) is
exactly verified. Consequently, the critical geometri-
cal ratio sl /LdS.M. associated with the limit case l
→0 is necessarily the same for all the indices studied
(see Refs. 1, 2, and 12 for the details of the scalar ap-
proximation).

In conclusion, we have explicitly shown that the ra-
tio sd /LdS.M. that delimits the endlessly single-mode
regime in solid-core MOFs is independent of the ma-
trix refractive index and can therefore be considered
a critical geometrical parameter for the second mode
cutoff. We observed that the differences between the
behavior of finite and infinite structures are more
pronounced near sd /LdS.M.. We have derived a gener-
alized phase diagram for solid-core MOFs. In particu-
lar, our results demonstrate that the endlessly
single-mode region is preserved for the promising
chalcogenide MOFs.
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