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Dispersion management with microstructured optical
fibers: ultraflattened chromatic dispersion with low losses
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We numerically demonstrate ultraf lattened chromatic dispersion with low losses in microstructured optical
fibers (MOFs). We propose using two different MOF structures to get this result. Both structures are based
on a subset of a triangular array of cylindrical air holes; the cross sections of these inclusions are circular, and
a missing hole in the fiber’s middle forms the core. In this MOF structure the diameters of the inclusions
increase with distance from the fiber axis until the diameters reach a maximum. With this new design and
with three different hole diameters, it requires only seven rings to reach the 0.2-dB�km level at l � 1.55 mm
with a variation amplitude of dispersion below 3.0 3 1022 ps nm21 km21 of l � 1.5 1.6 mm. With the usual
MOF (made from holes of identical diameter), we show that at least 18 hole rings are required for losses to
decrease to ,1 dB�km at l � 1.55 mm. © 2003 Optical Society of America

OCIS codes: 060.2270, 060.2280, 060.2400, 060.2430.
Microstructured optical f ibers (MOFs) were quite
recently proposed as new tools for dispersion man-
agement in optical communication systems.1 Several
studies2,3 in which a vector method with periodic
boundary conditions was used4 were made to design
such MOFs; nevertheless, as was recently shown,5

one must take the finite cross sections of MOFs into
account to describe accurately the chromatic disper-
sion properties of such fibers and to compute the
losses. Moreover, comparison of the computed dis-
persion curves and the experimental results remains
difficult.6

A mode of a MOF is characterized by the mode’s
field pattern and its effective indices neff � b�k0,
where b is its propagation constant and k0 � 2p�l

is the free-space wave number. Because of the f inite
transverse extent of the confining structure, the
effective index is a complex value; its imaginary part
��neff� is related to losses L (in decibels per meter)
through the relation L � 40p ��neff� 3 106��l ln�10��,
where l is given in micrometers. Dispersion pa-
rameter D is computed through the usual for-
mula from the real part of effective index ��neff �
(Ref. 7): D �2�l�c�≠2 ��neff ��≠l2. We have devel-
oped a multipole method8 that allows us to compute
accurately the complex effective index of the modes of
a wide variety of MOFs. Our method has been veri-
fied by comparison with other numerical methods.5,9,10

In what follows, we simulate plain core MOFs made
from a subset of a triangular array of cylindrical air
inclusions �ni � 1�. The inclusion spacing, or pitch, is
denoted L. The inclusions are circular, possibly with
various diameters, and lie about a core that is in fact a
missing central inclusion. The matrix and the jacket
are made from silica, so the guiding structure is formed
by a finite number Nr of rings of air holes in infinite
bulk silica whose Sellmeier expansion (which does not
include material losses) is taken from Ref. 7. Our aim
in this study is to establish MOF designs that com-
0146-9592/03/120989-03$15.00/0
bine ultraf lattened chromatic dispersion together with
low losses near the telecommunication wavelength l �
1.55 mm. We exhibit two designs that achieve this ob-
jective. The first contains air holes of one diameter
and requires 18 rings of holes for losses smaller than
1 dB�km. The second utilizes air holes with three dif-
ferent diameters, which yield ultraf lat dispersion and
even lower loss levels with only seven rings.

Chromatic dispersion in MOFs arises from that of
the silica �Dmat� and also from the waveguide disper-
sion �DW � associated with the structure of the confin-
ing region. Note that our multipole method provides
directly the total dispersion �D�, so we deduce DW from
the relation DW � D 2 Dmat. As was pointed out by
Ferrando et al.,2 it is convenient to achieve a specif ic
total dispersion by controlling DW to make it follow a
trajectory parallel to that of 2Dmat in the target wave-
length interval. The parameters with which one can
achieve this are hole diameter d, pitch L, and number
of rings Nr .5

From a previous theoretical work,11 we choose
d�L , 0.406 to guarantee single-mode operation of
the MOF design.

In Fig. 1 we show the variation of total dispersion
D with the number of rings of six normal MOF ge-
ometries, all located in the region of stable dispersion.
All curves show a simple variation with Nr , which
can be modeled accurately by an exponential form
D1 exp�2kNr� 1 Dlim. Such a fitting form has three
parameters �D1, k, Dlim�, which can be determined
accurately from the results of Nr � 3 6. This pro-
cedure has important advantages because MOFs
with relatively small numbers of rings are relatively
quickly modeled; yet we have established that the
exponential f it thereafter accurately describes the
dispersion of much larger structures and even limiting
parameter Dlim, the dispersion of a mode pinned by
a single defect in an infinite lattice. In fact, using
the limit dispersion Dlim determined numerically for a
© 2003 Optical Society of America
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Fig. 1. Dispersion decay at l � 1.55 mm as a function of
the total number of hole rings Nr for several MOF struc-
tures. L is the hole spacing, and d is the hole diameter.
The points correspond to the computed numerical disper-
sion; the curves, to exponential based f its.

set of values of wavelength l, we can also determine
Slim � ≠Dlim�≠l, the limit dispersion slope.

In Fig. 2 we show the variations of these important
parameters Dlim and Slim as a function of hole diame-
ter d for several pitches L. This f igure illustrates
well how one can isolate a MOF that exhibits a tar-
get dispersion value for a sufficiently large number of
rings Nr, which is f lat over a range about the cho-
sen wavelength value. Indeed, such a MOF will have
the desired value of Dlim and simultaneously a value
of Slim close to zero. Note that the pitches exhibited
in Fig. 2 were chosen carefully to exemplify this de-
sirable behavior. We have also shown that, for the
data of Fig. 2, the minima of Slim as a function of d
occur in the same diameter interval �0.65; 0.7 mm� for
all MOFs that have Nr $ 6. From Fig. 2, if one re-
quires a positive nearly zero f lat chromatic dispersion,
then, using these curves, one should start the disper-
sion engineering with a MOF such that L � 2.45 mm
and d � 0.6 mm. Of course, Fig. 2 can be used to iso-
late MOF geometries that have different characteris-
tics, such as a prescribed slope with a fixed average
value of dispersion over a wavelength range.

In Fig. 3 we show dispersion characteristics for three
MOF designs. At the top, the total dispersion is linear
with negative slope �D�a��, constant near zero �D�b��,
and nearly constant near 25 ps nm21 km21 �D�c��.
These curves arise because of the balance between
waveguide dispersion DW curves and that of 2Dmat
shown in the bottom part of the figure. Note that,
whereas these designs have appropriate dispersion
characteristics for Nr $ 6, their geometric losses im-
pose much more stringent requirements on the number
of rings, and the effective area of the fundamental
mode Aeff is �36.5 mm2 for Nr � 6. For example,
for the MOF with ultraf lat dispersion close to zero,
Nr $ 18 (1026 holes) is required for losses to be kept
below 1 dB�km at l � 1.55 mm. Some laboratories
have already drawn 11-ring fibers6 (around 396 holes),
there is clearly a technological interest in investi-
gating designs that can deliver tailored dispersion
characteristics with many fewer MOF rings.
To provide MOF designs that display a desirable
combination of ultraf lat dispersion, low-loss and
quasi-single-mode operation, and a practical value of
Nr, a natural strategy is to allow the hole diameter to
differ from one ring to another (see Fig. 2, inset) with
exterior rings that have large holes to lower the losses.
We start the design process with a three-ring MOF;
d1 is arbitrarily set to d1 � 0.5 mm. In pursuing
designs of this sort it is advantageous to employ the
following scaling relation for waveguide dispersion
(this is a generalization of a result given in Ref. 2):

DW �l,L�Lref , f1, f2, . . . , fn�

�
Lref

L
DW �lLref�L, 1, f1, f2, . . . , fn� , (1)

Fig. 2. Limit dispersion (solid lines, left y scale) and
limit dispersion slope (dashed lines, right y scale) at
l � 1.55 mm as a function of hole diameter d only, for
several pitches. The chosen parameter values for L and
d correspond to the small limit slope region. Inset, cross
section of the modeled MOF with three rings of holes (holes
are shown shaded), Nr � 3. L is the hole spacing and
dn is the hole diameter of the nth ring. The solid core
consists of one missing hole in the center of the structure.

Fig. 3. Waveguide dispersion DW , dispersion D, and
sign-changed material dispersion 2Dmat for three six-ring
MOF structures. The line style of a MOF structure is
identical for DW and D. L and the diameters are given in
micrometers. (a) L � 2.3, d � 0.7; (b) L � 2.45, d � 0.6;
(c) L � 2.3, d � 0.6.
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Fig. 4. Waveguide dispersion DW , dispersion D for the
MOF structures that we proposed, and sign-changed ma-
terial dispersion 2Dmat. Unless stated, the total number
of rings Nr in the MOF is three. The line style of a MOF
structure is identical for DW and D. L and the diame-
ters are given in micrometers. dn is the hole diameter of
the nth ring, and dn12n2 denotes the hole diameter of the
n1th to n2th rings. (1) L � 1.9, d1 � 0.559, d2 � 0.782,
d3 � 0.894; (2) L � 1.8, d1 � 0.529, d2 � 0.741, d3 � 0.847;
(3) L � 1.7, d1 � 0.5, d2 � 0.7, d3 � 0.8; (4) Nr � 4 7, L �
1.7, d1 � 0.5, d2 � 0.7, d3 7 � 0.8; (5) L � 1.65, d1 � 0.485,
d2 � 0.679, d3 � 0.776.

where Lref is the pitch of a reference lattice and fn
is the ratio dn�L. Using the above scaling law and a
rough optimization process on d2, d3, and L, we found
an ultraf lat dispersion over a long wavelength interval
(approximately �1.45, 1.65� mm) for d2 � 0.7 mm, d3 �
0.8 mm, and L � 1.7 mm [D�3� in Fig. 4]. It must be
pointed out that the MOF design can be started from
other values of d1: For example, with d1 � 0.6 mm
we found d2 � 0.8 mm, d3 � 1.0 mm, and L � 2.0 mm
(data not shown).

Using the scaling law [expression (1)], we can
easily derive other structures that have ultraf lat-
tened chromatic dispersion but near a different value
of D. Three examples of such structures, derived
from the reference configuration �d1 � 0.5 mm, d2 �
0.7 mm, d3 � 0.8 mm, L � 1.7 mm�, are given in Fig. 4
�L � 1.65 mm �D�5��, 1.8 mm �D�2��, 1.9 mm �D�1��	.
Note that varying the pitch too far results in struc-
tures that no longer exhibit ultraf lat dispersion; this
is so because of the finite length of the ultraf lat region
in the chosen reference MOF design (data not shown).

We now control losses by adding further rings of
holes with f ixed diameter 0.8 mm. As can be seen
from Fig. 4, adding rings 4–7 has almost no effect on
the dispersion properties of the MOF �D�4�� but results
in acceptably low values of geometric loss for tech-
nological applications: With Nr � 6, the losses are
below 10 dB km21, and with Nr � 7 the losses are be-
low 0.2 dB km21. For Nr � 6, the amplitude of disper-
sion variation is less than 3.0 3 1022 ps nm21 km21

in the wavelength interval [1.5; 1.6] mm. These de-
signs thus attain our goal of achieving ultraf lat dis-
persion combined with low geometric loss in a MOF
feasible by use of current fabrication technology. Note
that one can use designs in which the outer boundary
of the confining region is either hexagonal or circular.
For the well-conf ined modes that we deal with here
(Aeff � 10.5 mm2 for Nr � 6), this difference has no
practical effect on dispersion (data not shown). One
interesting consequence of using three different hole di-
ameters is that the possibility arises of having modes
higher than the fundamental confined between rings
of holes with different diameters. Indeed, the second
mode in the seven-ring structure of Fig. 4 is conf ined
between the first and second rings of holes and has
losses approximately ten thousand times larger than
that of the fundamental. This mode would not couple
readily to the fundamental mode in the design, because
mode energy is concentrated in different regions for the
two modes and the real parts of their effective indices
are quite different.

In conclusion, we have numerically demonstrated
that nearly zero or nonzero ultraf lattened chromatic
dispersion with low loss can be achieved by use of ei-
ther of two types of MOF design. The more complex
design, proposed in this Letter, which has three differ-
ent hole diameters, allows us to achieve low losses with
many fewer air holes than with the conventional de-
sign. The design principles introduced here, together
with the powerful control of dispersion given by the
MOF geometry, should facilitate effective chromatic
dispersion management over a wide spectral range in
optical f ibers.

This work benefited from travel support from the
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