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Abstract
Two distinct models are developed to investigate the transverse magnetic stationary solutions
propagating in one-dimensional anisotropic nonlinear plasmonic structures made from a Kerr-
type nonlinear metamaterial core embedded between two semi-infinite metal claddings. The first
model is semi-analytical, in which we assume that the anisotropic nonlinearity depends only on
the transverse component of the electric field and that the nonlinear refractive index modification
is small compared to the linear one. This method allows us to derive analytically the field profiles
and nonlinear dispersion relations in terms of the Jacobi elliptical functions. The second model is
fully numerical and is based on the finite element method in which all the components of the
electric field are considered in the Kerr-type nonlinearity, with no presumptions as to the
nonlinear refractive index change. Our finite-element-based model is valid beyond the weak
nonlinearity regime and generalizes the well-known single-component fixed power algorithm
that is usually used. Examples of the main cases are investigated, including those with strong
spatial nonlinear effects at low power. Loss issues are reduced through the use of a gain medium
in the nonlinear metamaterial core. Using anisotropic nonlinear FDTD simulations, we provide
some results for the properties of the main solution.

Keywords: nonlinear waveguides, modelling, finite element method, nonlinear plasmonics,
metamaterials, anisotropy, Kerr effect

(Some figures may appear in colour only in the online journal)

1. Introduction

Nonlinear optical properties play a crucial role in all-optical
integrated circuits due to the different control functionalities
they offer [1–3]. Utilizing plasmonics as a part of nonlinear
structures may be a promising choice because of the reduced
footprint achievable compared with all-dielectric structures,
and because of the enhancement of the field intensities, which
can be used to boost the nonlinearity [4, 5]. Several nonlinear
plasmonic waveguides have already been studied [6–9].
Structures composed of a nonlinear Kerr-type isotropic core
sandwiched between two semi-infinite metal claddings have
received great attention since their study in 2007 [10], due to
the strong light confinement obtained and their peculiar
nonlinear effects [11–15]. These nonlinear plasmonic slot

waveguides (NPSWs) promise a family of exciting applica-
tions such as phase matching in higher harmonic generation
processes [16], nonlinear plasmonic couplers [17], or
switching [18]. In order to study light propagating in
such structures, different methods have been developed
[11, 12, 19] to describe its main modes. Recently, a full
description of the solutions, including the higher-order ones,
was introduced [15, 20]. In addition, an improvement of the
NPSWs by the inclusion of two linear dielectric buffer layers
between the nonlinear core and the two metal claddings has
also been proposed [21, 22]. Nevertheless, all these studies
deal only with the standard focusing Kerr-type nonlinear
isotropic core. One of the interesting properties of symmetric
NPSWs is the existence of the asymmetric mode. This
asymmetric mode has no analogue in the linear case, and it
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bifurcates from the fundamental symmetric mode above a
power threshold. This asymmetric mode indicates a strong
impact of nonlinearity on the waveguide properties, and is a
clear label of a highly nonlinear waveguide. It is worth
mentioning that a strong dependence of the dispersion curve
on the power is observed before the bifurcation of the
asymmetric mode. This mode is the key point for the power-
switching operation in nonlinear directional couplers com-
posed of two adjacent NPSWs [17]. The idea behind this
application is linked to the change of the state when the power
overpasses a certain threshold, i.e. the discrimination of the
signals according to their power levels which cannot occur in
the low-power regime (before the bifurcation threshold). It
appears that the power needed to observe the symmetry-
breaking of the fundamental symmetric mode in already-
described NPSWs is in the range of GWm−1 which is still too
high. Otherwise, during the last few years, it was demon-
strated that the nonlinear effects can be extremely enhanced
using epsilon-near-zero (ENZ) materials [23–27]. However,
even if recent experimental results have demonstrated a large
enhancement of third-harmonic generation in the ENZ regime
[28], the usual modelling approaches are no longer applicable
in this high nonlinear regime since the spatial nonlinearity
cannot be treated as a perturbation. We have shown in a
recent work that, in order to fully take advantage of the ENZ
nonlinearity enhancement in nonlinear waveguides, it is
important to introduce anisotropy [29]. Even if plasmonic
waveguides have already been studied with metamaterial
layers either in the cladding [30] or in the core [31, 32], these
last studies focused only on the linear guided waves.

In [23], nonlinear guided waves were studied in a one-
dimensional multilayer structure in which the layers were set
to be parallel to the transverse direction. This means that the
dielectric response for the TM polarized waves considered in
this multilayer structure is identical to the standard isotropic
response, and the metamaterial layers behave like a fully
isotropic medium. This alignment of the layers was used to
create an ENZ medium and to enhance the nonlinearity.
Nevertheless, we have demonstrated in our previous article
[29] that, for isotropic nonlinear cores with an ENZ permit-
tivity embedded between two metal cladding, the bifurcation
threshold of the asymmetric mode (spatial symmetry breaking
induced by the nonlinearity) is not reduced, as it is usually
expected from ENZ properties, but increased from the
GWm−1 to the 100 GWm−1 threshold. Moreover, in [29],
we have shown that an anisotropic dielectric response can be
obtained in the core if the periodic layers are perpendicular to
the transverse direction. However, we studied only the
influence of the anisotropic linear part of the permittivity on
the nonlinear dispersion curves, and the nonlinear permittivity
term was assumed to be isotropic and fixed in all the direc-
tions. In addition, we neglected the influence of the losses
induced by the metamaterial core and by the metal cladding
on the nonlinear dispersion curves. In the present work, we
consider the same structure as in [29] but consider the full
treatment of the anisotropic nonlinear term, i.e. anisotropic
linear and nonlinear permittivity tensors, and take into
account the losses induced by the metamaterial core and metal

claddings. In addition, we provide the full derivation of two
distinct methods to study light propagation in a one-dimen-
sional anisotropic structure consisting of a nonlinear meta-
material core with a fully anisotropic dielectric response for
the TM polarized waves embedded between two metal clad-
dings. These methods were briefly introduced in [29], while
here we present their full derivations. For the first method,
which is semi-analytical, this implies both a new classification
of the possible cases for the effective nonlinearity and more
complicated nonlinear dispersion relations compared with the
isotropic case. The second method is based on the finite
element method (FEM) and on the fixed power algorithm
where the nonlinear stationary solutions are computed
numerically as a function of the fixed input power. Usually, it
is assumed that only the transverse component of the electric
field is taken into account in the nonlinear form. Within this
second method, this is not the case since we take into account
all the electric field components in the Kerr-type nonlinearity.
In order to achieve this result, we introduce and solve two
coupled scalar nonlinear equations, one for each continuous
tangential component of the electromagnetic field. To the best
of our knowledge, this is the first time such a method is used
in the frame of the fixed power algorithm.

The validity of the methods and convergence of the
FEM are also discussed. Finally, we present two general
examples in order to show the influence of the anisotropic
linear and nonlinear terms on the nonlinear dispersion curves
and on the field profiles compared with the usual NPSWs
with an isotropic nonlinear core. The results show that, for
one configuration with positive effective nonlinearity, the
bifurcation threshold can be reduced by more than three
orders of magnitude compared to conventional NPSWs with
an isotropic core. This is an indication of a strong
enhancement of the spatial nonlinearity. In addition, the
losses decrease with the increase in power. This means that
we may obtain nonlinear plasmonic solutions at low powers
with reduced losses. These interesting results cannot be
obtained in conventional NPSWs, in which the losses always
increase with the power and the bifurcation threshold is in
the range of GWm−1. Furthermore, we show that the
metamaterial layers can be chosen such that effective non-
linearity has a defocusing behaviour even if we start from a
positive Kerr nonlinearity. Once again, this behaviour can-
not be observed in isotropic NPSWs. Moreover, we provide
some results for the main symmetric mode using nonlinear
anisotropic FDTD simulations. The article is organized as
follows: in section 2, the statement of the problem is pre-
sented. The semi-analytical method and numerical FEM are
described in section 3. In section 4, the validation of our
models is given by adapting them to study the isotropic case,
and a comparison with the results from previously published
works is given. In addition, we present several examples to
show the influence of the anisotropic nonlinearity on the
nonlinear dispersion curves and field profiles. In this section,
we also provide results from nonlinear anisotropic FDTD
simulations.
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2. Problem formalism

We consider a structured metamaterial nonlinear core, formed
by bulk layers, embedded between two semi-infinite isotropic
metal claddings (see figure 1(a)). The core layers consist of
two different isotropic media with two different permittivities
1, 2 and two different thicknesses d1, d2, respectively, as
shown in figure 1(b). We propose two different models to
study light propagation in such anisotropic nonlinear struc-
tures. The first model is based on the approach presented in
[15, 20] for isotropic nonlinear core, extending it to structures
containing an anisotropic nonlinear core. In this first method,
the nonlinearity is treated in an approximated way such that
all the components of the permittivity tensor depend only on
the transverse component of the electric field. Another lim-
itation is that the nonlinear refractive index change is small
compared to the linear refractive index. Based on these
assumptions, analytical formulas for the field profiles in terms
of the Jacobi elliptical functions [33, 34] are obtained; with
the continuity of the tangential electromagnetic field compo-
nents, they allow us to derive analytical formulas for the
nonlinear dispersion relations. This method will be called the
extended Jacobi elliptical model (EJEM). Our EJEM is dif-
ferent from the simple model used in references [6, 35], in
which only two components of the permittivity tensor depend
on the transverse component of the electric field, while in our
case we consider the dependence of the transverse component
of the electric field for all the components of the permittivity
tensor. In addition, the methods used in [6, 35] were devel-
oped to study stationary solutions propagating in structures
containing a semi-infinite nonlinear region, whereas in our
case we consider a finite-size nonlinear anisotropic core. The
second model described in the current study is fully numerical
and based on the FEM to solve the stationary TM problem in
nonlinear layered structures. This numerical FEM does not
require any of the assumptions used in the semi-analytical
EJEM, and all the components of the effective nonlinear

permittivity tensor depend on both the transverse and long-
itudinal components of the electric field; moreover, the non-
linear term does not need to be small, which means that it is
valid beyond the weak nonlinearity regime. In order to treat
the nonlinearity in the FEM, we generalize the fixed power
algorithm presented in [8, 36] and consider a coupled non-
linear eigenvalue problem to take into account all the electric
field components in the Kerr-type nonlinearity instead of the
single scalar eigenvalue problem solved previously. Further-
more, in our new model, the nonlinearity is treated without
any assumptions relative to its amplitude. It is worth men-
tioning that the first semi-analytical model (EJEM) provides
more insight and understanding into the nature of the sta-
tionary solutions in the structure than the second, more
numerical model. Nevertheless, the second model treats the
nonlinearity in a proper way, without any assumptions on the
Kerr-nonlinearity amplitude, but the field profiles are com-
puted numerically.

Our models are written for TM light polarization in
which the magnetic field has only one component such that
 = [ ]0, , 0y and the electric field has two components
  = [ ], 0, ix z . We consider only monochromatic TM
waves propagating along the z direction in one-dimensional
symmetric structures which are invariant along the z and y
directions (see figure 1(a)). In these structures, all the field
components evolve proportionally to -[ ( )]k n z wtexp i 0 eff :
 = -( ) ( ) [ ( )]Ex z t x k n z wt, , exp i 0 eff and ( )x z t, , =

-( ) [ ( )]H x k n z wtexp i ,0 eff where =k w c0 represents the
wave number in vacuum, ω denotes the angular frequency of
the wave, and c is the speed of light in vacuum. Here neff and
k n0 eff denote the effective index and propagation constant of
the wave, respectively. The magnetic field induction vector is
defined as  m= 0 , where the magnetic permeability is
constant and is denoted by m0, that of vacuum. In our models,
we assume that the relative permittivity tensor is complex and
diagonal:   = + ¯̃̄ ( ) ¯̄ ( ) ¯̄ ( )x x xi . We consider only the real
part of the permittivity    =¯̄ ( ) [ ]x x y z in the derivation of

Figure 1. (a): Symmetric nonlinear plasmonic slot waveguide geometry with its metamaterial nonlinear core and the two semi-infinite metal
claddings. (b), (c) Two different orientations for the nonlinear metamaterial core formed by periodic layers of two different isotropic media.
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the nonlinear dispersion relations, such that the displacement
vector is defined as   = ¯̄0 , with 0 being the vacuum
permittivity. The imaginary parts will be used to estimate
the losses, in which we use the same method as in
[8, 35, 37], extended to the anisotropic case (see section 4).
Depending on the chosen orientation of the compound
layers relative to the Cartesian coordinate axes, different
anisotropic permittivity tensors can be built for the core.
Due to the z-invariance hypothesis required by our model-
ling, only two types, where the z axis belongs to the layers,
have to be considered. For the first type, where the layers
are parallel to the y axis (figure 1(b)), one has for the
diagonal terms of ̄̄ : e e e e e e= = =^[ ]// //x y z . For the
second case, where the layers are parallel to the x-axis, one
gets e e e e e e= = =^[ ]// //x y z (see figure 1(c)). The first
case allows us to obtain an anisotropic effective nonlinear
response for TM polarized waves—unlike the second case
in which the effective nonlinear response coincides with the
standard isotropic one. We will focus on the first orientation
of the layers, as depicted in figure 1(b). The nonlinearity
considered in this study is the usual Kerr-type, where all the
components of the relative permittivity tensor depend on the
electric field intensity:

  a= + " Î∣ ( )∣ { } ( )E x j x y z, , , 1j jj jj
2

in which  jj is the jth component of the real linear permit-
tivity tensor and ajj is the corresponding nonlinear para-
meter, " Î { }j x y z, , . In the metal cladding, a = 0jj , and
  = = " Î { }j x y z, ,j jj m , where m is the real part of the
linear metal permittivity. This kind of nonlinearity has
already been used in many nonlinear waveguide studies
[7, 10, 20, 38], so as a first step we do not need to consider
the complex Kerr-type nonlinearity used in [23, 39].

Using the definition of the magnetic field induction 
and displacement vector , we can express Maxwell’s
equations for the TM polarized waves as

 
=( )

( )
( )

( )E x
n H x

x c
a, 2x

y

x

eff

0

  w
=( )

( )
( )

( )E x
x

H x

x
b

1 d

d
, 2z

z

y

0

wm- =( ) ( ) ( ) ( )k n E x
E x

x
H x c

d

d
. 2x

z
y0 eff 0

Before we describe the derivation of the different methods we
will use, we need to explain why we have limited our study to
the TM waves. The TE waves in the investigated structures
shown in figure 1 have only one null electric field component,
the Ey one. Consequently, only the ey component of the
permittivity tensor will appear in the TE wave equation.
Therefore, the behaviour of these TE waves is identical to the
one obtained in the isotropic case. A full study of these waves
is provided in our previous work [22] and will not be pre-
sented here.

3. Derivation of the methods

3.1. Extended Jacobi elliptical model (EJEM)

We begin with the derivation of the field profiles and non-
linear dispersion relation in the frame of the EJEM, in which
strong assumptions on the form of the Kerr-type nonlinearity
are required to establish it. This method is a generalization
and an extension of the Jacobi elliptical model (JEM)
developed to study the stationary nonlinear solutions in iso-
tropic plasmonic slot waveguides [15, 20], and is based on the
same assumptions: (i) the nonlinearity depends only on the
transverse component of the electric field and (ii) the non-
linear permittivity modifications are small compared to the
linear refractive index such that " Î { }j x y z, , :

 



a

a

= +


∣ ∣

∣ ∣ ( )
E

E

,

. 3

j jj jj x

jj x jj

2

2

These assumptions are valid only at low power, as shown in
[7, 8, 20, 38, 40]. However, they allow us to derive analytical
formulas for the field profiles inside the anisotropic nonlinear
core in terms of the Jacobi elliptical functions [33, 34] which
will be used together with the field in the linear metal clad-
dings and continuity of the tangential components at the core/
metal interfaces to acquire analytical expressions for the
nonlinear dispersion relations.

In order to derive the nonlinear wave equation in terms of
the magnetic field component Hy in the frame of the EJEM
assumptions, we use equation (2) and proceed as in the
isotropic case [8] and find

EJEM- + =( ) ( ) ( )
H

x
k q x H k a x H

d

d
0, 4

y
y y

2

2 0
2 2

0
2

nl
3

where








=
= -

= -

⎧
⎨⎪

⎩⎪

⎛
⎝⎜

⎞
⎠⎟( )

[ ( )]

([ ( )] )
( )

R

R

q x
q

e n

q e n

in the core,

in the claddings,

5
zz

xx
zz

m m

2 core
2 eff

2

2
eff

2

in which  < 0m is the real part of the permittivity in the metal
claddings. Inequation (5), we consider only the real part of
the effective index ( )Re neff as used in [6, 20, 35]. The
nonlinear coefficient EJEM ( )a xnl is null in the linear metal
claddings while, in the nonlinear anisotropic core, it is given
by:

EJEM

 

  a a a

=
-

´ - -

[ ( )]

([ ( )] ( ) ) ( )

R

R

a
e n

c

e n . 6
xx

zz xx xx zz zz xx

nl
eff

2

4 2
0
2

eff
2 2

Our model can be reduced to the isotropic state [8, 15, 20] by
setting   = =xx zz l,core and a a a= =xx zz in equations (5)
and(6), from which we recover the same expressions for q2

and EJEManl as in the JEM (the same isotropic response can be
obtained with the orientation shown in figure 1(c)). It is worth
mentioning that the nonlinear coefficient given byequa-
tion (6) is different from what has been developed for the
anisotropic case presented in [6, 35]. In these two references
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(using our notations to facilitate the comparison), it was
assumed that x and y depend on the transverse component of
the electric field, while z is assumed not to depend on this
component (it is assumed to be constant). In the present study,
we consider the dependence of the transverse component of
the electric field for all the components of the permittivity
tensor. As a special case of the anisotropic treatment, in our
recent work [29], we presented the results for an isotropic
nonlinear term (a a= > 0xx zz ) with an anisotropic linear one
( ¹xx zz) in order to show the influence of the anisotropic
linear part of the permittivity on the nonlinear dispersion
diagrams and on the field profiles. In [29], we distinguished
between two different cases: the elliptical case, in which
 > 0xx and  > 0zz , and the hyperbolic case, where  > 0xx

and  < 0zz . In the present study, we present a general and full
treatment for anisotropic linear and nonlinear permittivity
terms with more general classifications based on the sign of
EJEManl , which depends on both the effective linear and non-

linear permittivity terms (see equation (6)). In order to sol-
veequation (4), we use the first integral approach [8, 38, 41]
and integrate in each of the structure layers separately. Con-
sequently, we can write the nonlinear wave equation as

EJEM
- + =

⎛
⎝⎜

⎞
⎠⎟ ( ) ( ) ( )

H

x
k q x H k

a x
H C

d

d 2
, 7

y
y y

2

0
2 2 2

0
2 nl 4

0

where C0 is a constant of integration. In the semi-infinite
metal cladding, C0 is null since the magnetic field and its
derivative tends to zero as  ¥x . Moreover, in the linear
cladding, the nonlinear parameter EJEM =a 0nl andequation (4)
reduces to the standard linear wave equation and the magnetic
field matches the usual decaying exponential in the metal
regions whose solutions are given by the following (where we
add the explicit x-dependency on the Hy component):




=

+ - ¥ < -

- - < +¥

⎧
⎨
⎪⎪

⎩
⎪⎪

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

( )
( ) ( )

( )

8

H x

H k q x x
d

H k q x
d

x

exp for
2

,

exp for
2

.

y

m
d

m
d

left 0 2
core

right 0 2
core

core

core

Here, Hleft and Hright are the values of the magnetic field
amplitudes at the left =-∣( )Hy x d 2core

and the right =+∣( )Hy x d 2core

core/metal interfaces, respectively. We are searching for
guided wave solutions in the anisotropic waveguides depicted
in figure 1, and consequently, we will look only for the
solutions with positive attenuation coefficient qm in the metal
claddings (see equation (8)), while the quantity qcore in the
core can be either real or imaginary, leading to positive or
negative values of qcore

2 (see equation (5)).
In the nonlinear core, ¹C 00 and this constant can be

obtained in terms of the magnetic field amplitudes at the core/
metal interfaces using the continuity of the longitudinal
components such that

EJEM


= - +

- -

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

( )C k H q q
a

H
2

. 9zz

m
m0 0

2 2
2

2
core
2 nl 2

d dcore
2

core
2

A similar expression can be obtained for C0 at the right
interface. It is important to mention that the value of z at the
left interface is replaced by zz inequation (9) since we
assumed, in the EJEM, that the nonlinear refractive index
change is small compared to the linear one. This expression of
C0 is a generalization to those obtained in the isotropic case
[20] with different values of q2core and EJEManl , such that we
recover the same expression in the isotropic case by setting
  = =xx zz l,core and a a a= =xx zz . Due to the anisotropy,
the sign of the nonlinear parameter EJEManl could be positive or
negative depending on the values of xx, zz, axx, and azz (see
equation (6)). Therefore, we will consider the classification of
the nonlinear solutions in the core according to the sign of the
nonlinear parameter EJEManl .

3.1.1. Case aEJEM
nl < 0: We begin with the case in which

EJEM <a 0nl . In this case, we set EJEM EJEM= -∣ ∣a anl nl in
equation (9) to write the integration constant in the
nonlinear core as

EJEM


= - -

- -

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

∣ ∣

( )

C k H q q
a

H
2

.

10

zz

m
m0 0

2 2
2

2
core
2 nl 2

d dcore
2

core
2

Here, we cannot determine directly the sign of C0 according
to the sign of q2core, and hence the magnetic field component
Hy in the core will be classified according to the signs of q2core
and C0. Nevertheless, we have found that the only bounded
solutions in the nonlinear core in case of a negative value of
EJEManl can be obtained only when <q 0core

2 and >C 00 with
the following criterion:

EJEM


∣ ∣ ( )q
C a

k

2
. 11core

4 0 nl

0
2

In order to clarify this point, we writeequation (7) in the
reduced form

- +
=  ( )

H

AC AQH H A
x

d 1
d , 12

y

y y0
2 4

where the reduced parameters for <q 0core
2 , EJEM <a 0nl , and

>C 00 are given by

EJEM= =( ∣ ∣) ∣ ∣ ( )A k a Q k q2 , . 130
2

nl 0
2

core
2

Nowequation (12) can be written as

g d- -
= 

( )( )
( )

H

H H A
x

d 1
d , 14

y

y y
2 2 2 2

with

g

d

= + -

= - -

( ( ) )

( ( ) ) ( )

AQ AQ AC

AQ AQ AC

4 2,

4 2, 15

2 2
0

2 2
0
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where g d>2 2. We are looking for real values of the
magnetic field Hy, and thus g2 and d2 must be real, which
means that we need to consider the case ( )AQ AC42

0; this
gives the condition shown inequation (11). In order to ensure
that the quantity under the square root in the denominator of
the left-hand side ofequation (14) is positive, we must
consider d g< <Hy

2 2 2. It is worth mentioning that we have
found unbounded solutions in the core when the condition
inequation (11) is not satisfied (see appendix A for more
details). Integratingequation (14) in the nonlinear core and
using formula 17.4.45 from [33], we can express the magnetic
field profile Hy in the nonlinear core (for EJEM <a 0nl ,

<q 0core
2 , and >C 00 ) in terms of the bounded Jacobi

elliptical function sn [ ∣ ]u m with argument u and parameter m
[33, 34, 42, 43] as:
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d
g d
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⎤
⎦⎥ ( )m X

H
mand sn . 17

2

2 0
1 left

Here, sn- [ ∣ ]u m1 is the inverse Jacobi elliptical function sn
[ ∣ ]u m [33]. Inequation (16), the choice of the sign in front of
the square roots is related to the sign of zz such that, for
 > 0zz , we choose the negative sign and for  < 0zz we
choose the positive one. In order to clarify this point, we
need to look atequation (12). If the condition given by
equation (11) (with d g< <Hy

2 2 2) is satisfied, the expression
under the square root in the denominator of the left-hand side
ofequation (12) is positive, and thus the sign on the right-
hand side of this equation only depends on the infinitesimal
change of the magnetic field dHy. In order to be able to study
the sign of dHy on the numerator ofequation (12), we
consider the continuity condition of the longitudinal
component Ez at the left core/metal interface

 
=

= - = -
- +

⎡
⎣⎢

⎤
⎦⎥( ) ( )

( )
k q

H
H

x

1 d

d
, 18m

m
y

x zz

y

x

0

d dcore
2

core
2

in which we substituted z at = - +( )x d 2core by zz in the
frame of the EJEM assumptions. Inequation (18), the real
part of the permittivity in the metal cladding is negative
 < 0m (see the text after equation (5)), and we are looking for
solutions with positive attenuation coefficient in the metal
cladding >q 0;m additionally, without loss of generality, we
assume that >=-∣( )H 0y x d 2core

. This means that the sign of
the magnetic field derivative = - +[ ] ( )H xd dy x d 2core

depends on
the sign of zz such that, for  < 0zz , the sign of the magnetic
field derivative is positive, while if  > 0zz , the correct choice
of the sign of the magnetic field derivative is the negative one.

Therefore, according to the sign of zz, we choose the sign on
the right-hand side ofequation (12) and consequently the sign
in front of the square roots inequation (16). It is important to
notice that, in the isotropic case with positive Kerr
nonlinearity, EJEManl is always positive. Thus, the solutions
given byequation (16) for EJEM <a 0nl can only be obtained
with the anisotropic treatment of the effective nonlinearity
presented in this study.

The procedure of the derivation of the nonlinear
dispersion relation is similar to what has already been used
for the isotropic case [15, 20]: we use the magnetic field
profile in the nonlinear coreequation (16), the magnetic field
in the linear metal claddings (equation (8)), and Maxwell’s
equations (2). Using the continuity conditions for the
tangential electromagnetic field components Hy and Ez at
the right core/metal interface ( =x d 2core ), we can write the
nonlinear dispersion relation in terms of the bounded Jacobi
elliptical functions sn [ ]u m, , cn [ ]u m, , and dn [ ]u m, with
argument u and parameter m as


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A A
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zz m
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0
2

core 0
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core 0

2

core 0

Inequation (19), the sign in front of the square roots is related
to the sign of zz as we discussed before (see equation (16)
and the text after). We remind the reader that xx appears
in equation (19) through q2core that is used to define
Q(equation (13)) and consequently g2 and d2 (equation (15)).
Since we are searching for nonlinear bounded solutions with
finite energy in the core, we will consider only the subcase
with <q 0core

2 and >C 00 for negative EJEManl (subcase which
satisfies the condition shown in equation (11)) in the
derivation of the nonlinear dispersion relation, and the other
subcases (for EJEM <a 0nl ) which provide unbounded solutions
in the nonlinear core will be summarized in appendix A and
table A1.

3.1.2. Case aEJEM
nl > 0: Now we consider the case in which

the effective parameters xx, zz, axx, and azz provide positive
values for the effective nonlinearity EJEManl (see equation (6)).
The situation shares common points with the isotropic
configuration with focusing Kerr-type nonlinearity [15, 20],
while the present anisotropic case is more general since it is
not necessary to use focusing Kerr-type nonlinearity in order
to get positive values of EJEManl , as can be inferred
fromequation (6). The isotropic case studied previously
[20] can be seen as a special case of the current study.
For EJEM >a 0nl , the nonlinear wave equation given by
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equation (7) can be written as
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This means that equations (20) take different forms
according to the signs of the integration constant C0 and the
quantity qcore

2 .

For <q 0core
2 : in this subcase, C0 can only take positive

values as can be inferred fromequation (9) for >H 0left . In
this subcase, the magnetic field profile Hy will be written in
terms of the bounded Jacobi elliptical function cn [ ∣ ]u m by
integratingequation (20b) in the nonlinear core and using
formula 17.4.52 from [33] such that
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The choice of the sign in front of the square roots in
equation (22) is related to the sign of zz and it is treated as in
the previous case EJEM <a 0nl (see equation (18) and the text
after, together with equation (20b)). In order to derive the
nonlinear dispersion relation in this subcase, we use the
magnetic field profile in the nonlinear core given by
equation (22) and the field profile in the linear metal
claddings(equation (8)), together with the continuity condi-
tion of the tangential components of the electromagnetic field
at the right core/metal interface. The final expression of the

nonlinear dispersion relation reads
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We choose the lower positive sign for  > 0zz and the upper
negative sign for  < 0zz (see equation (22)).

For >q 0core
2 : unlike the former subcase, the sign of the

integration constant C0 cannot be determined directly.
First, we consider <C 00 . The magnetic field profile in the

nonlinear core can be obtained by integratingequation (20a)
using formula 17.4.43 from [33] with the reduced parameters A
and Q defined inequation (21) such that
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It is worth mentioning that, according to the used parameters A,
Q, and C0 in this subcase, the arguments under the square roots
in the definitions of g2 and d2 shown inequation (26) are
positive, which ensures that both γ and δ are real quantities and
the magnetic field profile provided byequation (25) is real.
Using the magnetic field profile shown inequation (25) and
proceeding as for the previous case EJEM <a 0nl , we can write the
nonlinear dispersion relation as
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Inequation (27), we choose the upper negative sign in front of
the square roots for  > 0zz , and we choose the bottom positive
sign for  < 0zz (see equation (18) and the derivative of the
Jacobi elliptical functions nd [ ]u m, in [33]).
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Second, for >C 00 , we can write the magnetic field
profile in the nonlinear core as

where
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The associated nonlinear dispersion relation gives
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It is important to note that an alternative formula toequa-
tion (28) can also be obtained in terms of the Jacobi elliptical
function cn [ ∣ ]u m as was already used in the isotropic case
[20]. The choice of the sign of the nonlinear dispersion
relation inequation (30) is linked to the sign of zz, as shown
inequation (28), in which we choose the upper negative sign
for  > 0zz and the lower positive one for  < 0zz .

The nonlinear dispersion relations shown in equations
(19),(24),(27), and(30) represent the full nonlinear disper-
sion relations for the bounded solutions propagating in the
anisotropic nonlinear plasmonic slot waveguide depicted in
figure 1 under the EJEM assumptions described in section 3.1.
For fixed opto-geometrical parameters, the preceding non-
linear dispersion relations are solved for the real part of the
effective index ( )Re neff to obtain the nonlinear dispersion
diagrams.

3.2. Finite element method

In this part, we use the FEM-based model to solve the non-
linear TM eigenvalue problem in the one-dimensional ani-
sotropic layered structure depicted in figure 1. It is well
known that the FEM is generally versatile and can be applied
to complex nonlinear waveguide problems, including two-
dimensional ones with arbitrary shape and field profiles
[44–47]. Generally speaking, in the frame of the FEM, the
initial physical problem is transformed into a variational form

(weak formulation) by multiplying the initial partial differ-
ential equation by chosen test functions that belong to a

particular functional space. The next step is the discretization
of the problem, in which the waveguide cross section is first
divided into a patchwork of elements. The unknown fields are
expanded in terms of interpolation polynomials over each
element. The expansion coefficients that define the values of
the fields at the nodal elements can then be obtained by sol-
ving a standard matrix eigenvalue problem. For a general and
recent review of the finite element method in the frame of
optical waveguides, the reader can refer to chapter 4 in [48].

In this article, in order to treat the anisotropic nonlinearity
in the frame of our FEM, the fixed power algorithm
[36, 44, 49] will be used, in which the input is the total power
and the outputs are the field profile (the eigenfunction) and
the corresponding effective index (the eigenvalue). This
algorithm uses a simple iterative scheme based on a sequence
of linear modal solutions which converge to the nonlinear
solution after few steps. The fundamental issue is that the
amplitudes of the eigenmode are irrelevant and the numerical
solution of the intermediary eigenvalue problem used at each
iteration has an uncontrolled amplitude. But, since the non-
linear problem depends on the amplitude of the field, the
numerical eigenvector which is computed at each step as a
solution of the eigenvalue problem has to be scaled by a
scalar factor. This process allows the eigenvector to be used
as input for the next iteration. The scaling factor is computed
at each iteration for a fixed value of the input power. For the
single-component eigenvalue problem written in terms of the
magnetic field component Hy, an approximated formula has
already been used [8, 21, 22, 36] in order to compute the
scaling factor using only the linear part of the permittivity and
neglecting the nonlinear term (see equation (B.2) in
appendix B). Moreover, only the transverse component of the
electric field was used in the isotropic Kerr-type nonlinearity.
It is worth mentioning that it is not possible to take into
account all the electric field components in the Kerr-type
nonlinearity using the single-component eigenvalue problem
[8] within the FEM implementation of the fixed power
algorithm, as is demonstrated usingequation (B.3) and the
text after it.

In the current study, we present a new and generalized
formalism for the fixed power algorithm in arbitrary nonlinear
layered structures where the nonlinearity will be treated in a
more rigorous way such that all the components of the electric
field are taken into account in the Kerr-type nonlinearity and no
assumptions are needed to compute the scaling factor. Addi-
tionally, unlike the previous isotropic cases [8, 21, 36, 44], we
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consider a fully anisotropic nonlinear treatment for the
permittivity tensor as it is shown in equation (1).

Our approach is based on the solution of a coupled
nonlinear eigenvalue problem in terms of the continuous
tangential components of the electromagnetic field Hy and Ez.
In order to obtain the correct weak formulation, we must
consider the full TM wave equations with both the inhomo-
geneous permittivity term induced by the nonlinearity and the
structure interfaces. The corresponding coupled weak for-
mulation reads:


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d
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d
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z

y y
y y

x
y y

z z
z

y
z

0
2

eff
2

0 0

Here, hy(x) and ez(x) stand for the tangential components of
the magnetic and electric field, respectively, and Γ is the
domain of integration (in the present case the full cross
section of the waveguide). In system(31) ∀ ¢ ¢ Î( ) ( )h x e x,y z

H G( )0
2 we look for HÎ G( ) ( ) ( )h x e x,y z 0

2 , where H G( )0
2 is the

Sobolev space of order 2 with null Dirichlet boundary con-
ditions on the domain of integration Γ. It is important to point
out that for the magnetic field hy, we must pick a test function
from a functional space (Sobolev space) at least of order 2,
while, for the tangential component of the electric field ez, we
can choose a test function from a functional space of order 1
or 2 as can be understood from the relation between the
tangential components shown inequation (2b). We use the
fixed power algorithm described in algorithm 1 to solve the
coupled eigenvalue problem shown in system(31). Our FEM
is implemented using the free and open-source software
GMSH as a mesh generator and GETDP as a solver [50–52].
These software programs have already been used to solve
both one-dimensional and two-dimensional isotropic non-
linear electromagnetic waveguide problems [8, 21, 36]. It is
worth mentioning that our FEM, with its fixed power algo-
rithm shown in algorithm 1, can be reduced to take into
account all EJEM assumptions as described in appendix B
and as will be illustrated in the next section.

Algorithm 1. Fixed power algorithm to solve the coupled
nonlinear eigenvalue problem depicted inequation (31).

1: We start with an initial guess Einit
x , Einit

z , which will be used to
compute x and z fromequation (1).

2: We use x and z in the coupled eigenvalue problemequation (31)
to compute the eigenvectors hy and ez with the corresponding
eigenvalue neff. The outputs will be used to compute the rescaling
factor χ for a given fixed value of the power Ptot which can be
derived from the longitudinal z component of the pointing vector
integrated over the transverse x-direction and usingequation (2c)
such that

ò
c

wm= +
G

⎡
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( ) ( ) ( )
R

P
k e n

e x

x
h x h x x

2

d

d
d .z

y ytot

2

0 eff
0

(Continued.)

3: The rescaling factor χ will be used to compute the correct
amplitude of the longitudinal components such that c=H hy y and

c=E ez z. The transverse component of the electric field Ex will be
computed fromequation (2c) using Hy and Ez. The updated
effective nonlinear permittivities x and z will be used as inputs
for the next iteration.

4: We repeat steps (2) and (3) until the following criterion is satis-
fied: d- < " Î-∣ ( ) ( )∣ ∣ ( )∣ [ ]R R Re n e n e n i N1, ,i i i

eff eff
1

eff
where ( )Re n i

eff is the eigenvalue for the step i and N is the step
number in the procedure. We set d = -10 5 such that, in order to
fulfill the criterion, between 10 and 15 steps are needed depending
on the waveguide parameters and the initial field used.

4. Numerical results

In this section, we present several numerical results to
validate our models and to demonstrate the influence of the
anisotropy on the nonlinear dispersion diagrams and on the
effective nonlinearity. We build nonlinear cores from stacks
of realistic bulk materials, and we use the effective medium
theory (EMT) to retrieve their linear and nonlinear effective
parameters [23, 53]. Moreover, we assume that both d1 and d2
(see figure 1(b)) are much smaller than the operating wave-
length, so we can derive the effective linear permittivities and
the effective nonlinear susceptibilities in the frame of the
simple EMT [23, 53]:
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where = +( )r d d d2 1 2 is the ratio of the second material in
the core,  j and c( )

j
3 , Î { }j 1, 2 are the linear permittivities

and third-order nonlinear susceptibilities of the constituent
materials used in the core, respectively. Generally,
  = + ˜ ijj jj jj and a a a= + ˜ ijj jj jj are complex; the real
parts are used in the derivation of the models whereas the
imaginary parts will be used to estimate the losses. In this
study, we will consider only the linear losses; nonlinear
processes like two-photon absorption are neglected [54, 55].
The imaginary part of the effective indices ( )Im neff will be
estimated using the method based on the field profiles and
imaginary parts of the permittivity described in [8, 35, 37] for
the isotropic case. It is worth noting that this method has
already been used to estimate the losses in isotropic nonlinear
plasmonic waveguides [8, 21, 37]. In formula(33), we pro-
vide the extension of this method to the anisotropic case:
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Here, Ptot is the total power and  m is the imaginary part of the
metal cladding permittivity. For the numerical results presented
below, the core thickness is fixed at =d 400 nmcore , and we
use gold for the metal claddings with  = - +˜ 90 i10m at
l = 1.55 μm [56]. First, we simplify our models to the iso-
tropic case and compare the results with previously published
works. For the anisotropic case, we use the classification
shown in section 3.1 for EJEM <a 0nl and EJEM >a 0nl depending
on the values and the signs of the linear and the nonlinear
permittivity terms (see equation (6)). It is worth noting that this
classification is more general than the one shown in our recent
work [29], where a a a= = > 0xx zz and  ¹xx zz, in which
we classified the problem according to the signs of the linear
permittivity tensor terms into elliptical and hyperbolic cases
only. This previous splitting can be seen as a special case of the
current more general classification. In section 4.4, we show that
the classification of the nonlinear solutions according to the
sign of EJEManl given by equation (6) and derived in the frame of
the EJEM cannot be extended to all the possible solutions
computed within the full NL FEM due to the assumptions of
the EJEM.

4.1. Isotropic case: validation and comparison with [15, 20]

We begin with the isotropic case, considering a nonlinear iso-
tropic core with a focusing Kerr-type nonlinearity, and we
compare the results with [15, 20] using exactly the same para-
meters. In this case, we set r=0 inequation (32), and the
isotropic nonlinear material in the core corresponds to amor-
phous hydrogenated silicon with  = + -3.46 i101

2 4 with the
nonlinear parameter being a a= = ´ -6.36 10zz xx

19 -m V2 2,
which is related to the nonlinear refractive index n2 through

 a» ( ( ))Rn c exx2 0 1 [15, 20]. In figure 2, we study the
nonlinear dispersion curves for the fundamental nonlinear
symmetric mode denoted by S0-plas (thin lines, small circles,
and cross points) and the first nonlinear asymmetric mode AS1-
mode (thick lines, big closed circles, and squares), which
bifurcates from the S0-plas mode at the critical power value. The
asymmetric mode AS1-mode has no counterpart in the linear
case and it exists only above a certain threshold as a signature of
a strong spatial nonlinear effect [15, 19, 57]. This kind of

bifurcation is called Hopf bifurcation and it has already been
observed in the simple nonlinear plasmonic slot waveguide
[11, 15, 20] and in its improved version [21, 22]. We begin with
comparing the results obtained from the FEM described in
section 3.2 and denoted full NL FEM in the following, taking
into account all the contributions of the electric field in the Kerr
nonlinearity (black curves) with the results obtained from the
interface model (IM) (represented by the red curves in figure 2)
[20]. The IM is a numerical method developed specifically for
the nonlinear isotropic slot waveguides [15, 20], where all the
non-null electric field components are present in the Kerr non-
linearity. One clearly sees that the results obtained from our full
NL FEM, with its coupled formulation (see section 3.2), agree
well with the results acquired using the IM. Next, we compare
the results obtained from the EJEM-adapted FEM presented in
appendix B taking into account all the assumptions of the EJEM
(dashed cyan curves), with the results obtained from the semi-
analytical approach EJEM described in section 3.1 (blue circles).
Once again, one clearly sees that the results from our adapted
FEM recover the results from the semi-analytical EJEM. In
figure 2, at high powers, there exist some discrepancies between
the results obtained from the methods which consider the full
treatment of the nonlinearity (FEM full NL (black) and IM (red)
curves) in the core and the results obtained in the frame of the
EJEM approximations (adapted FEM (cyan) and EJEM (blue)
curves). These discrepancies are due to the simplified way used
to describe the nonlinearity in the EJEM models (see
section 3.1). However, the results which are based on the EJEM
assumptions can predict the behaviour of the nonlinear disper-
sion curves as can be inferred from figure 2.

Another important remark is that our two FEMs are
based on the fixed power algorithm in which, for a given
input power, we look for the corresponding effective index of
the investigated nonlinear mode (see section 3.2). This means
that they fail to follow the branches of the nonlinear disper-
sion curves with a negative slope, which usually correspond
to unstable modes (see figure 1 in [15]). The current versions
of the FEM based on the fixed power algorithm converge only
to possibly stable modes [45, 58].

4.2. Anisotropic case with aEJEM
nl < 0: results and validation

In this subsection, we present one example for the case in
which the effective nonlinearity EJEManl is negative (see
section 3.1.1), and we compare the results obtained from the
semi-analytical approach EJEM with those acquired from the
full NL FEM and from the adapted FEM to match the EJEM
assumptions (see appendix B). As we have mentioned before,
the sign of EJEManl (see equation (6)) depends on the linear and
nonlinear effective parameters of the core. In this example, we
choose the two materials in the core in order to get a negative
effective nonlinearity. We use silver for material 2 with
 = - +129 i3.282 [59]. Due to the imaginary part of 2, it is
important to use a gain medium for material 1 (with permit-
tivity 1) in order to compensate for the metal losses. Chalco-
genide glass is a promising candidate since it can act as a gain
medium at the telecommunication wavelength; in addition, it
has a high nonlinear coefficient and a low two-photon

Figure 2. Comparison between the nonlinear dispersion curves for
the NPSW depicted in figure 1 reduced to the fully isotropic case by
setting r=0 inequation (32), with  = + -i3.46 101

2 4 and
a a= = ´ -6.36 10zz xx

19 -m V2 2 [15].
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absorption at this wavelength, compared to the usual semi-
conductors [60, 61]. Thus, the permittivity of material 1 is set
at  = -2.47 i0.00721

2 , corresponding to very small gain.
The third-order nonlinear susceptibility of material 1 is set at
c » ´ -( ) 1.08 101

3 19 -m V2 2 [54]. We will omit the non-
linearity of material 2 (silver) since it is weak compared to that
of the chalcogenide glass at l = 1.55 μm. It is worth men-
tioning that the idea of loss compensation in metal/dielectric
multilayer structures has already been investigated theoretically
[62, 63] and demonstrated experimentally [64, 65]. In order to
compute the effective parameters in the core, we set r = 0.5
inequation (32), which gives us  = +˜ 12.80 i0.00029xx ,
 = - +˜ 61.449 i1.63633zz , a = ´ -7.13 10xx

19 -m V2 2, and
a = ´ -1.62 10zz

19 -m V2 2. One clearly sees that the ima-
ginary part of the longitudinal linear component,  zz, is not
null. This observation is fully coherent with the results pro-
vided in [66] that deal with semiconductor as gain medium in
linear waveguides with hyperbolic dispersion properties. In
figure 3(a), we present the nonlinear dispersion diagram for

( )Re neff as a function of the total power for EJEM <a 0nl using
the semi-analytical EJEM described in section 3.1.1 (closed
circles) and full NL FEM with the full treatment of the Kerr
nonlinearity (solid lines), and the adapted FEM shown in
appendix B (broken lines). At low powers, when the
assumptions of the EJEM are valid, the dispersion curves
acquired by the three methods are identical. Nevertheless, as
expected, at high powers, when the EJEM assumptions are not
fully valid, we obtain some discrepancies between the full NL
FEM (solid lines) and the methods based on the EJEM
assumptions (broken lines for adapted FEM and closed circles
for EJEM). It is worth noticing that the adapted FEM actually
reproduces the results obtained from the semi-analytical EJEM,
even at high powers; this can be seen as a validation of our

methods. Due to the negative effective nonlinearity, we
observe a defocusing behaviour inside the nonlinear core,
starting from a positive third-order nonlinear susceptibility of
material 1; figures 3(c) (main symmetric and antisymmetric
modes) and 3(d) (first symmetric and antisymmetric higher-
order modes) illustrate this phenomenon. In figure 3(b), we
estimate the losses using the results obtained from the more
accurate model full NL FEM. The ( )Im neff is computed
usingequation (33), and we observe an increase of ( )Im neff

with the increase of power for the modes under investigation.
This is due to the defocusing behaviour in the core, where the
field profiles tend to be more located in the metal claddings
with the increase of power (see figures 3(c) and (d)). It is worth
mentioning that in this case we did not observe a bounded
asymmetric mode due to the defocusing effect in the core (see
the end of section 3.1.1 and appendix A). To conclude on this
point, we have presented one example for the case in which the
effective nonlinearity is negative and have validated the
methods developed in this study. Moreover we have found
that, in this example, starting from a positive Kerr-type non-
linearity, we observe a defocusing behaviour in the core. Dif-
ferent parameters can be chosen in equation (6) in order to
obtain a negative effective nonlinearity; this nevertheless does
not affect the validation of our models.

4.3. Anisotropic case with aEJEM
nl > 0: results and validation

In this subsection, we present a numerical example for the
anisotropic case in which EJEM >a 0nl . We choose material 1
with  = + -3.46 i101

2 4 andc » ´ -( ) 2.122 101
3 19 -m V2 2

(amorphous hydrogenated silicon [15, 20]). For the second
material in the core with permittivity 2, we consider an ideal
ENZ material with  »( )Re 02 and  »( )Im 02 . This choice

Figure 3. (a) Nonlinear dispersion curves in the anisotropic case for EJEM <a 0nl (see the text for the parameters used). Solid lines show the full
NL FEM, broken lines show the adapted FEM, and closed circles show the semi-analytical EJEM. (b) ( )Im neff as a function of Ptot for the
results obtained with full NL FEM. (c) Hy component for the symmetric S0-cos main mode and the antisymmetric AN0-sin main mode at two
different power values; thin curves show =P 10tot

9 Wm−1 and thick curves show = ´P 6 10tot
9 Wm−1. (d) Similar to (c) but for higher-

order modes: symmetric S1-cos and antisymmetric AN1-sin.
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of the second material is justified, since it was recently shown
[67] that for the usual ENZ materials with  »( )Re 02 and

 >( ) ( )I Rm e2 2 , the fundamental principle of causality leads
to diverging energy-loss function and that the loss cannot be
compensated even with huge gain values. A typical example for
such usual ENZ materials with null real part and small ima-
ginary part of the permittivity is indium-tin oxide [28]. Fur-
thermore, it is demonstrated theoretically [67] that in order to
make use of the properties of the ENZ materials in waveguide
problems, they must have a vanishing imaginary part of the
permittivity (ideal ENZ). In our study, the ideal ENZ permit-
tivity (material 2 in the core) will be obtained by considering a
mixture of aluminium-doped zinc oxide (AZO)-coated quantum
dots dispersed in a polymer matrix; the resulting permittivity is
retrieved using Maxwell–Garnett’s relation. This technique is
similar to what has been used in [68], while here we use
spherical AZO-coated quantum dots instead of the spherical
Ag-coated quantum dots. The spherical AZO-coated quantum
dots in our study consist of AlGaAsP (gain medium with
permittivity 11.8−i0.16) as an inner core medium and AZO as
an outer shell with permittivity −8+i0.1. Using Maxwell–Gar-
nett’s formula [68] with a filling ratio set to 0.08, we obtain the
permittivity of the spherical AZO-coated quantum dots
 = - +1.42 i0.0006QDs . The next step in obtaining the

permittivity of material 2 is to insert the spherical AZO-coated
quantum dots within a polymer matrix (PMMA) with
 = 2.66PMMA with a filling ratio equal to 0.475 such that using
Maxwell–Garnett’s relation, the permittivity of material 2 reads
 = +0.0043 i0.0005552 with the third-order nonlinear coef-
ficient of the second material being c » ´ -( ) 3.0 102

3 20

-m V2 2, similar to the one used in [39]. It is worth mentioning
that a similar procedure has already been used to obtain an ideal
ENZ material using quantum dots [39] for a metamaterial
multilayer structure with an isotropic dielectric response, unlike
the current study. The permittivity of material 2 will be
used together with that of material 1 to obtain the effective
parameters in the core usingequation (32). We choose r = 0.1
to obtain  = +˜ 0.043 i0.005xx ,  = +˜ 10.77 i0.00014zz ,
a = ´ - m V8.94 10xx

19 2 2, and a = ´ - m V5.82 10zz
19 2 2.

In figure 4(a), we present the nonlinear dispersion curves for the
three main modes: symmetric (blue), asymmetric (green), and
antisymmetric (red) obtained using the EJEM (closed circles),
the adapted FEM to match the EJEM assumptions (broken lines)
and with full NL FEM taking into account the full treatment of
the nonlinearity (dark solid curves). One can observe that the
three methods coincide at low powers whereas, at high power,
there exist some discrepancies between them. Once again, this
can be understood from the assumptions of the EJEM. In

Figure 4. (a): Nonlinear dispersion curves for EJEM >a 0nl using EJEM (closed circles), the adapted FEM (broken lines), and full NL FEM
(dark solid lines). Blue, green, and red lines represent symmetric, asymmetric, and antisymmetric modes, respectively. (b): Attenuation length
in the metal claddings computed using the results obtained from full NL FEM, with  = -90m being the real part of the metal cladding
permittivity. (c): ( )Im neff using the results obtained from full NL FEM; the corresponding ( )Re neff are shown in (a). In this figure, the
effective nonlinear susceptibility parameters axx and azz are not equal (see text for the parameters used).
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addition, the EJEM (closed circles) and the adapted FEM
(broken lines) are identical even at high powers, which confirms
that the discrepancies between the methods at high powers are
due to the assumptions of the EJEM. All the methods predict a
huge reduction of the bifurcation threshold compared to the
isotropic case shown in figure 2; typically in this anisotropic
case, the bifurcation threshold is reduced by more than three
orders of magnitude (see green curves in figure 4(a)), which is a
signature of strong reinforcement of the spatial nonlinearity. This
enhancement of the spatial nonlinearity can be understood
qualitatively inequation (6) for an ENZ xx and   1zz . For a
more detailed study of the influence of the linear anisotropic part
of the permittivity tensor with an isotropic nonlinear term, unlike
the current study, we refer to [29]. Other interesting con-
sequences of using an ENZ xx and   1zz are the very small
effective indices obtained for the modes under investigation (see
figure 4(a)), which have a direct influence on the field profiles in
the metal claddings. This influence can be seen from the
attenuation parameter in the metal which is quantified by

= -([ ( )] )Rq e nm m
2

eff
2 , where  = -90m is the real part of

the metal cladding permittivity. In this case,  ∣ ∣ [ ( )]Re nm eff
2

even with the increase of ( )Re neff at high powers, and q2m
remains nearly constant. This means that the increase in
power has a negligible effect on the field profiles in the linear
metal claddings, and the attenuation length in the metal

= ( )L k q1m m0 remains nearly constant with the increase in
power as can be seen in figure 4(b) (Lm is constant up to five
digits). In this figure, the attenuation length slightly decreases (qm
slightly increases) for all the modes under investigation.

Consequently, with the increase in power, the field profiles will
be more localized at the core metal interfaces with a nearly
constant portion in the metal claddings (see figure 5). Therefore,
the overall losses slightly decrease with the increase in power, as
can be seen in figure 4(c). It is worth mentioning that this
interesting property cannot be obtained in the usual isotropic
NPSWs, where the losses increase with the power [15]. In
figure 5, we present the Ex and Ez components for the symmetric
(blue), asymmetric (green), and antisymmetric (red) modes
obtained from full NL FEM. On the one hand, the field profiles
in the metal claddings are nearly constant as we discussed pre-
viously; on the other hand, the intensities at the metal/core
interfaces increase with power. Consequently, the losses
decrease with the increase in power, as is shown in figure 4(c).
We focused only on the main modes; higher-order modes exist
and they are quite similar to those obtained in the isotropic case
[15]; however, due to the enhancement of the nonlinearity, these
nonlinear higher-order modes appear at lower powers compared
to the isotropic case. Their full investigation is beyond the scope
of this study.

4.4. Beyond the EJEM assumptions

We have seen in sections 4.1–4.3 that the results obtained from
the semi-analytical EJEM and the adapted FEM qualitatively
agree with the results obtained from the more accurate model
full NL FEM. More precisely, when the EJEM assumptions
shown in section 3.1 are valid, the three methods produce the
same results. Nevertheless, when the EJEM assumptions start

Figure 5. Ex (first raw) and Ez (second raw) components for the main modes computed using the more accurate model full NL FEM
represented by the solid curves shown in figure 4(a). First column: nonlinear symmetric (dark blue), and antisymmetric (dark red) modes at
two different power values (thin curves at =P e5.5 05tot Wm−1, solid curves at =P e4.0 06tot Wm−1). Second column: nonlinear asymmetric
mode located at the right interface at two different power values (thin curves at =P e7.5 05tot Wm−1, solid curves at =P e2.0 06tot Wm−1).
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to be partially not valid (at high powers), we have found some
discrepancies between the results obtained from the three
methods (see figures 2–4). However, the global behaviour of
the nonlinear dispersion curves remains the same. Conse-
quently, using the semi-analytical EJEM, we were able to get
more insights into the computed nonlinear solutions. In this
subsection, we present a numerical example for the anisotropic
case in order to show the limitations of the semi-analytical
EJEM. In figure 6, we choose  = 3.46xx

2,  = 5.0zz , and
a a= = ´ -3.18 10xx zz

19 m V2 2. In this case, the effective
nonlinearity in the EJEM framework is positive EJEM >a 0nl .
We consider only the nonlinear symmetric (S0-plas) and
asymmetric (AS1-plas) modes in this discussion. At low
powers, when the transverse component of the electric field Ex

is much higher than the longitudinal one Ez, all the methods
coincide. However, at high powers, we clearly see that the
results obtained from the full NL FEM (solid curves) differ
quantitatively from the results obtained from the EJEM (closed
circles) and from the adapted FEM (broken lines) since at high
powers, unlike figures 2–4, the ratio max ∣ ∣ ∣ ∣E Ex z

2 2 is less than
2.0. This inequality means that the amplitude of Ez is com-
parable to the one of Ex, implying that the main assumption of
the EJEM (that the Kerr nonlinearity depends only on Ex) is no
longer valid. In the full NL FEM, we take into account both Ex

and Ez in the Kerr-type nonlinearity. This example indicates
that the classification of the nonlinear solutions according to
the sign of EJEManl given by equation (6) and derived in the
frame of the EJEM cannot be extended to all the possible
solutions computed within the full NL FEM. Nevertheless, this
classification remains useful since it covers a wide range of
configurations and, being analytical, it is straightforward to
define it. This remark illustrates the complementarity of the two
methods we described and validated in this study.

4.5. Numerical simulations of the nonlinear propagation in the
time domain

In our previous works [15, 21], we were able to use the non-
linear capabilities of the FDTD method implemented in the
MEEP software [69, 70] to investigate the nonlinear propagation

in isotropic NPSWs with or without buffer layers between the
nonlinear and metal claddings. In the present study, the needed
simulations are more difficult to realize due to the anisotropy
(see, for example, [71]); nevertheless, some nonlinear aniso-
tropic configurations can be modelled using the FDTD method
as will be shown. The metal permittivity of the cladding is
described by a Drude model to obtain the fixed negative value
used at the studied wavelength. The useful computational
domain is surrounded at its four edges by absorber regions that
prevent back-reflected fields more efficiently than the perfectly
matched layers that have also been tested during our FDTD
simulations. In order to have reference results, we do not use
the structure parameters given in the previous section but rather
those provided in [15], where we have provided a detailed
FDTD study for an isotropic NPSW with a positive Kerr-type
nonlinearity. In our new simulations, the anisotropy is intro-
duced by decreasing the exx values and keeping identical all the
other parameters. This configuration corresponds to the generic
case >a 0nl

EJEM that is studied in section 4.3.
First, we validate the anisotropic case for the FDTD

simulations by computing the effective index in the linear
case (nullifying the nonlinear coefficient) and comparing it
with the results provided by our full NL FEM. For the first
test case denoted in the following by (1), we obtain

=( )Re n 1.4772eff
FDTD and =( )Re n 1.4996eff

FEM . For the
second case denoted by (2), which represents a strongly
anisotropic configuration, we got =( )Re n 1.034eff

FDTD versus
=( )Re n 1.040eff

FEM . The parameters for these two cases are
given in the legend of figure 8. In the isotropic, we have
already noticed that the agreement between the two methods
can be good if the resolution is high enough in the FDTD
simulations. The comparison between the Hy profiles obtained
from the full NL FEM and the FDTD method for case (2) is
shown in figure 7. In these anisotropic cases, we observed the
convergence of the linear FDTD field profiles with higher
resolutions toward those computed from the FEM as we did
already in the isotropic case [15]. We fixed the resolution in
the nonlinear FDTD simulations to the one used to get the
previous results (180 grid cells per micrometre). As can be
seen in figure 7(b), the agreement between the FDTD and the
FEM results obtained for the strongly anisotropic case (2) are
also good in the nonlinear case even if, at even higher powers,
the discrepancies increase as has already been observed in the
isotropic case.

In figure 8, we show the nonlinear propagation of the main
symmetric mode S0-plas in the anisotropic NPSWs shown in
figure 1, obtained using the FDTD method implemented in the
MEEP software, for the two cases of anisotropy (1) and (2)
defined in the previous paragraph. The sinusoidal phase
modifications are clearly visible in these two plots. These
results numerically demonstrate the stability up to the inter-
mediate power regime of the main symmetric mode in the
anisotropic NPSW with e e> > 0zz xx and >a 0nl

EJEM (posi-
tive effective Kerr-type nonlinearity). This result is important
for the possible applications since it is in this power regime
where they can be designed and used. At higher powers, either
the solutions are not numerically stable or the mode itself is not
stable, as we have already observed in the isotropic case. We

Figure 6. Nonlinear dispersion curves for the anisotropic case with
 = 3.46xx

2,  = 5.0zz , and a a= = ´ - -3.18 10 m Vxx zz
19 2 2. Solid

lines show the results obtained from the full NL FEM, closed circles
show results from EJEM, and broken lines show results from the
adapted FEM. Blue and green represent nonlinear symmetric S0-plas
and nonlinear asymmetric AS1-plas, respectively.
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also notice that the effective indices computed with the FDTD
do not correspond exactly to those computed using the full NL
FEM, and the higher the power, the larger the difference. This
remark was already made in our previous FDTD study dedi-
cated to isotropic NPSWs. A more detailed FDTD invest-
igation of the other main modes, including the first asymmetric
and anti-symmetric modes, would be of interest but is beyond
the scope of the present work, as NPSW configurations with an
even higher anisotropy can be a serious issue from the num-
erical analysis point of view [71].

5. Conclusion

We have presented two different models for studying the sta-
tionary TM nonlinear solutions propagating in slot plasmonic

waveguides with a nonlinear anisotropic metamaterial core.
The first is a semi-analytical model in which we describe the
nonlinear electromagnetic field components in the waveguide
by the Jacobi elliptical functions; it extends to the anisotropic
case our previous model valid only for isotropic configurations.
Within this model, we have studied the nonlinear dispersion
relations for all possible solutions propagating in such
structures. The nonlinearity in this method is treated in an
approximated manner in which only the transverse component
is used in the Kerr-nonlinearity term. In addition, we must
assume that the nonlinear refractive index change is small
compared to the linear one. The second model is based on the
finite element method, in which the electromagnetic field
components are computed numerically. In this method, the
nonlinearity is treated correctly and all the electric field

Figure 7. Field profiles of the Hy component computed from the FDTD and from the full NL FEM for the strongly anisotropic test case (2). (a):
Linear case, =( )Re n 1.034eff

FDTD and =( )Re n 1.040eff
FEM . (b): Nonlinear case for a total power near ·51 106 Wm−1, =( )Re n 1.1857eff

FDTD ,
and =( )Re n 1.1850eff

FEM .

Figure 8. Evolution of the Hy field profile for the symmetric S0-plas mode for the (1) weak anisotropic and (2) strong anisotropic cases. The
simulations were realized using the FDTD method implemented in the MEEP software. The common parameters are as follows: core thickness
d=500nm, metal permittivities  = = -61 3 at a free-space wavelengthl = 2.0 μm, second-order nonlinear refractive index = -·( )n 2 102,1

2 17

m2/W,  = = 3.80318yy zz . (a): Case (1), in which  = 1.10307xx and the extracted effective index is =( ) )Re n 1.7128eff . (b) Case (2), in
which  = 0.56318xx and the extracted effective index is =( )Re n 1.1858eff .
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components are used in the Kerr nonlinearity without any
further assumptions. Finally, we presented several numerical
results to validate our models and illustrate their limitations.
We have found that the methods provide identical results at
low powers, while at high power there exist some discrepancies
between them due to the assumptions required by the semi-
analytical model. This semi-analytical approach EJEM gives
more insights into the behaviour of the nonlinear dispersion
curves and field profiles than the more numerical FEM
approach, while the FEM approach describes the nonlinearity
in a proper way, the only disadvantage being that the field
profiles are computed numerically. We have also demonstrated
the influence of the linear and nonlinear anisotropic terms of
the permittivity on the nonlinear dispersion curves and on the
field profiles for two different cases defined in the frame of the
first model. First, for EJEM <a 0nl , we have found that the
nonlinear metamaterial core with positive Kerr-type non-
linearity can act as a defocusing medium. Second, for
EJEM >a 0nl , we have presented one interesting example pro-

viding a huge enhancement of the nonlinearity; moreover,
losses decrease with power unlike in the usual isotropic plas-
monic slot waveguides. Using nonlinear FDTD simulations,
we have also shown the stability of the main symmetric mode
up to intermediate powers, for several anisotropic configura-
tions, including one with a strong elliptical anisotropy.
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Appendix A. Unbounded solutions in the EJEM

In this appendix, we briefly describe the unbounded solutions
obtained in the case EJEM <a 0nl presented in section 3.1.1. We
have mentioned before that the only bounded solution with
finite electromagnetic energy in the nonlinear core for

EJEM <a 0nl can be obtained when <q 0core
2 (see equation (5))

and >C 00 (see equation (10)) under the condition shown
inequation (11).

In this appendix, we will study the other possible sub-
cases in the frame of EJEM <a 0nl . First, we begin with the
subcase in which the condition shown inequation (11)
is not satisfied. Since we are only looking for a real
solution forequation (12), we can write the nonlinear wave
equation as

g d- +
=  ( )

dH

H H A
dx

1
, A.1

y

y y
4 2 2 4

where g = AC4
0 and d = AQ2 . The coefficients g > 04 and

d > 02 since A, Q, and C0 are positive quantities in this
subcase (see section 3.1.1). Integratingequation (A.1) and
using the relation 263.00 from [34] yields the magnetic field
profile in the nonlinear core
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This solution represents the magnetic field component in the
nonlinear core for EJEM <a 0nl , <q 0core

2 , and >C 00 when
the conditionequation (11) is not satisfied, which means that

EJEM< ∣ ∣q C a k2core
4

0 nl 0
2. This kind of solution is described by

periodic and unbounded functions (see figure A1(a)) such
that the electromagnetic energy in the core is infinite. A
similar unbounded solution has already been obtained in
nonlinear dielectric waveguides [38].

Next, we consider the other subcases in which we get
unbounded solutions for EJEM <a 0nl . Table A1 shows their
unbounded magnetic field profiles with their reduced para-
meters according to the signs of q2core and C0. The first two

Figure A1. Unbounded periodic Jacobi elliptical functions with argument u and parameter m = 0.5. The global shape of the functions does
not change " Î [ ]m 0, 1 .
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columns of table A1 give the signs of q2core and C0, and the
last column represents the corresponding magnetic field pro-
files in terms of one of the unbounded Jacobi elliptical
functions nc [ ∣ ]u m or sc [ ∣ ]u m [42, 43] with argument u and
parameter m (see also figure A1(b)). The other columns
correspond to the reduced parameters used to describe the
magnetic field profiles shown in the last column. We have
used the same procedure to derive the nonlinear magnetic
field profiles as in sections 3.1.1, 3.1.2 and [15, 20]. One can
see that the first and the third subcases can be described by the
same unbounded function nc[ ∣ ]u m ; however, the reduced
parameters g2 and d2 are reversed. In our study, we will
exclude the solutions depicted in table A1 since we are
looking for a guided nonlinear wave propagating with finite
energy in the core.

Appendix B. Adapted FEM to match EJEM
assumptions

In this appendix, we show that the FEM presented in
section 3.2 can be compared to the semi-analytical approach
described in section 3.1 by taking into account all the EJEM
assumptions. In the frame of the EJEM, the nonlinearity
depends only on the transverse component of the electric field
Ex, and the nonlinear refractive index change is small com-
pared to the linear one. Therefore, one way to tackle this
problem is to consider only the weak formulation for the full
(TM) wave equation in terms of the magnetic field forcing
both the inhomogeneous permittivity term induced by the
nonlinearity and the structure interfaces to take into account
the EJEM assumptions


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such that ∀ H g¢ Î( ) ( )h xy 0
1 . We look for H gÎ( ) ( )h xy 0

1 , where

H g( )0
1 is the Sobolev space of order 1 with null Dirichlet
boundary conditions on the domain of integration Γ.
Equation (B.1) is derived from the first equation in system(31),

taking into account the two EJEM assumptions. Consequently,
unlike system(31), only the linear part of the permittivity
components xx and zz (see equation (1)) appear in equation
(B.1). The nonlinearity is represented by the fourth term in
which the nonlinear parameters axx and azz are non-zero only in
the core. Equation (B.1) and the first equation in system(31) are
identical in the linear regime. The algorithm used to
solveequation (B.1) is quite similar to algorithm 1: we start by
an initial field Einitx in the fourth term ofequation (B.1) and
compute the eigenvector hy with the corresponding eigenvalue
neff for the chosen mode. The rescaling factor χ is computed at
each iteration for a given fixed power Ptot. Using the longitudinal
z component of the pointing vector integrated over the transverse
x-direction, andequation (2a) with only the linear part of the
permittivity xx, we can compute the rescaling factor χ for a
given Ptot in the frame of the EJEM assumptions as

 ò
c
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c

h x
x

2
d , B.2

y

xx
tot

eff
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2

where the rescaled eigenvector c=H hy y will be used with the
eigenvalue neff to compute Ex (using equation (2a) with only the
linear part of the permittivity xx in the denominator), which will
be used as an input in the fourth term ofequation (B.1) for the
next iteration.

Finally, we would like to mention that the single-
component eigenvalue problem shown inequation (B.1) or in
[8], in the frame of our FEM formalism using the fixed power
algorithm, cannot be solved taking into account all the electric
field components in the Kerr-type nonlinearity. To clarify this
point, we consider the longitudinal z component of the
pointing vector integrated over the transverse x-direction
without the EJEM assumptions:

 ò
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2

In order to obtain the rescaling factor χ, we need to express
Ex, Ez in the previous formula in terms of the eigenvector hy
and χ, which is not possible since both Ex and Ez depend on
the nonlinear permittivity x and z, respectively, as is shown
in equations (2). Another way to solve this problem is to write
the weak formulation in terms of the electric field components
Ex and Ez only, as it is then possible to obtain an explicit
formula for χ as a function of Ptot. However, this approach
requires the use of discontinuous Galerkin method in the

Table A1. Unbounded magnetic field profiles with their reduced parameters for the case EJEM <a 0nl . The reduced parameter
EJEM= ( ∣ ∣)A k a2 0

2
nl is fixed for all the cases, while = ∣ ∣Q k q0

2
core
2 for <q 0core
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core
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FEM [72, 73] since Ex is a discontinuous function, which is
beyond the scope of the present study. Consequently, in order
to take into account all the electric field components in the
Kerr nonlinearity in our FEM using the fixed power algo-
rithm, we must solve the coupled eigenvalue problem in terms
of the continuous electromagnetic field components Ez and Hy

as described in section 3.2.

Appendix C. Convergence of the FEM method

In this appendix, we discuss the convergence of the full NL FEM
presented in section 3.2. In figure C1, we study the convergence
of the FEM method for the three different cases presented in
section 4 using the same parameters. We only show the results
for the fundamental nonlinear symmetric mode in each case (the

results for the other modes are similar). Here, D ( )Re neff

= - " Î-∣ ( ) ( )∣ ∣ ( )∣ [ ]R R Re n e n e n i N1, ,i i i
eff eff

1
eff where

( )Re n i
eff is the real part of the eigenvalue for the step i and N is

the step number in the procedure. We set our tolerance at 10−5

such that, for each power value, the convergence is achieved if
the following criterion is satisfied: D < -( )Re n 10eff

5. As can
be seen in figure C1, we need few steps to reach the convergence
at low powers, while, at very high powers, the number of
iterations increases until we reach power values in which the
algorithm does not converge within the number of iterations we
fixed (20 for the isotropic and 14 for the anisotropic case); these
power values are represented by the pink curves in figure C1.
The reason for this is, above these power values, the nonlinear
dispersion curves start to have a negative slope (see figures 2–4
for the fundamental symmetric modes), which means that we will
have two values for the effective index at the same power.
However, in the frame of the fixed power algorithm, for a given
input power, we look for the corresponding effective index of the
investigated nonlinear mode (see section 3.2). This means that
the FEM based on the fixed power algorithm fails to follow the
branches of the nonlinear dispersion curves with a negative slope,
which usually corresponds to unstable modes. The current ver-
sions of the FEM based on the fixed power algorithm converge
only to possibly stable modes [45, 58].
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