Review on spatial nonlinearity in plasmonic waveguides: single interface and slot configurations

Gilles Renversez

Athena team, Institut Fresnel (CNRS), Aix-Marseille Univ., Marseille, France gilles.renversez@fresnel.fr

Institut nonlinéaire de Nice, Sophia-Antipolis, le 8 novembre 2016

Outline

- What is a plasmon-soliton?
- 2 Motivations and context
- Single interface configuration
- 4 Simple nonlinear slot waveguides
- 5 Slot with a metamaterial nonlinear core
- 6 Conclusion

Introduction			

What is a plasmon-soliton wave?

A nonlinear optical wave combining a spatial soliton and a plasmon field with a single propagation constant

Introduction			

What is a plasmon-soliton wave?

A nonlinear optical wave combining a spatial soliton and a plasmon field with a single propagation constant

◆ □ → ◆ □ → ◆ □ = → ◆ □ = → ◆ □ = → ◆ □ = → ◆ □ = → ◆ ○ ○ 5 / 56

Motivation — Plasmon-soliton coupling in the semi-infinite NL region case

• Seminal articles:

J. Ariyasu *et al.* Nonlinear surface polaritons guided by metal films. *J. Appl. Phys.*, 58(7):2460, 1985.

Context		

Motivation — Plasmon-soliton coupling in the semi-infinite NL region case

More recent articles:

- Using the 'interaction picture' approach:
 - K. Y. Bliokh, Y. P. Bliokh, and A. Ferrando. Resonant plasmon-soliton interaction. *Phys. Rev. A*, 79:41803, 2009.
 - C. Milián, D. E. Ceballos-Herrera, D. V. Skryabin, and A. Ferrando. Soliton-plasmon resonances as Maxwell nonlinear bound states. *Opt. Lett.*, 37(20):4221–4223, 2012.
- Starting from nonlinear Schrödinger's equation:
 - A. Baron, T. B. Hoang, C. Fang, M. H. Mikkelsen, and D. R. Smith. Ultrafast self-action of surface-plasmon polaritons at an air/metal interface. Phys. Rev. B, 91, 195412, 2015

Context		

Motivation — Plasmon-soliton coupling in the semi-infinite NL region case

More recent articles:

- Starting from Maxwell's equations:
 - A. R. Davoyan, I. V. Shadrivov, and Y. S. Kivshar. Self-focusing and spatial plasmon-polariton solitons. *Opt. Express*, 16(24):21732–21737, 2009.

-W. Walasik, V. Nazabal, M. Chauvet, Y. Kartashov, and G. Renversez, Low-power plasmon-soliton in realistic nonlinear planar structures, Opt. Lett., 37(22): 4579, (2012)

-W. Walasik, G. Renversez, and Y. Kartashov, Stationary plasmon-soliton waves in nonlinear planar structures: modeling and properties. Phys. Rev. A, 89: 023816, (2014)

	Single interface configuration		
	•00000000		

Single interface configuration Choice of a proper structure

Can we design a **feasible simple** structure supporting **low power plasmon-soliton** that can be **excited directly and recorded**?

		Single interface configuration ●○○○○○○○○○		
Single in	terface co	onfiguration		
Choice of	a proper s	structure		

Can we design a **feasible simple** structure supporting **low power plasmon-soliton** that can be **excited directly and recorded**?

2-layer model (W. J. Tomlinson, Opt. Lett. 5(7), 323 (1980)):

Results

- no low power plasmon-soliton
- plasmon part cannot be recorded using NFO experiments

Can we design a **feasible simple** structure supporting **low power plasmon-soliton** that can be **excited directly and recorded**?

3-layer model (J. Ariyasu et al., Appl. Phys. 58(7), 2460 (1985)):

Our results

• No low power plasmon-soliton when air or water is chosen as external medium

< ≣⇒

	Single interface configuration		
	00000000		

Single interface configuration Choice of a proper structure

Can we design a **feasible simple** structure supporting **low power plasmon-soliton** that can be **excited directly and recorded**?

a 4-layer model must be developed

12 / 56

Modeling and properties. Phys. Rev. A, 89, 023816, 2014.

- Metal layer \longrightarrow **TM waves**: $\mathbf{E} = [E_x, 0, \imath E_z]$ and $\mathbf{H} = [0, H_y, 0]$
- Kerr nonlinearity
- Transverse field prevails $\longrightarrow |E_z| \ll |E_x|$ (verified a posteriori)
- We look for stationary solutions: $E(x, z, t) = E_{\rm NL}(x) \exp[i(\beta_{\rm NL}k_0z - \omega t)]$ $k_0 = 2\pi/\lambda, \text{ and } \beta_{\rm NL} \text{ is the effective index of this nonlinear wave}$

	Single interface configuration	Metamaterial NL slots	
	00000000		

Nonlinear wave equation in the frame of the nonlinear eigenvalue problem

Maxwell's equations \longrightarrow nonlinear wave equation for $E_{NL,x}$

$$\frac{d^2 E_{\rm NL,x}}{dx^2} - k_0^2 q^2(x) E_{\rm NL,x} + k_0^2 \alpha(x) E_{\rm NL,x}^3 = 0,$$
(1)

with $q^2(x) = \beta_{NL}^2 - \epsilon(x)$, and $\alpha(x) = \mathcal{H}(-x)\epsilon_0 c \epsilon(x) n_2$

 $\mathcal{H}(x)$ — Heaviside step function

Analytical solutions in the whole structure

In nonlinear region: the well-known solitonic-type solution:

$$E_{\rm NL,x}(x) = E_{0,x}(\beta_{\rm NL}) \operatorname{sech}[k_0(\beta_{\rm NL}^2 - \epsilon_1)^{\frac{1}{2}}(x - x_0)]$$

where x_0 denotes the center of the soliton

• In the linear regions: decreasing and/or increasing exponentials

三 つへで 14/56

		Single interface configuration			
Nonlinea	r dispersio	on relation (NDR) fo	or the single i	nterface configu	ration
Boundary	conditions	\longrightarrow closed form for the	NDR of the 4-	layer model	
	•	$\Phi_{+}\left(\widetilde{q}_{4}+\widetilde{q}_{3}\right)\exp(2k_{0}\widetilde{q}_{3})$ $\left(1+\widetilde{q}_{1\mathrm{NL}}\right)+\left(\widetilde{q}_{1}\right)$	$(\epsilon_3 d) + \Phi \left(\widetilde{q}_4 - \widetilde{q}_2 \right) + \widetilde{q}_2 \right)$	$-\widetilde{q}_3\Big)=0,$	(2)
	Ψ_{\pm}	$=\left(1\pm\frac{1}{\widetilde{q_3}}\right)+\left(\frac{1}{\widetilde{q_3}}\right)$	$\overline{\widetilde{q}_2} \pm \frac{1}{\widetilde{q}_3}$ tann	$(\kappa_0 q_2 \epsilon_2 L),$	(3)
witch $\widetilde{q}_j =$ and $\widetilde{q_{1\mathrm{NL}}}$	$q(x)/\epsilon(x) = \widetilde{q_1} anh(k)$	in the j -th layer, $m\widetilde{q_1}\epsilon_1x_0$)			
All the pla	smon-solito	on characteristics can be	e evaluated		
Eq. (2)	2) \longrightarrow allow	wed $eta_{ m NL}$ of 1D nonlinea	r problem		

- $\$ β_{NL} and $E_{\mathrm{NL},x}(x) \longrightarrow$ other field components $(E_{\mathrm{NL},z}(x) \text{ and } H_{\mathrm{NL},y}(x))$
- Iimiting cases : 3-layer and 2-layer model results

000000000000000000000000000000000000000		Single interface configuration			
		0000000	000000	00000	

First example of low power plasmon-soliton waves

Realistic opto-geometric structure parameters

- Chalcogenide glasses ($\epsilon_1 = 2.4707^2$, $n_2 = 10^{-17} \text{m}^2/\text{W}$) \longrightarrow high nonlinear coefficient
 - Coated planar chalcogenide waveguides already fabricated (V. Nazabal et al., Int. J. Appl. Ceram Technol., 8, 2011)
 - Spatial solitons already observed in planar chalcogenide waveguides (*M. Chauvet et al., Opt. Lett.*, 34, 2009)
- Silica ($\epsilon_2 = 1.443^2$, $L = 15 \mathrm{nm}$) \longrightarrow well known, good compatibility
- Gold ($\epsilon_3 = -96$, d = 40nm) \longrightarrow low loss, good compatibility
- Air as external medium ($\epsilon_4=1$) \longrightarrow Near field optics to record the plasmon part of the field

◆ 書 → ◆ 書 → ■ = つへで 16 / 56

First example of low power plasmon-soliton waves

Realistic soliton parameters \longrightarrow feasible excitation of the plasmon-soliton peak power P $\simeq 1.07 GW/cm^2$

(P $\simeq 2GW/cm^2$ reported by M. Chauvet et al., Opt. Lett., 34, 2009)

◆ □ →
◆ 三 →
◆ 三 →
● 三 →
○ へ ○
17 / 56

	Single interface configuration		
	00000000000		

Soliton center position influence

- $x_0 = 20\lambda$
- $\beta = 2.4707317$
- total power = 11.28 kW
- FWHM = 34 μ m

- soliton peak intensity = 0.63 GW/cm^2
- metal/air interface intensity = 0.49 MW/cm^2
- metal/air interface electric field = $3.04 \ MV/m$

	Single interface configuration		
	000000 000		

Soliton center position influence

- $x_0 = 10\lambda$
- $\beta = 2.4707486$
- total power = 10.01 kW
- FWHM = 27 μ m

- soliton peak intensity = 0.97 GW/cm^2
- metal/air interface intensity = $2.01 \ MW/cm^2$
- metal/air interface electric field = $6.11 \ MV/m$

	Single interface configuration		
	0000000000		

Soliton center position influence

- $x_0 = 5\lambda$
- β = 2.4707859
- total power = 8.88 kW
- FWHM = 20 μ m

- soliton peak intensity = 1.71 GW/cm^2
- metal/air interface intensity = 5.36 MW/cm^2
- metal/air interface electric field = 9.99 MV/m

	Single interface configuration		

Model parameters for the experimental design: L and d, with $P_{peak} \leq 3 GW/cm^2$

20 14

¹⁵ buffer [nm]

◆ 三・ 三 つ Q (℃ 22 / 56

	Single interface configuration		
	000000000		

First fabrications using chalcogenide glass

on a BK7 glass substrate

with the chalcogenide layer above a silica film on a silicon substrate

Structures made at the University of Rennes I by EVC-ISCR (courtesy of V. Nazabal)

◆ □ → ◆ 三 → ◆ 三 → ◆ 三 → ○ へ ○ 27 / 56

Nonlinear slot waveguide — Introduction

Linear case:

V. R. Almeida et al.

Guiding and confining light in void nanostructure,

Opt. Lett, 29:1209-1211, (2004)

J. A. Dionne et al.

Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization, *Phys. Rev. B*, 73(3):035407, (2006)

Nonlinear slot waveguide — Introduction

Nonlinear case:

- E. Feigenbaum and M. Orenstein. Plasmon-soliton. *Opt. Lett.*, 32(6):674, (2007)

A. Davoyan, I. Shadrivov, and Y. Kivshar, Nonlinear plasmonic slot waveguides, *Opt. Express*, 16(26), (2008)

No experimental results on plasmon–soliton in nonlinear slot Too high nonlinear index change $\Delta n = n_2 I$

	Simple NL slots	

Nonlinear slot waveguide — Introduction

- Waveguide configuration
- Subwavelength focusing
- Control the solutions with the power
- Peculiar nonlinear effects

Approach: the spatial dependency of transverse field components is kept

"Modal" nonlinear solutions of Maxwell's equations for TM stationary waves using field continuity conditions in 1D structure Both n_{eff} and field profiles that depend on total power P_{tot} are computed

> ◆ □ → ◆ 三 → ◆ 三 → 三 → ○ へ ○ 31 / 56

	Simple NL slots	

Common hypotheses to our two models

- Stationary solutions of Maxwell's equations: $\begin{cases}
 \mathbf{E}(x, z, t) \\
 \mathbf{H}(x, z, t)
 \end{cases} =
 \begin{cases}
 \mathbf{E}_{\mathrm{NL}}(x) \\
 \mathbf{H}_{\mathrm{NL}}(x)
 \end{cases} \exp[i(\beta_{\mathrm{NL}}k_0z - \omega t)] \\
 k_0 = 2\pi/\lambda, \text{ and } \beta_{\mathrm{NL}} \text{ is the effective index } n_{eff} \text{ of this nonlinear wave}
 \end{cases}$
- TM waves: $\mathbf{E} = [E_x, 0, iE_z]$ and $\mathbf{H} = [0, H_y, 0]$
- Kerr nonlinearity
- Maxwell's equations + boundary conditions

 \longrightarrow Nonlinear dispersion relation

Jacobi Elliptic function based Model (JEM)

Extension to slot configuration of W. Chen and A. A. Maradudin J. Opt. Soc. Am. B, 5, 529 (1988)

- Low nonlinearity depending only on the transverse electric field
- + Analytical formulas for field shapes and nonlinear dispersion relation

Finite Element Method (FEM)

Adaptation to slot configuration of: F. Drouart, G. Renversez, *et al.*

J. Opt. A: Pure Appl. Opt., 10, 125101J (2008)

+ Exact treatment of Kerr-type nonlinearity

 Field shapes and dispersion curves obtained numerically

	ngle interface configuration	Simple NL slots	Metamaterial NL slots	
0	00000000	000000	00000	

Jacobi Elliptic function based Model (JEM)

Extension to slot configuration of W. Chen and A. A. Maradudin J. Opt. Soc. Am. B, 5, 529 (1988)

Low nonlinearity depending only on the transverse electric field

+ Analytical formulas for field shapes and nonlinear dispersion relation

Finite Element Method (FEM)

Adaptation to slot configuration of: F. Drouart, G. Renversez, et al. J. Opt. A: Pure Appl. Opt., 10, 125101J (2008)

+ Exact treatment of Kerr-type nonlinearity

 Field shapes and dispersion curves obtained numerically

Nonlinear slot waveguide — Dispersion relations

35 / 56

≣⇒

Nonlinear slot waveguide — Dispersion relations

Energy interpretation for the emergence of the asymmetric mode from the symmetric mode in a symmetric nonlinear simple slot

Power as a function of normalized propagation constant β for the first three modes (S: symmetric, AN: anti-symmetric, AS: asymmetric), single interface is the structure with a semi-infinite nonlinear dielectric medium and a semi-infinite metal region. First: global view, \geq Second: zoom on the bifurcation region where the asymmetric mode emerges.

Energy interpretation for the emergence of the asymmetric mode from the symmetric mode in a symmetric nonlinear simple slot

Power as a function of normalized propagation constant β for the first three modes (S: symmetric, AN: anti-symmetric, AS: asymmetric), single interface is the structure with a semi-infinite nonlinear dielectric medium and a semi-infinite metal region. First: global view, a Second: zoom on the bifurcation region where the asymmetric mode emerges.

	Simple NL slots	
	0000000	

Stability analysis: introduction

10(9):1572, 1993

- weak guiding approximation
- first use to nonlinear slot waveguides

	ingle interface configuration	Simple NL slots	Metamaterial NL slots	Conclusion
(000000000	0000000	00000	

Stability analysis: introduction

Stability analysis: introduction

Stability analysis: full vector numerical results from nonlinear FDTD simulations

Dispersion curves with stability results for the symmetric and asymmetric modes from FDTD simulations, d = 500 nm amorphous Si core surrounded by gold

◆ □ →
◆ 三 →
◆ 三 →
● 三 →
○ へ ○
45 / 56

	Simple NL slots	
	000000	

Intermediate conclusions

- Two semi-analytical models for **nonlinear slot waveguide** configuration with a finite size nonlinear core
- Prediction of the existence of higher order modes in nonlinear slot waveguides
- Study of size and permittivity contrast effects on bifurcation threshold \rightarrow ways to reduce it
- \bullet Stability study of plasmon–solitons using two numerical methods \rightarrow stable asymmetric mode

-W. Walasik, A. Rodriguez, G. Renversez, Symmetric Plasmonic Slot Waveguides with a Nonlinear Dielectric Core: Bifurcations, Size Effects, and Higher Order Modes, Plasmonics, **10**, 33, (2015)

-W. Walasik, G. Renversez, Plasmon-soliton waves in planar slot waveguides: I. Modeling. Phys. Rev. A, **93**: 013825, (2016)

-W. Walasik, G. Renversez, F. Ye, Plasmon–soliton waves in planar slot waveguides: II. Results for stationary waves and stability analysis. Phys. Rev. A, **93**: 013825, (2016)

	Simple NL slots	
	000000	

Intermediate conclusions

- Two semi-analytical models for **nonlinear slot waveguide** configuration with a finite size nonlinear core
- Prediction of the existence of higher order modes in nonlinear slot waveguides
- Study of size and permittivity contrast effects on bifurcation threshold \rightarrow ways to reduce it
- Stability study of plasmon–solitons using two numerical methods \rightarrow stable asymmetric mode

• But losses and bifurcation threshold are still high for realistic and useful parameters.

Slot with a metamaterial nonlinear core — Introduction

The idea to use metamaterial and/or epsilon-near-zero (ENZ) materials to enhance nonlinear effects was already proposed several times:

A. Husakou and J. Hermann

Steplike transmission of light through a Metal-Dielectric Mutilayer Structure due to an Intensity-Dependent Sign of the Effective Dielectric Constant Phys. Rev. Lett., 99, 127402, (2007)

A. Ciattoni et al.

Extreme nonlinear electrodynamics in metamaterials with very small linear permittivity,

Phys. Rev. A., 81, 043839, (2011)

A. D. Neira et al.

Eliminating material constraints for nonlinearity with plasmonic metamaterials Nature Comm., 6, 7757, (2015)

Nevertheless, nonlinear ENZ waveguide problems and the key role of anisotropy seem to have been partially overlooked.

 </

Metamaterial based nonlinear core

Full slot with its metamaterial nonlinear core

49 / 56

$$\varepsilon_{core} \longrightarrow \bar{\bar{\varepsilon}}_{core} = \begin{pmatrix} \varepsilon_x = \varepsilon_{\perp} & 0 & 0 \\ 0 & \varepsilon_y = \varepsilon_{//} & 0 \\ 0 & 0 & \varepsilon_z = \varepsilon_{//} \end{pmatrix}$$
(4)

• Effective Medium Theory (EMT) $\rightarrow \bar{\bar{\varepsilon}}_{core}$ tensor for uniaxial anisotropic medium as:

$$\varepsilon_{y} = \varepsilon_{z} = r\varepsilon_{2} + (1 - r)\varepsilon_{1} = \varepsilon_{//}$$

$$\varepsilon_{x} = \frac{\varepsilon_{1}\varepsilon_{2}}{r\varepsilon_{1} + (1 - r)\varepsilon_{2}} = \varepsilon_{\perp}$$

$$r = \frac{d_{2}}{d_{1} + d_{2}}$$
is the ratio of the 2nd material in the layered structure

Metamaterial based nonlinear core

Full slot with its metamaterial nonlinear core

$$\varepsilon_{core} \longrightarrow \overline{\overline{\varepsilon}}_{core} = \begin{pmatrix} \varepsilon_x = \varepsilon_{\perp} & 0 & 0 \\ 0 & \varepsilon_y = \varepsilon_{//} & 0 \\ 0 & 0 & \varepsilon_z = \varepsilon_{//} \end{pmatrix}$$
(4)

• As first order approximation, the nonlinear part of the permittivity is **isotropic**. We have recently exented our methods to deal with **anisotropic nonlinearity**. In this case, only the nonlinear FEM method can be used.

		Metamaterial NL slots	

Equations for the TM waves with linear anisotropy and Kerr type isotropic nonlinearity

$$E_{x}(x) = \frac{\Re e(n_{eff})H_{y}(x)}{\varepsilon_{0}\varepsilon_{x}(x)x}$$
(5)

$$E_{z}(x) = \frac{1}{\varepsilon_{0}\varepsilon_{z}(x)\omega} \frac{dH_{y}(x)}{dx}$$
(6)

$$k_0 \Re e(n_{eff}) E_x(x) - \frac{dE_z(x)}{dx} = \omega \mu_0 H_y(x)$$
⁽⁷⁾

$$\varepsilon_{j} = \varepsilon_{jj} + \alpha |E_{x}^{2} + E_{z}^{2}|, \forall j \in \{x, y, z\} \text{ (full nonlinearity)}$$
(8)

(9)

$$\varepsilon_{j} = \varepsilon_{jj} + \alpha |\mathbf{E}_{x}^{2}|, \forall j \in \{x, y, z\} \text{ (full adapted to EJEM nonlinearity)}$$
(10)

For the FEM:

We use the two continuous components across the interfaces, H_y and E_z , to write the weak formulation.

or

 \longrightarrow A nonlinear eigenvalue problem made of 2 coupled equations with nodal elements only.

		Metamaterial NL slots	
		00000	

Slot with a metamaterial nonlinear core — Effective nonlinearity

• In the frame of our semi-analytical 1D model (Maxwell's equations & stationnary TM waves), we obtain for the **effective nonlinearity** a_{nl} using Eq.(4):

$$\sigma_{nl}^{\mathsf{EJEM}} = -\tilde{\alpha} n_{eff}^2 \left(n_{eff}^2 \left(\varepsilon_{xx} - \varepsilon_{zz} \right) - \varepsilon_{xx}^2 \right) / \left(\varepsilon_{xx}^4 c^2 \varepsilon_0^2 \right)$$
(11)

0

52 / 56

with $\tilde{\alpha} = \varepsilon_0 c \Re e(\varepsilon_1)(1-r)n_{2,1}$.

- $a_{nl}^{\text{EJEM}} \longrightarrow a_{nl,ISOTROPIC}^{\text{EJEM}}$ when $\varepsilon_{xx} \longrightarrow \varepsilon_{zz}$
- Metamaterial properties $\Rightarrow \varepsilon_{xx} = \varepsilon_{\perp} = f(\varepsilon_1, d_1, \varepsilon_2, d_2)$ and $\varepsilon_{zz} = \varepsilon_{//} = g(\varepsilon_1, d_1, \varepsilon_2, d_2)$
- $n_{\rm eff}$ depends on the total power P_{tot} and on the opto-geometric parameters of the slot

Consequences in the elliptical case: $\varepsilon_{\perp} \gg \varepsilon_{//} > 0$

 $\bullet~$ Lowering the bifurcation threshold for symmetry breaking : 1 GW/cm^2 \longrightarrow 10 MW/cm^2

Elliptical and hyperbolic cases: M. M. R. Elsawy and G. Renversez, Spatial nonlinearity in anisotropic metamaterial plasmonic slot waveguides, *submitted*, (2016)

Isotropic case: nonlinear dispersion relation for the symmetric and asymmetric modes as a term function of total power P_{tot} . $\lambda = 1.55 \,\mu\text{m}$, $d_{core} = 400 \,\text{nm}$, and $n_2 = 2.10^{-17} m^2/W$, and for $\varepsilon_{\perp} = 0.042$, $\varepsilon_{//} = 9.07$.

53 / 56

• Here, in the *FEM adapted to JEM* only *E_x* is in the nonlinear term in order to correspond with JEM

Slot with a metamaterial nonlinear core — **Numerical results** with our 3 models for the anisotropic case: semi-analytical Extended Jacobi Elliptic function based Model (EJEM), nonlinear FEMs (full or adapted)

Anisotropic case: zoom of nonlinear dispersion relation for the symmetric and asymmetric modes as a function of total power P_{tot} , around the bifurcation for $\varepsilon_{\perp} = 0.042$, $\varepsilon_{//} = 9.07$,

> ・ 一・ ・ 三・ ・ 50 (つ) 54 / 56 (つ) 55 (つ) 5

Slot with a metamaterial nonlinear core — **Numerical results** Influence of the linear anisotropy on the bifurcation threshold

Anisotropic case: Power threshold $P_{tot,th}$ as a function of linear transverse permittivity ε_{xx} in the elliptical case for two longitudinal permittivity ε_{zz} values. Isotropic case is shown by the black curve. Inset: $P_{tot,th}$ as a function of ε_{zz} for two ε_{xx} values.

- Stability of the asymmetric mode of the isotropic slot waveguide
- Loss reduction and new nonlinear spatial modal transitions for the buffer improved isotropic structure (not shown today, see Improved nonlinear slot waveguides using dielectric buffer layers: properties of TM waves, Optics Lett., 41(7), pp. 1542-1545, 2016.

2D models:

• We also investigated the 2D model: a rib waveguide with a nonlinear layer using vector FEM with edge elements. . . for the next time.

< @ > < ⊇ >

< 臣→

≣ つへで 56/56

• We computed the nonlinear figures of merit taking into account the losses for comparison with state of the art full dielectric nonlinear waveguides.